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Abstract. We study the Gierer-Meinhardt system in one dimension in the limit of large reaction rates

of the activator. Three solution types are considered: (i) an interior spike; (ii) a boundary spike and (iii)

two boundary spikes. It is found that an interior spike is always unstable; a boundary spike is always stable.

The two-boundary configuration can be either stable or unstable, depending on the parameters. We fully

classify the stability in this case. Numerical simulations are shown in full agreement with analytical results.

1. Introduction

In this paper, we study the Gierer-Meinhardt system in the limit of large reaction rates. Let us first

put it in the context of Turing’s diffusion-driven instability. Since the work of Turing [32] in 1952, many

models have been established and investigated to explore the so-called Turing instability [32]. One of the

most famous models in biological pattern formation is the Gierer-Meinhardt system [14], [21], [22], which in

one dimension can be stated as follows:

At = DA∆A−A +
Ap

Hq
, x ∈ (−1, 1), t > 0,

τHt = DH∆H −H +
Am

Hs
x ∈ (−1, 1), t > 0,(1)

Ax(±1, t) = Hx(±1, t) = 0,

where (p, q, r, s) satisfy

1 <
qm

(s + 1)(p− 1)
< +∞, 1 < p < +∞.

In all of the recent mathematical investigations it was always assumed that the activator diffuses much

slower than the inhibitor, that is

(2) DH À DA,

a condition which is related to those required for Turing instability [32]. See Chapter 2 of [23] for a thorough

investigation. If the system is studied in a bounded domain, it is further assumed that DA ¿ 1. In this

limit, the GM model becomes weakly coupled in one dimension. Let us summarize some of the recent results

about (1) under assumption (2).
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1. Existence of symmetric N−peaked steady-state Solutions: First, I. Takagi [31] established

the existence of N -peaked steady-state solutions with peaks centered at

xj = −1 +
2j − 1

N
, j = 1, . . . , N.

Such solutions are symmetric and they are obtained from a single spike by reflection. Takagi’s proof

is based on symmetry and the implicit function theorem.

2. Stability of symmetric N−peaked solutions: Using matched asymptotic analysis, D. Iron, M.

Ward, and J. Wei [18] and, using rigorous proofs, J. Wei and M. Winter [43] studied the stability of

symmetric N -peaked solutions with τ = 0 and the following results are established:

There exists a sequence of numbers D1 > D2 > · · · > DN > · · · (which has been given explicitly)

such that if DH < DN the symmetric N -peaked solutions are stable, while for DH > DN the

symmetric N -peaked solutions are unstable.

3. Spike dynamics: Effective equations for the slow motion of spikes in one and two dimensions have

been derived in [5], [6], [19], [33], [20]. In two dimensions, the motion of the spike along the boundary

has also been described [4], [17].

4. Oscillatory instabilities: When τ is sufficiently large, the spike solution undergoes a Hopf bifur-

cation [35], whereby the spike solutions start to oscillate in time.

5. In the shadow system case (DH = ∞) the existence of single- or N -peaked solutions is established

in [1, 2, 3, 8, 7, 25, 26, 36, 37, 45] and other papers. In the two-dimensional strong coupling case

(DH < ∞), the existence of 1-peaked solutions is established in [40], and the stability of N -peaked

solutions is studied in [42]. The two-dimensional weak coupling case (DH → ∞) is investigated

in [41] and the existence and stability of multiple-peaked solutions is proved. Instability thresholds

similar to the 1D case are also derived.

6. Existence of asymmetric solutions: By the matched asymptotic analysis approach M. Ward and

the second author in [34] and by rigorous proofs the second author and M. Winter in [43] proved

the existence of asymmetric N−peaked steady-state solutions. Such asymmetric solutions are

generated by two types of peaks – called type A and type B, respectively. Type A and type B peaks

have different heights. They can be arranged in any given order

ABAABBB . . .ABBBA . . .B

to form an N−peaked solution. Also the stability of such asymmetric N−peaked solutions is studied

in [34] and [43], respectively. We remark that symmetric and asymmetric patterns can also be

obtained for the Gierer-Meinhardt system on the real line, see [13]. In the real plane, an analogous

phenomenon (multi-bump solutions) have also been studied, see for example [9], [10].
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We now introduce the setting of this paper. In contrast with the above-mentioned works, we do not

assume the large diffusivity ratio (2). Instead, we study the the limit of large reaction rates of the

activator. More precisely, we assume that

(3) p,m À 1 with O
( p

m

)
= 1.

To simplify our analysis, we also set q = 1, s = 0, τ = 0. Moreover rewrite m = (p − 1)r, r = O(1). By

appropriate scaling, the system becomes

At = Axx −A +
Ap

H
; 0 = DHxx −H + A(p−1)r, x ∈ [−L,L],

Ax (±L) = 0 = Hx (±L) ,(4)

L,D = O(1); p À 1; r > 1.

Hunding and Engelhardt [15] considered first the effect of large reaction rates on Turing’s instability for

several well-known reaction-diffusion systems (the Sel’kov model, Brusselator, Schnakenberg model, Gierer-

Meinhardt system, Lengyel-Epstein model). By increasing the reaction rate (or the so-called Hill constant

γ for Hill-type kinetics), they showed, through a linearized stability analysis, that pattern formation by

Turing’s mechanism is facilitated by increasing cooperativity, even when the ratio of the diffusion rates is

close to one.

The case of large reaction rates is well-justified for models of pattern formation induced by gene hierarchy

due to their high degree of cooperativity [15]. This process plays a role even for rather primitive animals and

plants like flatworm, ciliates, fungi and has been well investigated in Drosophila, where the homeobox genes

play a major role [29], [45]. In the latter case key ingredients of the gene hierarchy have been identified such

as the maternal gene bicoid, the gap gene hunchback and the primary pair-rule genes, which are expressed

in a series of seven equally spaced and precisely phase shifted stripes. The occurence of these stripes

can be explained by a Turing mechanism in combination with maternal and gap gene interactions. These

mechanisms have been reviewed in [16], [28] and [27].

The cooperativity for homeobox genes is high since they are able to create proteins which bind to several

other genes, in this process activating or inhibiting them. Experimentally reaction rates exceeding 8 have

been found for several different gene control systems. An explicit example is the pair rule gene hairy which

was originally connected to the nervous system but plays a role in the initial body plan of Drosophila as well.

This high degree of cooperativity leads to a whole class of control systems with large reaction rates which

can explain the emergence of a variety of complex patterns. These large reaction rates further imply that

the system can read out and also remember gradients in the positional information which is important since

this information is often used repeatedly for example in the anterior-posterior or dorsal-ventral gradients in
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Drosophila. The system also has the property of reacting in an almost on-off manner to very shallow gradients

in positional information which plays a major role in controlling the cell cycle governing mitosis since the

properties of the system must change qualitatively if its size is increased by a factor 2. Further properties

of the resulting nonlinear systems are time oscillations and multi-stability, the latter being important for

modelling cell differentiation.

In this paper, we give a first analysis on Turing’s nonlinear patterns in the case of large diffusion rate.

The model we take is the Gierer-Meinhardt system, though our analysis can well be extended to other

reaction-diffusion systems with large nonlinearity (as in [15]).

We now outline the contents of the paper. We begin by constructing the steady-state solution in §2. Such

a solution consists of an inner and outer region, and its construction involves their asymptotic matching.

The conclusion is summarized as follows.

Proposition 1. Consider the system

0 = Axx −A +
Ap

H
; 0 = DHxx −H + A(p−1)r, x ∈ [−L,L],(5)

Ax (±L) = 0 = Hx (±L) .

In the limit

p →∞

let

α :=
1

p− 1
¿ 1.

Then (5) admits a solution of the form

A ∼





(
H0η
3α

)α

wα
(√

η

α x
)

, |x| ¿ O(α),
cosh (|x| − L)

cosh (L)
, |x| À O(α),

(6)

H ∼ H0

cosh
(
|x|−L√

D

)

cosh
(

L√
D

) ,(7)

where

H0 = αη
r−1/2
1−r

[
2β−1D1/2 tanh

(
L√
D

)]1/(r−1)

η = tanh2(L)

β =
∫ ∞

−∞
2r sech2r (y/2) dy

and w is the ground state solution to

(8) wyy − w + w2 = 0, w > 0, wy(0) = 0, w(y) ∼ Ce−|y|, |y| → ∞
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Figure 1. (a) The plot of the steady state A(x) (solid line) and its outer region asymptotic
approximation (dashed line) given by cosh(|x| − L)/ cosh(L) (b) The plot of A(x)p near
the origin (solid line) and its asymptotic approximation given by (6) (dashed line). The
parameter values are p = 90, r = 2, D = 1, L = 1. Note that Ap is localized while A is not.

given explicitly by

(9) w(y) =
3
2

sech2(y/2).

The key observation is that unlike in the case of a slowly diffusing activator (DA ¿ DH), the activator A

does not look like a spike; nonetheless, its power Ap does. This is illustrated in Figure 1, where both A and

Ap are plotted. Note that Ap is localized near the origin while A is not.

A remarkable fact is that in the above proposition, the ratio of the two diffusivities D can be any finite

number.

By restricting the domain of solution of Proposition 1 to [0, L], we obtain a boundary spike solution at

the left boundary x = 0. Similarly, by reflecting this boundary spike solution across x = L we get a double-

boundary spike solution. The main result of this paper is the stability analysis for these solutions. We

summarize it as follows.

Theorem 2. Suppose p is large enough. A boundary spike is stable. An interior spike is unstable with

respect to odd perturbations, and will move towards one of the boundaries. Now consider a double-boundary

configuration on the interval [0, 2L], obtained by reflecting the boundary spike on [0, L] along x = L. Such a

steady state is stable if D < Dc and it is unstable if D > Dc where Dc is the solution to

(10) r tanh2

(
L√
D

)
= 1.
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Figure 2. (a) Motion of the interior spike towards the right boundary. Profiles of A(x)
are shown with increments of 0.1 time steps. The parameter values used were p = 50, r =
2, D = 1, L = 1. The initial condition was taken to be slightly to the right of the center.
(b) Competition instability of two boundary spikes. The profiles of A(x) are shown with
increments of 0.1 time steps. The spike at the right boundary eventually disappears. Here,
p = 50, r = 2, D = 4, L = 1.5 with x ∈ [0, 2L].

The two instabilities of Theorem 2 are shown in Figure 2. The instability of the interior spike is due to an

unstable “small” eigenvalue whose corresponding eigenfunction is odd. This induces spike motion towards

the boundary. On the other hand, the instability of the boundary spike occurs on a much faster timescale,

corresponding to a “large” eigenvalue. As a result, one of the two boundary spikes is annihilated.

Note that a multi-spike solution can also be constructed by reflecting an interior spike solution. However,

since a single interior spike is unstable, this multi-spike configuration is also automatically unstable so we

do not consider it.

We now summarize the contents of the paper. In §2 we use asymptotic matching to construct the steady-

state solution given in Proposition 1. We then formulate the linearized problem in §3. In §4 we consider the

large eigenvalues. This leads to a nonlocal eigenvalue problem. In Theorem 3 we fully classify its solutions.

When r = 2 we are able to obtain necessary and sufficient conditions for stability. We then study the small

eigenvalues in §5, corresponding to an odd eigenfunction. We show that there is a small positive eigenvalue,

so that an interior spike is unstable. We conclude with some open problems in §6.
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2. Construction of the steady state

In this section we construct the steady state usinig asymptotic matching (Proposition 1). As a motivation,

note that a solution to the ODE

vxx − v + vp = 0

on the whole R is explicitly given by

v(x) =
[(

p + 1
2

)
sech2

(
p− 1

2
x

)] 1
p−1

.

This suggests the following change of variables:

(11) A(x) =
(

u(z)
α

)α

, z =
x

α

where

α =
1

p− 1
¿ 1.

We then obtain the following inner problem:

0 = uzz − u2
z

u
+

u2

H
+ α

(
−u +

u2
z

u

)

0 = DHxx −H + urα−r.

In the inner region |x| ¿ 1 we therefore expand

u(z) = U0(z) + αU1(z) + · · ·

H(z) = H0 + αH1(z) + · · ·

The leading order equations are

(12) U0zz − U2
0z

U0
+

U2
0

H0
= 0, H0zz = 0

so that H0 is a constant. A direct verification shows that (12) admits a one-parameter family of solutions

given by

U0(z) =
H0

3
ηw (

√
ηz)

where

(13) w(y) =
3
2

sech2(y/2)

is a solution to (8) and where η is an arbitrary parameter that corresponds to a scaling symmetry of (12).

The values for η and H0 are to be determined shortly.

In the outer region, we have

Axx −A ∼ 0; Ax(±L) = 0.
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In the inner region we expand in α:

A(z) = exp
(

α ln
u(z)
α

)
= 1 + O

(
α ln

1
α

)
.

It follows that A → 1 as z →∞ so that

A ∼ cosh (L− |x|)
cosh L

, |x| À O(α).

Next we perform the matching of the inner and outer solution. For α ¿ |x| ¿ 1 we expand the outer

solution in Taylor series to get

A ∼ 1− (tanhL) |x|+ O
(
|x|2

)

∼ 1− α (tanhL) |z|+ O
(
α2|z|2) .(14)

On the other hand, note that

w (y) ∼ 6 exp (− |y|) , |y| → ∞

so that for large |z| we have

A = exp
(
α ln

u

α

)

∼ exp
(

α ln
1
α

)
exp(α lnU0)

∼ 1 + α

(
lnU0 + ln

1
α

)

∼ 1− α
√

η |z|+ O

(
α ln

1
α

)
.(15)

Equating the O(α) terms in (14) and (15), we get

η = tanh2 L.

To compute H0, we note that in the outer region, A(p−1)r ∼ 0. We therefore write

DHxx −H = −C0δ (x) ; Hx (±L) = 0

where

C0 =
∫ ∞

−∞
A(p−1)rdx

∼ α√
η

∫ ∞

−∞

(
H0
3 ηw (y)

α

)r

dy

∼ α1−rηr−1/2Hr
0β(16)

and

β =
∫ ∞

−∞
2r sech2r (y/2) dy.

It follows that

H (x) = B cosh
(

L− |x|√
D

)
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where
√

DB sinh
(

L√
D

)
=

1
2
C0

so that

H0 ∼ H(0) =
1
2

C0√
D

coth
(

L√
D

)
(17)

H0 ∼ αη
r−1/2
1−r

[
2β−1D1/2 tanh

(
L√
D

)]1/(r−1)

.(18)

This completes the derivation of Proposition 1. ¥

3. Stability

We now study the linear stability of the non-homogeneous steady state. Linearize around the steady state

as:

A(x, t) = A(x) + eλtφ(x)

H(x, t) = H(x) + eλtψ(x)

where A(x) is the solution as given by Proposition 1. We obtain

λφ = φxx − φ + p
Ap−1φ

H
− Ap

H2
ψ(19a)

0 = Dψxx − ψ + r (p− 1) A(p−1)r−1φ.(19b)

As before, we make the change of variables given in (11). Since A ∼ 1 near x ∼ 0 we have

Ap =
u

α
A ∼ u

α
.

We obtain

α2(λ + 1)φ ∼ α2φxx +
u

H
φ + α

u

H
φ− α

u

H2
ψ

0 ∼ Dψxx − ψ + rαr−1urφ.

For an interior spike which is symmetric about the origin, there are two possible eigenfunctions: either odd

or even around the origin. Both satisfy Neumann boundary conditions on [−L,L]. This yields two separate

problems. The even eigenfunction can be restricted to [0, L] and is the same as the eigenfunction for a single

boundary spike.

Finally, the double boundary spike on [0, 2L] requires an extra eigenvalue which is odd about x = L. This

leads to three possible boundary conditions:

• Even eigenfunction for an interior spike on [−L,L] or a boundary spike on [0, L]:

(20) φx (0) = 0, φx(L) = 0; ψx (0) = 0, ψx(L) = 0;
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• Interior spike on [−L,L], odd eigenfunction:

(21) φ (0) = 0, φx(L) = 0; ψ (0) = 0, ψx(L) = 0;

• Double boundary spike on [0, 2L]:

(22) φx (0) = 0, φ(L) = 0; ψx (0) = 0, ψ(L) = 0.

As will be evident shortly, problems (20) and (22) admit eigenvalues that have O(p2). We will refer to

these as large eigenvalues. These are analyzed in §4. On the other hand, problem (21) admits an eigenvalue

of O(1) which are studied in §5. We will refer to it as the small eigenvalue.

4. Large eigenvalues

We start by analyzing the large eigenvalues. Changing to inner variables, we have

x =
α√
η
y; u ∼ H0

3
ηw(y);

and we obtain
α2

η
(λ + 1)φ ∼ φyy +

1
3
wφ− 1

3
ψ0

H0
α

where

ψ0 = ψ(0)

and ψ (0) is determined by solving

(23) Dψxx − ψ ∼ C1δ(x); ψx (±L) = 0,

C1 =
∫ ∞

−∞

(u

α

)r r

α
φ dx =

r√
η

(
H0η

3α

)r ∫ ∞

−∞
wrφdy

so that

ψ(x) = −C1G(0)

where

G(x) =
cosh

(
L−|x|√

D

)

2
√

D sinh
(

L√
D

)

is the Green’s function satisfying

DGxx −G = −δ(x), Gx (±L) = 0.

On the other hand, from (16) we have

H0 =
α√
η

(
H0η

3α

)r ∫ ∞

−∞
wr dy G(0).

So the boundary conditions (20) lead to following dimensionless nonlocal eigenvalue problem:

(24) λ0φ = φyy +
1
3
wφ− r

3
w

∫∞
−∞ wrφdy∫∞
−∞ wr dr

, λ0 ∼ α2

η
λ.



EXISTENCE AND STABILITY ANALYSIS 11

For the boundary conditions (22), the only difference is that the boundary conditions in (23) are changed to

Dirichlet conditions ψ (±L) = 0. Thus the Green’s function now is the one for Dirichlet boundary conditions

given by

Gd(x) =
sinh

(
L−|x|√

D

)

2
√

D cosh
(

L√
D

) .

A similar computation then leads to:

(25) λ0φ = φyy +
1
3
wφ− r

3
tanh2

(
L√
D

)
w

∫∞
−∞ wrφdy∫∞
−∞ wr dy

, λ0 ∼ α2

η
λ.

Equations (24), (25) are the starting point of our analysis. Both cases will be covered once we prove the

following key theorem.

Theorem 3. Let

L0φ = φyy +
1
3
wφ

and consider the nonlocal eigenvalue problem on all of R :

(26) L0φ− γw

∫ ∞

−∞
wrφdy = λφ, r ≥ 1

where w is given by (8). Let

γ0 =
1
3

1∫∞
−∞ wr dy

.

We have the following:

(a) If γ < γ0 then (26) has a positive eigenvalue λ > 0.

(b) If γ > γ0 and r = 2 then Re(λ) < 0 for all λ.

Remark: We conjecture that (b) is true for all r ≥ 1; however we do not know how to prove it in general.

Note that Theorem 3 implies the threshold (10). It also shows that the interior spike is stable with respect

to even perturbations.

Before proving Theorem 3, we first summarize the properties of the local operator L0. Note that

L0w = w − 2
3
w2; L−1

0 w = 3(27)
∫ ∞

−∞
w2 dy = 6;

∫ ∞

−∞
w dy = 6.(28)

In addition we have the following characterization of the spectrum of L0.

Lemma 4. The even eigenvalues of L0 satisfy

λ1 =
1
4
, λ2 < 0, . . .

The eigenfunction corresponding to λ1 is

φ1 = w1/2.
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Finally, we will need the following key lemma.

Lemma 5. Consider the eigenvalue problem

(29) L0φ− 1
18

w

∫ ∞

−∞
wφ dy = λφ.

It admits an eigenvalue λ = 0 corresponding to the eigenfunction φ = 1. All other eigenvalues are real and

strictly negative.

Proof of Lemma 4. We have to solve

(30) φyy + µwφ = γ2φ

where, as in [11],

γ =
√

λ, µ =
1
3
, φ(y) = wγ(y)F (y)

and we take the principal branch of the square root. Then F satisfies

(31) Fyy + 2γ
wy

w
Fy +

(
1
3
−

(
γ +

2
3
γ(γ − 1)

))
wF = 0.

Next we introduce the following new variable

(32) z =
1
2

(
1− wy

w

)
.

Then
wy

w
= 1− 2z, w = 6z(1− z),

dz

dx
= z(1− z).

This gives the following equation for F as a function of z:

(33) z(1− z)F
′′

+ (c− (a + b + 1)z)F
′ − abF = 0,

where

(34) a + b + 1 = 2 + 4γ, ab = 2(2γ(γ − 1)− 3(
1
3
− γ)), c = 1 + 2γ.

The solutions to (33) are standard hypergeometric functions. See [30] for more details. Now there are two

solutions to (33):

F (a, b; c; z) and z1−cF (a− c + 1, b− c + 1; 2− c; z).

By our construction, F is regular at z = 0. At z = 1, F (a, b; c; z) has a singularity

lim
z→1

(1− z)−(c−a−b)F (a, b; c; z) =
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
,

where c − a − b = −2γ < 0. Note that since γ =
√

λ, the real part of γ is positive. So a solution that is

regular at both z = 0 and z = 1 can only exist if Γ(x) has a pole at a or b, respectively. In other words, we

have a, b = 0,−1,−2, . . ..
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From (34), we compute that

a = 2γ − α or b = 2γ − α,

where α satisfies

(35) α2 + α− 2 = 0.

This implies α = 1 or α = −2. By assumption,

2
√

λ = α + a > 0.

Hence, we have to choose α = 1, a = 0. This gives
√

λ =
1
2
, and, finally, λ =

1
4
.

The corresponding eigenfunction is w1/2 since F (0, 0;−1, z) = 1. We also see that λ = 1
4 is the only positive

eigenvalue. ¥

Proof of Lemma 5. Equation (29) is equivalent to solving

(L0 − λ)φ = w;
∫ ∞

−∞
wφ dy = 18.

Therefore we define

f(λ) ≡
∫ ∞

−∞
w(L0 − λ)−1w dy

so λ then solves the equation

(36) f(λ) = 18.

Since (29) is self-adjoint, all eigenvalues are purely real and it suffices to show that f(λ) 6= 18 for λ > 0.

Note that

(37) L01 =
1
3
w

so that

(38) f(0) = 18

and therefore λ = 0 is an eigenvalue of (29) corresponding to the eigenfunction φ = 1. Next, we compute

f ′(λ) =
∫ ∞

−∞
w(L0 − λ)−2w dy =

∫ ∞

−∞

[
(L0 − λ)−1w

]2
dy > 0

so that f(λ) is an increasing function. Finally, note that the local operator L0 admits a single positive

eigenvalue λ0 = 1
4 . This implies that f(λ) has a single pole at λ = 1

4 and no other poles along the positive

real axis λ > 0. On the other hand, for large values of λ we have

f(λ) ∼ − 1
λ

∫ ∞

−∞
w2 dy → 0− as λ → +∞.

To summarize, f(λ) has a vertical asymptote at λ = 1
4 ; f(0) = 18, f → 0− as λ →∞ and f is increasing for

λ 6= 1
4 . It follows that f(λ) 6= 18 for all λ > 0 and this proves the lemma. ¥
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Proof of Theorem 3. We start with the proof of (a).

Define a function

(39) f(λ) ≡
∫ ∞

−∞
wr(L0 − λ)−1w dy

so that the eigenvalue λ solves the equation

(40) f(λ) =
1
γ

.

By (27), note that

(41) f(0) =
1
γ0

.

On the other hand, the local operator L0 admits a single positive eigenvalue λ0 = 1
4 . This implies that f(λ)

has a single pole at λ = 1
4 so that

f(λ) → ±∞ as λ →
(

1
4

)−

and f(λ) has no other poles along the positive real axis λ > 0. On the other hand, for large values of λ we

have

f(λ) ∼ − 1
λ

∫ ∞

−∞
wr+1 dy → 0− as λ → +∞.

Therefore

f(λ) → +∞ as λ →
(

1
4

)−
.

It follows that (40) has a solution with λ < 0 ≤ 1
4 whenever 0 ≤ γ < γ0.

Next we prove part (b). Since the operator (26) is not self-adjoint, the eigenvalues are in general complex.

Therefore we write

λ = λR + iλI

φ = φR + iφI .

When r = 2, we have

L0φR − γw

∫ ∞

−∞
w2φR dy = λRφR − λIφI(42)

L0φI − γw

∫ ∞

−∞
w2φI dy = λRφI + λIφR.(43)

Multiply (42) by φR and (43) by φI , then integrate and add to obtain

(44)
∫ ∞

−∞
(φRL0φR + φIL0φI) dy − γA = λRB

where

A =
∫ ∞

−∞
wφR dy

∫ ∞

−∞
w2φR dy +

∫ ∞

−∞
wφI dy

∫ ∞

−∞
w2φI dy;(45)

B =
∫ ∞

−∞
(φ2

R + φ2
I) dy.(46)
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Multiply (42) and (43) by w, then integrate by parts. We have
∫ ∞

−∞
φR

(
w − 2

3
w2

)
dy − 6γ

∫ ∞

−∞
w2φR dy = λR

∫ ∞

−∞
φRw dy − λI

∫ ∞

−∞
φIw dy

∫ ∞

−∞
φI

(
w − 2

3
w2

)
dy − 6γ

∫ ∞

−∞
w2φI dy = λR

∫ ∞

−∞
φIw dy + λI

∫ ∞

−∞
φRw dy.

Eliminating λI we then obtain

(47) (λR − 1) C +
(

2
3

+ 6γ

)
A = 0

where A is given by (45) and

C =
(∫ ∞

−∞
wφR dy

)2

+
(∫ ∞

−∞
wφI dy

)2

.

Next we use the following estimate, see Lemma 5:
∫ ∞

−∞
φL0φdy ≤ 1

18

(∫
wφ dy

)2

Then (44) becomes

λRB + γA ≤ 1
18

C.

Combining with (47) we obtain

λRB − γ
(λR − 1)(
2
3 + 6γ

)C − 1
18

C ≤ 0

and so

(48) λR

[
B − γ(

2
3 + 6γ

)C

]
≤

[
1
18
− γ(

2
3 + 6γ

)
]

C

Note that

γ0 =
1
18

;(49)

1
18
≤ γ(

2
3 + 6γ

) <
1
6

whenever γ0 ≤ γ < ∞.(50)

so that

λR

[
B − γ(

2
3 + 6γ

)C

]
≤ 0, γ ≥ γ0.

Now by Cauchy-Schwarz inequality we have

(51) C ≤ 6B ⇐⇒ B − 1
6
C ≥ 0.

Combining (50) and (51) we have

B − γ(
2
3 + 6γ

)C ≥ 0.

Therefore λR ≤ 0. Further, if λR = 0, then from (48) and (49) we have

0 ≤
[

1
18
− γ(

2
3 + 6γ

)
]

C ≤ 0;

this can only happen if γ = 1
18 = γ0. ¥
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5. Small eigenvalue

It remains to study the stability of small eigenvalues. In particular, we prove the following result.

Lemma 6. Consider the eigenvalue problem (19a,19b) with the boundary conditions (21). In the limit

p →∞, this problem admits a positive eigenvalue λ that satisfies

(52)
√

λ + 1 tanhL tanh
(
L
√

λ + 1
)

= 1.

To start with, expand the inner region to two orders for both the eigenfunction and the steady state:

x = αz;

u = U0(z) + αU1(z) + · · · H = H0 + αH1(z) + · · ·

φ = Φ0 (z) + αΦ1(z) + · · · Ψ = Ψ0 + · · ·

The leading order equations are

(53) Φ0zz +
U0

H0
Φ0 = 0; U0z − U2

0z

U0
+

U2
0

H0
= 0; H0 ≡ const.

The solution to Φ0 is given by

(54) Φ0(z) =
U0z

U0
.

We now formulate a solvability condition with Φ0 as a test function. Multiplying (19a) by 1
αΦ0( x

α ) and

integrating on the half-interval [0, L], we have,

(55) α2(λ + 1)
∫ L

0

φ(x)Φ0(
x

α
)
dx

α
=

∫ L

0

(
α2φxx +

u

H
φ + α

u

H
φ− α

u

H2
ψ

)
Φ0

dx

α
.

First we estimate the lhs(55). In the outer region we use w(y) ∼ C exp(− |y|), |y| → ∞ so that

Φ0 ∼ −√η, z À 1.

On the other hand, up to exponentially small terms we have

φxx ∼ (λ + 1)φ, x À α; φ′ (L) = 0

so that we may write

φ ∼ A0

cosh
(√

λ + 1(x− L)
)

cosh
(√

λ + 1L
)

where A0 is obtained by matching φ as x → 0 to Φ0 as z →∞. This yields

A0 = −√η.

Therefore we estimate
∫ L

0

φ(x)Φ0(
x

α
) dx ∼ η

∫ L

0

cosh
(√

λ + 1(x− L)
)

cosh
(√

λ + 1L
) dx

∼ η√
λ + 1

tanh
(√

λ + 1L
)
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and finally

(56) lhs(55) = αη
√

λ + 1 tanh
(√

λ + 1L
)

.

Next we must estimate the rhs(55). Since u decays exponentially as z → ∞, the inner region provides the

dominant contribution there. After changing variables x = αz and expanding, we obtain,

rhs(55) =
∫ ∞

0

Φ0

(
Φ0zz +

U0

H0
Φ0

)
dz + α

∫ ∞

0

Φ0

(
Φ1zz + Φ1

U0

H0

)
dz

+ α

∫ ∞

0

Φ2
0

(
U1

H0
− U0H1

H2
0

)
dz + α

∫ ∞

0

U0Φ2
0

H0
− α

∫ ∞

0

U0Φ0

H1
0

Ψ0 dz + O(α2).

The first term is zero by (53); we write the remaining terms as

rhs(55) = α(I0 + I1 + I2 + I3)

where

I0 =
∫ ∞

0

Φ0

(
Φ1zz + Φ1

U0

H0

)
dz

I1 =
∫ ∞

0

Φ2
0

(
U1

H0
− U0H1

H2
0

)
dz

I2 =
∫

Φ2
0

U0

H0
dz

I3 = −
∫ ∞

0

U0Φ0

H2
0

Ψ0 dz.

Now define

L0Φ ≡ Φzz +
U0

H0
Φ.

First, we integrate by parts to obtain

I0 =
∫ ∞

0

Φ0L0Φ1 = [Φ1zΦ0 − Φ1Φ0z]
∞
0 = 0.

Next, U1 satisfies

(57) U1zz − 2U0zU1z

U0
+

U2
0z

U2
0

U1 + 2
U0U1

H0
− U2

0

H2
0

H1 − U0 +
U2

0z

U0
= 0.

Now define

Û1 ≡ U1

U0
.

Then Û1 satisfies

(58) Û1zz +
U0

H0
Û1 − U0H1

H2
0

− 1 +
U2

0z

U2
0

= 0.

Differentiating (58) we obtain

L0Û1z = −U0zÛ1

H0
+

U0zH1

H2
0

+
U0H1z

H2
0

−
(

U2
0z

U2
0

)

z

= −Φ0
U1

H0
+

Φ0U0H1

H2
0

+
U0H1z

H2
0

+ 2
U0z

H0
.
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Therefore we have

I1 = −
∫ ∞

0

Φ0L0Û1z dz +
∫ ∞

0

Φ0U0H1z

H2
0

dz + 2
∫ ∞

0

Φ0U0z

H0
dz.

Integrating by parts, we get ∫ ∞

0

Φ0L0Û1z dz = Φ0(∞)Û1zz(∞).

Note that U0 → 0, Φ0 → −√η as z →∞ and using (58) we obtain

Û1zz(∞) = 1− η

so that ∫ ∞

0

Φ0L0Û1z dz = −√η + η3/2.

Next we compute ∫ ∞

0

Φ0U0H1z

H2
0

dz =
1

H2
0

∫ ∞

0

U0zH1z dz = − 1
H2

0

∫ ∞

0

U0H1zz dz.

Note that H satisfies

0 = DHxx −H + urα−r

so that

DH1zz(z) ∼ −α1−rUr
0 (z)

and ∫ ∞

0

Φ0U0H1z

H2
0

dz ∼ α1−r

DH2
0

∫ ∞

0

Ur+1
0 dz.

Finally,

2
∫ ∞

0

Φ0U0z

H0
dz =

2
H0

∫ ∞

0

U2
0z

U0
dz =

2
3
η3/2

∫ ∞

0

(wy(y))2

w(y)
dy =

2
3
η3/2.

In summary, we obtain

I1 =
√

η − 1
3
η3/2 +

α1−r

DH2
0

∫ ∞

0

Ur+1
0 dz.

Now

I2 =
∫ ∞

0

U0Φ2
0

H0
dz =

1
3
η3/2

and finally, we write

I3 =
∫

U0
Ψ0z

H2
0

.

Now we have
DΨ0zz

α2
−Ψ0 + rα−r−1Ur

0

U0z

U0
= 0

so that

Ψ0z ∼ −α1−r

D
Ur

0 ;

I3 ∼ −α1−r

DH2
0

∫ ∞

−∞
Ur+1

0 dz.
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Therefore, we finally obtain

rhs(55) = α
√

η.

Combining this result with (56) and recalling that η = tanh2 L (Proposition 1) yields (52). Note that

lhs(52)|λ=0 = tanh2 L < 1; on the other hand lhs(52)→∞ as λ →∞. This shows that (52) admits a positive

eigenvalue. ¥

We now verify Lemma 6, by solving the full eigenvalue problem (19a, 19b, 21) numerically. The numerical

algorithm consists of re-formulating the eigenvalue problem as a boundary value problem, by adjoining an

extra equation d
dxλ(x) = 0 along with an extra boundary condition φx(0) = 1. The inner approximation (54)

was used as an initial guess. We then compare the resulting λnumeric with λasymptotic, obtained by solving

numerically the algebraic equation (52). Using r = 2, D = 1, L = 1 and with p = 90 or p = 180 we obtain:

p = 90 : λnumeric = 1.21197, λasymptotic = 1.13769; error = 6.5%

p = 180 : λnumeric = 1.1729, λasymptotic = 1.13769; error = 3.4%.

It is clear that doubling p halves the error. This provides a good numerical verification of Lemma 6.

6. Discussion

In this paper we have studied the Gierer-Meinhardt system with large reaction rates. The main result,

Theorem 2, is the classification of the stability of interior and boundary spike solutions. The behavior of the

system differs significantly from the “standard” GM system (1). In particular, an interior spike is unstable

with respect to translation instabilities, and moves towards the boundary. This is similar to the shadow GM

system [18]. On the other hand, the interior spike of the standard GM system is stable [18], [39]. Therefore

we expect that as the nonlinearity strength p is decreased, the interior spike can be stabilized. It is an open

question to determine this instability threshold.

In Theorem 3 we proved the stability of the large eigenvalue for a single spike under the assumption that

r = 2. We also conjecture that the theorem remains true for any r > 1. It is an open question to prove this

conjecture.

We have proved that large reaction rates are able to create spiky patterns in a similar way as has been

shown before for small diffusion constant of the activator. In this sense, large reaction rates for the system

increase its potential for pattern formation, even if the two diffusion constants are almost the same. This

effect corresponds well to results in [15] where it is shown that Turing instability is possible for large reaction

rates, even if the diffusion constants are almost the same.

Biologically, this is important, as it widens the range of possible applications for Turing systems to explain

pattern formation into areas where there is no good justification for vastly different reaction rates but it
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is known that there are large reaction rates. If there is a high degree of cooperativity, which is typically

the case for many gene hierarchies, a large reaction rate can often be explained theoretically and measured

experimentally, thus opening the door for suitable Turing systems to explain the patterns observed.
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