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Abstract

Slow translational instabilities of symmetric k-spike equilibria for the one-dimensional singularly
perturbed two-component Gray-Scott (GS) model are analyzed. These symmetric spike patterns are
characterized by a common value of the spike amplitude. The GS model is studied on a finite interval in
the semi-strong spike-interaction regime, where the diffusion coefficient of only one of the two chemical
species is asymptotically small. Two distinguished limits for the GS model are considered: the low feed-
rate regime and the intermediate regime. In the low feed-rate regime it is shown analytically that k − 1
small eigenvalues, governing the translational stability of a symmetric k-spike pattern, simultaneously
cross through zero at precisely the same parameter value at which k − 1 different asymmetric k-spike
equilibria bifurcate off of the symmetric k-spike equilibrium branch. These asymmetric equilibria have
the general form SBB...BS (neglecting the positioning of the B and S spikes in the overall spike se-
quence). For a one-spike equilibrium solution in the intermediate regime it is shown that a translational,
or drift, instability can occur from a Hopf bifurcation in the spike-layer location when a reaction-time
parameter τ is asymptotically large as ε → 0. Locally, this instability leads to small-scale oscillations
in the spike-layer location. For a certain parameter range within the intermediate regime such a drift
instability for the GS model is shown to be the dominant instability mechanism. Numerical experiments
are performed to validate the asymptotic theory.

1 Introduction

We study the translational stability of equilibrium spike solutions in the one-dimensional Gray-Scott (GS)

model in particular parameter regimes. The GS system, introduced for continuously stirred systems in [14],

models an irreversible reaction involving two reactants in a gel reactor, where the reactor is maintained in

contact with a reservoir of one of the chemical species. The dimensionless GS model is (cf. [30], [21])

vt = ε2vxx − v + Auv2 , −1 < x < 1 , t > 0 ; vx(±1, t) = 0 , (1.1a)

τut = Duxx + (1 − u) − uv2 − 1 < x < 1 , t > 0 ; ux(±1, t) = 0 . (1.1b)

Here A > 0 is the feed-rate parameter, D > 0, τ > 1, and 0 < ε � 1. For ε � 1, there are equilibrium

solutions for v, called spike patterns, that are localized near certain points in the domain. The parameter

D measures the strength of the inter-spike interactions. The resulting spike patterns can be classified

into two main categories. The semi-strong spike interaction regime corresponds to the limit ε2 � 1 and
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D = O(1). The weak-interaction regime, where both the u and v components are localized, corresponds

to the parameter range D = O(ε2) � 1. In this paper we will focus on the semi-strong regime.

The numerical study of [38] for the GS model in the weak-interaction regime in a two-dimensional

domain showed a plethora of spike-type patterns in certain parameter ranges including, time-dependent

oscillating spikes, spike death due to over-crowding, spike-replication behavior, spatio-temporal chaos,

labyrinthine patterns and zigzag instabilities, etc. The similarities between these behaviors and chemical

patterns arising in certain physical experiments is striking (cf. [24], [25]). These numerical and experimental

studies have stimulated much theoretical work to classify steady-state and time-dependent spike behavior in

the simpler case of one spatial dimension, including: spike-replication and dynamics in the weak-interaction

regime (cf. [39], [41], [36], [44]); spatio-temporal chaos in the weak-interaction regime (cf. [37]); the existence

and stability of equilibrium solutions in the semi-strong interaction regime (cf. [10], [7], [8], [28], [29], [30],

[21], [22]), and the dynamics of solutions in the semi-strong interaction regime (cf. [5], [6], [43]).

For (1.1) in the semi-strong interaction limit, there are three distinguished limits for A where different

behaviors is observed: The low feed-rate regime A = O(ε1/2), the intermediate regime O(ε1/2) � A � 1,

and the high feed-rate regime A = O(1). The high feed-rate regime is associated with pulse-splitting

behavior (cf. [7], [30], [22]). In the low feed-rate regime, we introduce new variables A and ν defined by

A = ε1/2A , v = ε−1/2ν . (1.2)

In terms of (1.2), (1.1) is transformed to

νt = ε2νxx − ν + Auν2 , −1 < x < 1 , t > 0 ; νx(±1, t) = 0 , (1.3a)

τut = Duxx + (1 − u) − ε−1uν2 − 1 < x < 1 , t > 0 ; ux(±1, t) = 0 . (1.3b)

In [21] symmetric k-spike equilibrium solutions to (1.3), where the spikes have a common amplitude,

were constructed asymptotically in the low feed-rate regime. A construction of similar solutions using the

geometric theory of singular perturbations is given in [10] for a special scaling of the GS model. In [21]

the stability of k-spike patterns on an O(1) time-scale was analyzed by first formally deriving a nonlocal

eigenvalue problem (NLEP). From a rigorous analysis of this NLEP, two fast instability mechanisms were

identified: synchronous oscillatory instabilities of the spike amplitudes, and competition, or overcrowding,

instabilities leading to the spike annihilation events. In the intermediate regime O(1) � A � O(ε−1/2),

the existence and stability of k-spike patterns was first analyzed in [7] (see also §4 of [21] for a different

approach). A stability analysis for a one-spike solution on the infinite-line was given in [29] in both the low

and intermediate feed-rate regimes. In §2 and Appendix A we briefly summarize those previous results for

fast instabilities that are important for an understanding of the new results derived herein.

The goal here is to study slow translational instabilities of equilibrium spike solutions for the GS model

in the low and intermediate feed-rate regimes. A related analysis for stripe and ring-type solutions to

the GS model is given in [23]. For the low feed-rate regime A = O(1), in §3 we analyze the stability of

symmetric k-spike equilibrium solutions with respect to the small eigenvalues of order O(ε2) that govern

translational instabilities of the spike profile. Using a formal asymptotic analysis, in Principal Result 3.1
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(a) symmetric and asymmetric branches: D = 0.75
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(b) stability of symmetric branches: D = 0.75

Figure 1: Left figure: |ν|2 versus A for the symmetric (solid curves) and asymmetric (dotted curves)
solution branches when A = O(1), D = 0.75 and k = 1, 2, 3, 4. The saddle-node values Ake increase with
k. Right figure: |ν|2 versus A stability plot. The smooth curve for each symmetric solution branch has
three portions with different stability properties. The curves with widely spaced dots are unstable for
τ ≥ 0. The heavy solid curves are stable only with respect to the large eigenvalues when τ < τhL. The
solid curves are stable with respect to both the large and small eigenvalues when τ < τhL. The asymmetric
branches, shown as the dotted curves, bifurcate at the point where the solid and heavy solid curves meet

.

we obtain a certain auxiliary problem that the small eigenvalues satisfy. By solving this problem exactly,

we give explicit formulae for the small eigenvalues in Proposition 3.2 and explicit stability thresholds with

respect to D and A in Propositions 3.3 and 3.4, respectively. In particular, in Proposition 3.4 we show

for any τ = O(1), k > 1, and fixed D > 0, that the k-spike pattern is stable with respect to translations

only when A > AkS, for some explicit threshold AkS. As A decreases below AkS, and for k > 1, there are

k − 1 small eigenvalues that simultaneously cross into the unstable right half-plane Re(λ) > 0 along the

real axis. Furthermore, for τ below some threshold and k > 1, we show there is a range of values of A
where a symmetric k-spike equilibrium pattern is unstable with respect to translations but is stable with

respect to the large eigenvalues of the NLEP that govern fast O(1) instabilities. For D = 0.75, this range

of A is illustrated in Fig. 1(b). In §3.1 we perform numerical computations to illustrate spike dynamics for

(1.3) in this range of A.

In §4 we use a formal asymptotic analysis to study the existence of asymmetric k-spike patterns where

the spikes have different heights. In Principal Result 4.2 we show that the resulting spike patterns have

the form SBB..BS, where there are k1 > 0 small spikes S and k2 = k − k1 > 0 large spikes B arranged

in any order across the interval. Neglecting the positioning of large and small spikes in a spike sequence,

we show in Principal Result 4.3 that for k > 1 there are k − 1 asymmetric k-spike equilibrium patterns

that bifurcate from the symmetric k-spike solution branch at precisely the threshold value A = AkS where

k − 1 small eigenvalues for the symmetric k-spike solution branch simultaneously cross through zero. The

k − 1 bifurcating branches correspond to the number of small spikes S in a spike sequence SBB...BS.
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For D = 0.75, in Fig. 1(a) we plot a bifurcation diagram of the norm of ν versus A for the symmetric

k-spike solution branches for k = 1, . . . , 4. The dotted curves in Fig. 1(a) show the asymmetric k-spike

patterns that bifurcate off of the symmetric k-spike solution branch at A = AkS. In Fig. 1(b) we illustrate

the stability properties of the symmetric solution branches when τ is below the Hopf bifurcation threshold

τhL. In this figure, we show the range in A where the pattern is stable with respect to the large eigenvalues

but not the small eigenvalues. In Fig. 2(a) we plot a symmetric three-spike solution at a particular point

on the upper branch. An asymmetric three-spike solution of the form BSB is shown in Fig. 2(b).
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(b) asymmetric three-spike pattern

Figure 2: Left figure: symmetric three-spike solution on the upper branch of the bifurcation diagram when
D = 0.75, A = 9.0, and ε = 0.02. Right figure: a three-spike BSB asymmetric pattern with D = 0.75,
A = 10.5, and ε = 0.02. In these plots ν are the solid curves and u are the dotted curves.

Similar analyses of the existence and stability of k-spike patterns have been previously performed for the

Gierer Meinhardt (GM) model (cf. [13]), widely used to model localization in biological pattern formation

(cf. [26]). This system can be written in dimensionless form as (cf. [17])

at = ε2axx − a +
ap

hq
, τht = Dhxx − h + ε−1 am

hs
|x| < 1 ; ax(±1, t) = hx(±1, t) = 0 . (1.4)

Here 0 < ε2 � 1, D > 0, and τ ≥ 0, are constants. The GM exponents (p, q,m, s) are assumed to satisfy

p > 1 , q > 0 , m > 1 , s ≥ 0 , with ζ ≡ qm

(p − 1)
− (s + 1) > 0 . (1.5)

The stability of symmetric k-spike equilibrium solutions to (1.4) was analyzed in [17] for the case τ = 0

and in [46] for τ > 0. Asymmetric k-spike equilibria were constructed in [45] and [9], and a partial stability

analysis for asymmetric patterns was given in [45]. In [47] asymmetric spike patterns for the GM model

in two spatial dimensions were analyzed rigorously. However, the rigorous proofs given there in [47] do

not directly carry over to the one-dimensional situation for the GS model studied here. The stability of a

one-spike solution to (1.4) on the infinite-line was studied in [11], and the dynamics of spikes was studied
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in [16], [42], and [43]. For the GM model, the relationship between translational instabilities of symmetric

k-spike patterns and the emergence of asymmetric spike patterns is emphasized in [45] and [47]. The results

in this study show that there is a rather close spectral equivalence between translational instabilities in

the GM model and the GS model in the low feed-rate regime.

The method that we use to study translational instabilities for the GS model is related to the SLEP

(singular limit eigenvalue problem) method developed and applied in [32], [33], and [34], in the context of

analyzing the translational stability of hyperbolic-tangent type interface solutions to singularly perturbed

two-component systems in the semi-strong interaction limit. For these class of systems, where the non-

linearity associated with the fast variable is bistable, each transition layer is closely approximated by a

heteroclinic connection. The resulting spectral problem has only small eigenvalues, also called critical spec-

tra, that tend to zero linearly with the thickness ε of the interface. Under certain reasonable hypotheses,

it was proved in [32] that a one-layer solution is stable. Under the same conditions, the stability of an

n-layer solution was proved in [34] by first reducing the spectral problem to a certain matrix eigenvalue

problem. Similar problems involving only critical spectra occur in certain phase separation models with

an associated variational principle including the Cahn-Hilliard, Allen-Cahn, and phase-field models (cf. [1],

[2], [3], [4]), and the analysis of lamellar states for Diblock copolymers (cf. [40]). The stability problem for

these transition layer structures is in marked contrast to the study of the stability of homoclinic-type spike

patterns for the GS or GM models where there is no variational structure, and where there are both large

eigenvalues, with λ = O(1), and small eigenvalues in the spectrum of the linearization.

In §5 we investigate translational instabilities for the GS model in the intermediate regime when τ is

asymptotically large as ε → 0. For a k-spike equilibrium solution in this regime it was shown in [7] and [21]

that the NLEP governing instabilities on an O(1) time-scale has a Hopf bifurcation when τ = O(A4) � 1

(see Principal Result A.3 below). Therefore, in the intermediate regime, this suggests that for some

asymptotic range where τ � 1 an instability with respect to the small eigenvalues may be possible before

the onset of the Hopf bifurcation in the spike profile. This exchange in the dominant instability mechanism

as τ is increased, which has no known counterpart in the GM model (1.4), was suggested in [28] and [29] in

the context of a one-spike solution for the infinite-line problem. For a one-spike equilibrium solution on a

finite interval, we use a formal asymptotic analysis to obtain an auxiliary problem in Principal Result 5.1

that the small eigenvalue satisfies. By studying this problem rigorously, in Proposition 5.2 we show that

as τ increases past some critical value there is a drift instability due to a Hopf bifurcation, which leads to

small-scale oscillations in the spike-layer location. As τ is increased even further, a pair of unstable complex

conjugate eigenvalues merge onto the positive real axis, which results in a slow monotonic drift of the spike

layer location. The critical value for the onset of an oscillatory drift instability occurs on the asymptotic

range τ = O(A−2ε−2). A related type of Hopf bifurcation, followed by a monotonic drift instability, as a

reaction-time constant is increased has been analyzed in [15] and [27] for hyperbolic tangent-type interfaces

associated with a two-component reaction diffusion system with bistable nonlinearities. Alternatively, for

a three-component reaction-diffusion system it was shown numerically in [35] that the Hopf bifurcation

occurs after the onset of a monotonic drift instability as a reaction-time parameter is increased.

In §6 we make a few remarks and suggest a few open problems for further study.

5



Finally, we remark on the mathematical rigor of our approach. The key results of formal asymptotic

derivations are labeled as Principal Results. Rigorous results based either on exact calculations or mathe-

matical theory are labeled as Propositions. More specifically, in §3 we use a formal asymptotic analysis to

construct equilibrium k-spike solutions and to derive the auxiliary problem in Principal Result 3.1 for the

small eigenvalues. The results in Propositions 3.2–3.6 follow from exact calculations involving this problem.

The construction of asymmetric patterns in §4 is done using formal asymptotics. In §5 we present a formal

derivation of the auxiliary problem for drift instabilities leading to Principal Result 5.1. The existence of

a drift instability threshold in Proposition 5.2 follows from a rigorous analysis of this problem.

2 Symmetric k-Spike Equilibria: The Stability Problem

In this section and in Appendix A we summarize some previous results for the existence and stability,

on an O(1) time-scale, of symmetric k-spike patterns to the GS model (1.3) in the low feed-rate regime

A = O(1) and in the intermediate regime O(1) � A � O(ε−1/2). In the low feed-rate regime, a symmetric

k-spike equilibrium solution to (1.3) was constructed in §2 of [21] using the method of matched asymptotic

expansions. We now briefly outline this derivation, as many of the formulae are needed below in §3–§5.
For a symmetric spike pattern the spikes have equal height so that u(xj) = U for j = 1, . . . , k, where

xj = −1 +
(2j − 1)

k
, j = 1, . . . , k . (2.1)

In the inner region near the jth spike, we let y = ε−1(x − xj). In each inner region, we obtain that

u ∼ U + O(ε). Therefore, from (1.3a), the leading-order inner solution for ν is ν ∼ w/(AU), where

w(y) = 3
2sech2 (y/2) is the homoclinic solution to

w
′′ − w + w2 = 0 , −∞ < y < ∞ ; w → 0 as |y| → ∞ , w

′

(0) = 0 , w(0) > 0 . (2.2)

In the outer region, defined away from an O(ε) region near each spike, ν is exponentially small and the

term ε−1uν2 in (1.3b) can be approximated by a Dirac mass. Thus, the outer solution for u satisfies

Duxx + (1 − u) − 6

A2U

k
∑

j=1

δ(x − xj) = 0 , −1 < x < 1 ; ux(±1) = 0 . (2.3)

In obtaining (2.3), we used
∫∞
−∞ w2 dy = 6. The solution to (2.3) is

u(x) = 1 − 6

A2U

k
∑

j=1

G(x;xj) , (2.4)

where G(x;xj) is the Green’s function, satisfying

DGxx − G = −δ(x − xj) , −1 < x < 1 ; Gx(±1;xj) = 0 . (2.5)

We define ag ≡
∑k

i=1 G(xj ;xi), where the spike locations satisfy (2.1). From an explicit calculation of

G(x;xj), we obtain that ag is independent of j, and is given by

ag ≡
k
∑

i=1

G(xj ;xi) =
[

2
√

D tanh (θ0/k)
]−1

. (2.6)
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Evaluating (2.4) at x = xj, where u(xj) = U , we obtain a quadratic equation for U

U(U − 1) = −6ag

A2
. (2.7)

In this way, the following formal result for symmetric k-spike equilibrium solutions to (1.3) was obtained

in Principal Result 2.1 of [21]:

Principal Result 2.1(From [21]): Let ε → 0, with A = O(1) and D = O(1) in (1.3). Then, when

A > Ake, there are two symmetric k-spike equilibrium solutions to (1.3) given asymptotically by

ν±(x) ∼ 1

AU±

k
∑

j=1

w
[

ε−1(x − xj)
]

, u±(x) ∼ 1 − (1 − U±)

ag

k
∑

j=1

G(x;xj) . (2.8)

We label u+, ν+ and u−, ν− as the small and large solution, respectively. In (2.8), w and G satisfy (2.2)

and (2.5), respectively. In addition, U± are the roots of (2.7) given by

U± =
1

2



1 ±

√

1 − A2
ke

A2



 , Ake ≡
√

12θ0

tanh (θ0/k)
, θ0 ≡ D−1/2 . (2.9)

Although we have only sketched the formal derivation of equilibrium solutions in the low feed-rate

regime, there are several methods that can be used to construct these solutions rigorously. In [10] a rigorous

geometric singular perturbation approach was used to establish the existence of a one-spike solution and a

periodic solution to a different dimensionless form of the infinite line GS model (cf. Theorem 4.3 of [10]).

For a one-spike solution on the infinite line, the threshold A∞
1e =

√
12D−1/4 for the low feed-rate regime

is equivalent to that given in Theorem 4.3 of [10]. This infinite line threshold can be recovered by setting

k = 1 and then letting D → 0 in the formula for Ake in (2.9).

In Fig. 1(a) we plot the bifurcation diagram of the L2 norm |ν|2 versus A for D = 0.75, and k = 1, . . . , 4.

These are the solid curves in Fig. 1(a). Using (2.8) and (2.9), we obtain

|ν|2 ≡
(

ε−1

∫ 1

−1
ν2 dx

)1/2

∼ 2
√

6k

A



1 ±

√

1 − A2
ke

A2





−1

. (2.10)

The existence thresholds Ake are the saddle-node points in Fig. 1(a). For the values A = 9.0, D = 0.75,

and ε = 0.02, a symmetric three-spike solution is shown in Fig. 2(a). The classification of small and

large solution refers to low and high concentrations of ν in the core of the spike. Smaller concentrations

of u in the core of the spike generate larger amplitudes for ν. Hence, each upper branch (upper solid

curve) in Fig. 1(a) corresponds to the large solution, while each lower branch corresponds to the small

solution. A convenient way to parametrize these solution branches is to introduce a parameter s defined

by s ≡ (1 − U±)/U±. Then, from (2.9), we get

A = Ake
(1 + s)

2
√

s
, s =

1 − U±
U±

, 0 < s < ∞ . (2.11)

The large solution u−, ν− corresponds to the range 1 < s < ∞, while the small solution u+, ν+ corresponds

to 0 < s < 1. The existence threshold Ake is at s = 1.
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To analyze the stability of symmetric k-spike equilibrium solutions we let

u(x, t) = u±(x) + eλtη(x) , ν(x, t) = ν±(x) + eλtφ(x) , (2.12)

where η � 1 and φ � 1. Substituting (2.12) into (1.3), and linearizing, we obtain the eigenvalue problem

ε2φxx − φ + 2Au±ν±φ + Aην2
± = λφ , −1 < x < 1 ; φx(±1) = 0 , (2.13a)

Dηxx − η − ε−1ν2
±η − 2ε−1u±ν±φ = τλη , −1 < x < 1 ; ηx(±1) = 0 . (2.13b)

There are two classes of eigenvalues and eigenfunctions of (2.13); the large eigenvalues for which λ = O(1)

as ε → 0, and the small eigenvalues for which λ = O(ε2) as ε → 0.

For the large eigenvalues with λ = O(1) as ε → 0, which determine the stability of a k-spike equilibrium

solution on an O(1) time-scale, the corresponding eigenfunction has the form

φ(x) ∼
k
∑

j=1

bjΦ
[

ε−1(x − xj)
]

, (2.14)

where
∫∞
−∞ w(y)Φ(y) dy 6= 0. Here the coefficients bj , for j = 1, . . . , k, are found to be related to the

eigenvectors of a certain matrix eigenvalue problem. This stability problem, which involves the analysis of

a nonlocal eigenvalue problem, was studied in [7], [8], [21], and [29]. Spectral results for this problem in

the low feed-rate and intermediate regimes of the GS model (1.3) are summarized in Appendix A.

In this paper we study the small eigenvalues of (2.13) that lead to slow translational instabilities. In

contrast to (2.14), for ε → 0 the corresponding eigenfunction in §3 has the form

φ(x) ∼
k
∑

j=1

(

cjw
′ [

ε−1(x − xj)
]

+ εcjφ1j

[

ε−1(x − xj)
]

)

. (2.15)

The leading term in (2.15) is simply the translation mode associated with the spike profile w. The correction

term φ1j in (2.15) is shown below in (3.11) (see also (3.27) of Proposition 3.2) to be proportional to the

spike profile w
[

ε−1(x − xj)
]

of the jth spike. In §3 we will derive explicit formulae for the coefficients cj

in terms of a matrix eigenvalue problem, and we will calculate the small eigenvalues λj = O(ε2) precisely.

Our method to analyze translational instabilities is related to the SLEP method originally developed

and analyzed rigorously for the study of transition-layer stability associated with two-component reaction-

diffusion systems in the semi-strong limit (cf. [32], [33], [34]). In these systems, the nonlinearity in the fast

variable is of bistable type. In these works, the study of the critical spectrum is also reduced to the study of

the spectrum of a matrix eigenvalue problem. However, since the leading term in (2.15) is a monopole when

the profile w is a transition layer, then only the first term in (2.15) is sufficient for calculating the spectrum.

For the transition layer case, the critical spectra are O(ε) as ε → 0, and the matrix manipulations required

to calculate the critical spectrum are relatively straightforward. In addition, it was shown in [34], under

reasonable hypotheses, that the critical spectra are all negative for an n-layer solution. Therefore, such a

solution is stable and there are no bifurcations to other patterns. Alternatively, in our analysis of spike

stability, since the leading term in (2.15) is a dipole and the O(ε) term in (2.15) is found to be a monopole,

these two terms have the same effective order as ε → 0 in our analysis of the critical spectrum of O(ε2)

for (2.13). In addition, in contrast to the critical spectrum for transition layers, the critical spectrum for

spikes in the GS model can have bifurcations.
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3 Slow Translational Instabilities for a Symmetric k-Spike Pattern

For ε � 1, we now study the stability of the symmetric k-spike equilibrium solutions of Principal Result

2.1 with respect to the small eigenvalues of (2.13) of order O(ε2). The first part of the analysis is to reduce

(2.13) to the study of a matrix eigenvalue problem. We begin by writing (2.13) in the form

Lεφ + Aην2
± = λφ , −1 < x < 1 ; φx(±1) = 0 , (3.1a)

Dηxx −
(

1 + τλ + ε−1ν2
±
)

η = 2ε−1u±ν±φ , −1 < x < 1 ; ηx(±1) = 0 , (3.1b)

where u± and ν± are given in (2.8) of Principal Result 2.1. Here the operator Lε is defined by

Lεφ ≡ ε2φxx − φ + 2Au±ν±φ . (3.1c)

Since λ = O(ε2), (3.1b) yields that τλ � 1 unless τ = O(ε−2). In the derivation below, we will assume that

τ = O(1) so that the small eigenvalues are asymptotically independent of τ . It is important to emphasize

here that we cannot naively replace Lε by the non-invertible Fisher operator L0 of the NLEP problem of

Principal Result A.1. Although the coefficients in these two operators are O(ε) close near a spike, the small

spatial variations in the coefficients of Lε are important for estimating the small eigenvalues for ε � 1.

Since ν± is localized near each spike xj , the spike pattern is nearly translationally invariant. To show

this, we differentiate the equilibrium problem for (1.3a) with respect to x1 to get

Lεν±x = −Au±xν
2
± . (3.2)

Defining wj = wj(yj) ≡ w
[

ε−1(x − xj)
]

, where w satisfies (2.2), we calculate from (2.8) that for x near xj

ν± ∼ 1

AU±
wj , ν±x ∼ ε−1

AU±
w

′

j . (3.3)

Substituting (3.3) into (3.2), we obtain for x near xj that

Lεw
′

j ∼ −εU−1
± u±xw2

j = O(ε) . (3.4)

This suggests that we look for an eigenfunction to (3.1) in the form

φ = φ0 + εφ1 + · · · , η(x) = εη0(x) + · · · , (3.5a)

where, for some coefficients cj , with j = 1, . . . , k, to be determined, we have

φ0 ≡
k
∑

j=1

cjw
′

j

[

ε−1(x − xj)
]

, φ1 ≡
k
∑

j=1

cjφ1j

[

ε−1(x − xj)
]

. (3.5b)

Here and below we have defined 〈ζ〉j ≡ (ζ(xj+) + ζ(xj−))/2 and [ζ]j ≡ ζ(xj+) − ζ(xj−), where ζ(xj±)

are the one-sided limits of ζ(x) as x → xj±. In particular, by differentiating the outer solution u± given

in (2.8), it follows that the equilibrium positions for xj of (2.1) satisfy

〈u±x〉j = 0 , j = 1, . . . , k . (3.6)
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We substitute (3.5a) into (3.1a) with λ = O(ε2) � 1, and we use (3.4). For x near xj, we get that

φ1j(y) satisfies

cjLεφ1j ∼ f(xj + εyj)w
2
j , f(x) ≡ cju±x(x)

U±
− η0(x)

AU2
±

. (3.7)

Substituting (3.5a) into (3.1b), we obtain that η0 satisfies

Dη0xx −
(

1 + ε−1ν2
±
)

η0 ∼ 2ε−2u±ν± (φ0 + εφ1) , −1 < x < 1 ; η0x(±1) = 0 . (3.8)

Since φ0 is proportional to the odd function w
′

j near x = xj , the term multiplied by φ0 in (3.8) behaves like

a dipole near x = xj. Hence, for ε � 1 and x near xj, this term is proportional to δ
′
(x−xj) for j = 1, .., k,

where δ(x) is the delta function. Thus, η0 is discontinuous across x = xj.

Since η0 is discontinuous across x = xj , it would suggest that f(x) in (3.7) is also discontinuous across

x = xj . However, this is not the case, as we find that the first term on the right-hand side of f(x) in (3.7)

exactly cancels this singularity. To see this, we differentiate the equilibrium problem for u in (1.3b) with

respect to x, and subtract appropriate multiples of the resulting equation and (3.8) to find that the dipole

term proportional to φ0 cancels exactly. In this way, we obtain for x near xj that f(x) satisfies

Dfxx −
(

1 + ε−1ν2
±
)

f = −2ε−1cj

AU2
±

φ1ju±ν± , −1 < x < 1 ; fx(±1) =
cju±xx(±1)

U±
. (3.9)

Assume for the moment that φ1j is an even function. Then, the right-hand side of (3.9) is a monopole

term. Therefore, we would conclude that f(x) is continuous across x = xj, and consequently 〈f〉j = f(xj).

Since 〈u±x〉j = 0 from (3.6), (3.7) reduces for ε � 1 to

cjLεφ1j ∼ f(xj)w
2
j , f(xj) = −〈η0〉j

AU2
±

. (3.10)

Since Lεwj = w2
j + O(ε), and Lε is uniformly invertible on function spaces of even functions, we can then

solve (3.10) uniquely as

cjφ1j ∼ f(xj)wj . (3.11)

Since wj is even, then so is φ1j , and the calculation is self-consistent. Alternatively, if we had initially

assumed that φ1j was odd in (3.9) we would reach a contradiction. If φ1j is an odd function, then the

right-hand side of (3.9) is a dipole term and for ε → 0 can be represented as εdδ
′
(x − xj) for some O(1)

constant d. Therefore, for ε � 1, the leading order behavior of f(x) is still continuous across x = xj .

Hence, (3.10) still holds, and the resulting form (3.11) contradicts the assumed oddness of φ1j .

This discussion shows that the term in (3.8) proportional to φ1 behaves like a linear combination of

δ(x − xj). Most importantly, this shows in (3.12) below that the effect of the monopole term for φ1 is of

the same order in ε as the dipole term proportional to φ0. Therefore, to calculate an eigenvalue of order

O(ε2), we need to determine the asymptotic eigenfunction for φ in (3.5a) to both the O(1) and O(ε) terms.

Next, in the sense of distributions, we calculate the strengths of the dipole and monopole terms ap-

pearing on the right-hand side of (3.8). Using (3.3) for ν± and u± ∼ U± for x near xj , we calculate from
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(3.5b), (3.10), and (3.11) that, for x near xj

2ε−2u±ν±φ0 → 6cj

A δ
′

(x − xj) , ε−1ν2
± → 6

A2U2
±

δ(x − xj) , (3.12a)

2ε−1u±ν±φ1 → 12f(xj)

A δ(x − xj) = −12〈η0〉j
A2U2

±
δ(x − xj) . (3.12b)

Here we have used
∫∞
−∞ w2

j dy = 6. Substituting (3.12) into (3.8), we obtain that η0 satisfies

Dη0xx −



1 +
6

A2U2
±

k
∑

j=1

δ(x − xj)



 η0 =
6

A

k
∑

j=1

cjδ
′

(x − xj) −
12

A2U2
±

k
∑

j=1

〈η0〉jδ(x − xj) , (3.13)

with η0x(±1) = 0. Using (2.7) for U±, and the definition of s in (2.11), we can write

6

A2U2
±

=
s

ag
, s =

1 − U±
U±

, (3.14)

where ag is given in (2.6). Substituting (3.14) into (3.13), we conclude that (3.13) is equivalent to

Dη0xx − η0 = 0 , −1 < x < 1 ; η0x(±1) = 0 , (3.15a)

[Dη0]j =
6cj

A ; [Dη0x]j =
−s

ag
〈η0〉j , j = 1, . . . , k . (3.15b)

Next, we estimate the small eigenvalue. We substitute (3.5) into (3.1a) and then multiply both sides

of (3.1a) by w
′

j . By integrating the resulting equation across the domain, we get

k
∑

i=1

(

w
′

j, ciLεw
′

i

)

+ εA
(

η0ν
2
±, w

′

j

)

+ ε
k
∑

i=1

(

w
′

j , ciLεφ1i

)

∼ λ
k
∑

i=1

ci

(

w
′

j , w
′

i

)

. (3.16)

Here we have defined (f, g) ≡
∫ 1
−1 f(x)g(x) dx. Since w

′

j is exponentially small away from x = xj, it follows

that to within negligible exponentially small terms the dominant contribution to the sums in (3.16) arise

from i = j. Thus, (3.16) reduces asymptotically to

cj

(

w
′

j, Lεw
′

j

)

+ εA
(

η0ν
2
±, w

′

j

)

+ ε
(

w
′

j, cjLεφ1j

)

∼ λcj

(

w
′

j , w
′

j

)

. (3.17)

We then integrate the third term on the left-hand side of (3.17) by parts. Since Lε is self-adjoint, we can

then use (3.4) for Lεw
′

j and (2.8) for ν±. Since the integrands are localized near x = xj , we can write the

resulting integrals in terms of y = ε−1(x − xj) to get

−ε2cj

U±

∫ ∞

−∞
w

′

w2u±x dy +
ε2

AU2
±

∫ ∞

−∞
w2w

′

η0 dy − ε3cj

U±

∫ ∞

−∞
φ1jw

2u±x dy ∼ ελcj

(∫ ∞

−∞
w

′2 dy

)

, (3.18)

where w satisfies (2.2). In this expression we have labeled η0 ≡ η0(xj + εy) and u±x ≡ u±x(xj + εy).

Using (3.11) for φ1j , and (3.7) for f(x), we can write (3.18) more compactly as

−ε2

∫ ∞

−∞
w

′

w2f(xj + εy) dy − ε3f(xj)

U±

∫ ∞

−∞
w3u±x(xj + εy) dy ∼ ελcj

(∫ ∞

−∞
w

′2 dy

)

. (3.19)
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The second integral on the left-hand side of (3.19) is O(ε4) since w is even and 〈u±x〉j = 0 from (3.6).

From (3.9) and (3.11), it follows that f(x) is continuous but not differentiable across x = xj. Therefore,

we must calculate the first term on the left-hand side of (3.19) by first expanding f(xj + εy) in one-sided

Taylor series. After doing so, we then integrate the resulting equation by parts. This yields,

∫ ∞

−∞
w

′

w2f(xj + εy) dy ∼ −ε

3
〈f ′〉j

∫ ∞

−∞
w3 dy . (3.20)

Using (3.7) for f(x), and 〈u±xx〉j = (U± − 1) /D from (2.3), we calculate

〈f ′〉j =
cj (U± − 1)

U±D
− 〈η0x〉j

AU2
±

. (3.21)

Then, we substitute (3.21) and (3.20) into (3.19), to obtain

λcj ∼
ε2

3

[

cj (U± − 1)

U±D
− 〈η0x〉j

AU2
±

]

(
∫∞
−∞ w3dy
∫∞
−∞ w′2 dy

)

. (3.22)

Here 〈η0x〉j is to be found from (3.15). Finally, we write (3.22) and (3.15) in terms of η̃0 defined by

η0 ≡ −6ag

A η̃0 . (3.23)

In addition, we calculate the ratio of the two integrals in (3.22) using w(y) = 3
2 sech2 (y/2). In this way, we

formally obtain the following problem that determines the small eigenvalues:

Principal Result 3.1: Let ε � 1 and τ = O(1). Then, the eigenvalues of (2.13) of order O(ε2) satisfy

λcj ∼ 2ε2s
[

〈η̃0x〉j −
cj

D

]

, j = 1, . . . , k , (3.24)

where 〈η̃0x〉j is obtained from the solution to the following auxiliary problem

Dη̃0xx − η̃0 = 0 , −1 < x < 1 ; η̃0x(±1) = 0 , (3.25a)

[Dη̃0]j = − cj

ag
; [Dη̃0x]j =

−s

ag
〈η̃0〉j , j = 1, . . . , k . (3.25b)

Here s, which parametrizes the equilibrium solution branches, is defined in (2.11).

A problem similar to (3.25) was formally derived in Proposition 8 of [17] in the context of the GM

model (1.4) with exponent set (p, q,m, s), where ζ ≡ qm/(p − 1) − (1 + s) > 0. By comparing Proposition

8 of [17] with Principal Result 3.1 above, we conclude that (3.25) for the GS model is equivalent to the

corresponding problem for the small eigenvalues of a GM model with exponent set (p, q,m, s) = (2, s, 2, s),

where s = (1−U±)/U±. A similar spectral equivalence principle for the large eigenvalues of the GM model

and the GS model in the low feed-rate regime was derived in Proposition 3.3 of [21].

To calculate explicit formulae for the small eigenvalues, we must first solve (3.25) to calculate 〈η̃0x〉j
for j = 1, . . . , k. By substituting the resulting expressions into (3.24) we obtain that λj , for j = 1, . . . , k,

are the real eigenvalues of a certain generalized symmetric matrix eigenvalue problem. Each eigenvector

of this problem generates a set of coefficients cj for j = 1, . . . , k. The eigenvalues and eigenvectors of this
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matrix can be calculated analytically. Since the details of this exact, but lengthy, calculation parallel that

given in §4.2 of [17] for the GM model (1.4), we only outline they key steps in this derivation in Appendix

B. In this way, the following rigorous result is obtained for the small eigenvalues of Principal Result 3.1.

Proposition 3.2: Let ε � 1 and τ = O(1). Assume that the invertibility condition (B.12) holds. Then,

the eigenvalues of (2.13) of order O(ε2) are given explicitly by

λj ∼ −2ε2s

D

[

1 − cos (πj/k) − zj (cosh (2θ0/k) − 1)

cosh (2θ0/k) − cos (πj/k)

]

, j = 1, . . . , k . (3.26a)

Here zj is defined in terms of the parametrization s = (1 − U±)/U± of each k-spike equilibrium solution

branch as

zj ≡
sγ

sγ − ξj
csch2

(

2θ0

k

)

sin2

(

πj

k

)

, j = 1, . . . , k ; γ ≡ 2 tanh

(

θ0

k

)

, θ0 = D−1/2 . (3.26b)

For j = 1, . . . , k, ξj is defined in (B.20a) of Appendix B. The corresponding eigenfunction φ from (3.5) is

φ(x) ∼
k
∑

n=1

(

cnw
′ [

ε−1(x − xn)
]

+ εs〈η̃0〉nw
[

ε−1(x − xn)
]

)

, (3.27a)

where 〈η̃0〉n is the nth component of 〈η̃0〉 given by

〈η̃0〉 = γ
√

D
[

I + sγ (B − sγI)−1
]

Pgc . (3.27b)

Here the matrices B and Pg are defined in (B.10) and (B.4), respectively. Finally, there are k independent

choices for the vector of coefficients ct = (c1, . . . , ck), given explicitly by ct
j = (c1,j , . . . , ck,j) where

ct
k =

1√
k

(

1,−1, 1, . . . , (−1)k+1
)

; cl,j =

√

2

k
sin

(

πj

k
(l − 1/2)

)

, j = 1, . . . , k − 1 . (3.28)

Here ct
j, for j = 1, . . . , k, are the eigenvectors of the matrix Bg of Appendix B defined in (B.20b).

As shown in Appendix B, the invertibility condition (B.12) holds when the parameters are such that

λ = 0 is not an eigenvalue of the NLEP problem (A.1) of Appendix A for the large eigenvalues.

Next, we determine the sign of λj with respect to the parameters. Since zk = 0 in (3.26b), then λk < 0

for any k, D and A. Therefore, there is always one negative eigenvalue and one stable direction, given by

ck in (3.28) and (3.27a), for translational perturbations of the equilibrium solution. From (3.26a) we get

that λj < 0 for j = 1, . . . , k − 1, if and only if

1 − cos

(

πj

k

)

− 2zj sinh2

(

θ0

k

)

> 0 , j = 1, . . . , k . (3.29)

Using (3.26b) for zj , we can write (3.29) as

ξj

γ
< s − s cos2

(

πj

2k

)

sech2

(

θ0

k

)

, j = 1, . . . , k . (3.30)

Finally, using (B.20a) for ξj, a short calculation shows that we can write the stability condition (3.30) as
(

1 − s + csch2

(

θ0

k

))(

1 − cos2

(

πj

2k

)

sech2

(

θ0

k

))

< 0 , j = 1, . . . , k . (3.31)
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Since the second bracketed term on the left hand-side of (3.31) is always positive, we conclude that λj < 0

for j = 1, . . . , k − 1 if and only if

1 − s + csch2

(

θ0

k

)

< 0 . (3.32)

Since (3.32) is independent of j, it follows that any zero-crossing of the small eigenvalues λj , for j =

1, . . . , k − 1, must be simultaneous.

For the small solution u+, ν+, where 0 < s < 1, the left hand-side of (3.32) is always positive, and so

there are k − 1 positive small eigenvalues λj , for j = 1, . . . , k − 1. For the large solution where s > 1, we

can calculate stability thresholds from (3.32). The threshold condition from (3.32) can be written as

sinh2

(

θ0

k

)

=
1

s − 1
, θ0 ≡ D−1/2 . (3.33)

This can be solved in the form

D =
4

k2



ln





(

s + 1

s − 1

)

+

√

(

s + 1

s − 1

)2

− 1









−2

. (3.34)

In (3.34), we then use (2.11) for s to write D in terms of A. This yields the following main result:

Proposition 3.3: Let ε � 1, and τ = O(1). For k = 1, both the large and small solutions u± ν± are

always stable with respect to the small eigenvalue. For k > 1, and for the small solution u+, ν+, there are

always k − 1 positive small eigenvalues and one negative eigenvalue λk. Similarly, for k > 1, we also have

λk < 0 for the large solution u−, ν−. However, the other small eigenvalues λj, for j = 1, . . . , k − 1 are

negative at a fixed value of A/Ake if and only if D satisfies,

D < DkS ≡ 4

k2
[

ln
(

r +
√

r2 − 1
)]2 , r ≡

[

1 − A2
ke

A2

]−1/2

. (3.35)

When D = DkS, then λ = 0 is an eigenvalue of algebraic multiplicity k − 1.

The criterion (3.35) expresses DkS in terms of the ratio Ake/A. However, since Ake also depends on

D, the criterion (3.35) is a transcendental equation for DkS. Below, we solve this equation asymptotically

in the intermediate regime to obtain a certain scaling law.

A similar criterion can be found with respect to A. We substitute the stability condition (3.32) into

(2.11) to obtain the stability threshold

A
Ake

=
(1 + s)

2
√

s
=

2 + csch2 (θ0/k)

2
√

1 + csch2 (θ0/k)
. (3.36)

By simplifying (3.36), we obtain the next result.

Proposition 3.4: Let ε � 1, τ = O(1), and k > 1. For the large solution u−, ν−, the small eigenvalues

λj, for j = 1, . . . , k − 1, are negative at a fixed value of D if and only if A satisfies

A > AkS , AkS ≡ Ake

[

tanh

(

2θ0

k

)]−1

, θ0 ≡ D−1/2 . (3.37)
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Here Ake is the existence threshold of (2.9). Notice that AkS −Ake → 0+ as D → 0.

Propositions 3.3 and 3.4 show that k−1 small eigenvalues simultaneously cross through zero as either D

crosses through DkS or as A crosses through AkS. Therefore, there must be a bifurcation at these critical

values. In §4, this bifurcation is shown to be related to the emergence of asymmetric solution branches.

Next, we compare DkS and AkS with the large eigenvalue stability thresholds DkL and AkL of Principal

Result A.2, which hold when τ is below the Hopf bifurcation threshold. A simple calculation shows that

AkS > AkL , DkS < DkL . (3.38)

Therefore, the stability thresholds with respect to the small eigenvalues are more stringent than those

for the large eigenvalues. The next result summarizes the main stability conclusion for the large solution

branch u− and ν− with respect to both the small and the large eigenvalues.

Principal Result 3.5: Let ε � 1, and consider the large solution branch u−, ν− of Principal Result 2.1

Suppose that τ < τhL, where τhL is the Hopf bifurcation value of the NLEP problem of Principal Result

A.1 for the large eigenvalues. Then, the k-spike symmetric solution branch is stable with respect to both

the large and the small eigenvalues when either D < DkS, or equivalently when A > AkS. For τ < τhL

where D satisfies DkS < D < DkL, or when AkL < A < AkS, the large solution is stable with respect to

the large eigenvalues but is not stable with respect to the small eigenvalues.

To illustrate our main stability result graphically, in Fig. 1(b) of §1 we plotted the norm |ν|2 defined in

(2.10) versus A for the parameter values D = 0.75 and k = 1, . . . , 4. The stability information of Principal

Result 3.5 is shown by different shadings of different portions of these branches. For smaller values of D,

we still have Ake < AkL < AkS for k ≥ 2, but in this case AkS is close to Ake.

Next, we derive a scaling law for the small eigenvalues that is valid in the intermediate parameter regime

O(1) � A � O(ε−1/2). In this regime, we have to leading order from (2.11) that s ∼ 4A2/A2
ke � 1. Letting

s → ∞ in (3.26) we obtain the following limiting result for the small eigenvalues:

Proposition 3.6: Let ε � 1, D = O(1), τ = O(1), and assume that O(1) � A � O(ε−1/2). Then, for

the large solution u−, ν−, the small eigenvalues of (2.13) are given asymptotically by

λ ∼ −4ε2A2θ0

3
tanh

(

θ0

k

)

sin2

(

πj

2k

)

[

1 − sech2 (θ0/k) cos2 (πj/(2k))
]

cosh (2θ0/k) − cos (πj/k)
+ O(ε2) , j = 1, . . . , k . (3.39)

From (3.39), we conclude that λj < 0 for j = 1, . . . , k when D = O(1) and τ = O(1). Therefore,

when D = O(1) and τ = O(1), we always have stability with respect to the small eigenvalues in the

intermediate regime for A. However, stability can be lost when D is asymptotically large. To show this we

use s ∼ 4A2/A2
ke in (3.35), to conclude that a k-spike pattern is stable with respect to translations when

D < D∞
kS , where D∞

kS for k > 1 is the unique root of

√
D =

A2

3k2
tanh

(

1

k
√

D

)

. (3.40)

In the intermediate regime, (3.40) can be solved asymptotically to predict a minimum inter-spike distance

LmS for the translational stability of a spike pattern. For a k-spike pattern on a domain of length 2, the
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inter-spike separation is L = 2/k. For A � 1, the root of (3.40) satisfies D � 1. For D � 1, we solve

(3.40) for k with A = ε−1/2A to conclude that a k-spike pattern is translationally stable when

L > LmS ∼
(

24Dε

A2

)1/3

, O(ε1/2) � A � O(1) . (3.41)

Since LmS � O(ε), the calculation is self-consistent. A similar scaling law for competition instabilities in

the intermediate regime, associated with the large eigenvalues, was derived in §4 of [21]. For τ below the

Hopf bifurcation threshold τhL, it was shown in [21] that there are no positive real eigenvalues when

L > LmC ∼
(

12γkDε

A2

)1/3

, O(ε1/2) � A � O(1) ; γk = 1 + cos (π/k) . (3.42)

Clearly LmC < LmS . Therefore, as the inter-spike separation distance L is decreased below LmS , instability

is first lost due to k − 1 independent slow translational instabilities. As L is further decreased below LmC ,

there are fast O(1) instabilities leading to spike annihilation events.

Finally, we comment on the uniformity of our results in (3.26) and (3.39) with respect to the diffusivity

D, which measures the inter-spike interaction strength. First, we consider a one-spike solution with D � 1.

From (3.26), we obtain that λ1 ∼ −2ε2s/D < 0 for D � 1. This suggests that a one-spike solution to

the GS model is stable when D � 1. However, for the shadow problem where D = ∞, it is well-known

for the corresponding GM model (1.4) that a spike is translationally unstable for ε � 1 due to a positive

exponentially small eigenvalue, which leads to dynamic metastability of the spike (cf. [17], [20]). Therefore,

with the close relationship between the GS and GM models, (3.26) for the GS model is not expected to

be uniformly valid as D → ∞. In fact, for D = O
(

ec/ε
)

an extra term must be added to the expression

λ1 ∼ −2ε2s/D, which arises from analyzing exponentially weak boundary layer effects for φ near x = ±1.

The resulting formula for λ1 leads to a bifurcation of a one-spike equilibrium on the range D = O(ec/ε),

for some c > 0. We do not study this problem in detail here, since a very similar issue for the GM model

(1.4) was studied in detail in [20] (see also §5.2 of [17]).

For the GS model in the other limit where D → 0, we summarize our comments as follows:

Remark 3.1 The analysis leading to (3.26) and (3.39) is valid provided that D � O(ε2). This is needed

to ensure a decoupling of the slow and fast variables in the core of the spike. However, if we did let D → 0

in (3.26), but with D � O(ε2), we obtain after a short calculation that

λk ∼ −8ε2s

D
e−2/(k

√
D) ; λj ∼

8ε2s

D

(

s

s − 1

)

sin2

(

πj

k

)

e−2/(k
√

D) , j = 1, . . . , k − 1 . (3.43)

Therefore, for D � 1, there are k exponentially small eigenvalues, with k − 1 of them being positive for

the large solution branch where s > 1. However, in the weak interaction regime D = O(ε2), where both

variables are localized, a k-spike pattern with an O(1) inter-spike separation distance is essentially equiv-

alent to a periodic, near-homoclinic, pattern of an asymptotically large period. For such long-wavelength

periodic patterns, with a sufficiently large wavelength, it was proved in [12] that there is a continuous loop

of spectra in the neighborhood of each isolated eigenvalue of the infinite-period homoclinic connection.

Although the result (3.43) was derived for Neumann boundary conditions rather than periodic conditions,
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the discrete spectra in (3.43) should presumably be related to the breaking of the spectral loop near the

origin resulting from the transition from the weak to the semi-strong interaction regime. A potential

parametrization for this transition is to take D = ε2−p with 0 ≤ p ≤ 2. �

3.1 Slow Translational Instabilities: Dynamics

We now perform a few numerical experiments to illustrate the theory and to show the significance of the

small eigenvalues for the dynamics of spike patterns. The computational results shown below for (1.3) have

been computed using the routine D03PCF of the NAG library [31] with 1500 uniformly spaced meshpoints.
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(a) νm versus t
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I�J M�I

I�J M�N

I M�I�I O	I�I�I OM�I�I N�I�I�I

PRQ

S

(b) xj versus t

Figure 3: Numerical solution to (1.3) with D = 0.75, k = 2, ε = 0.03, τ = 2.0, and A = 6.5. Left figure:
plot of the spike amplitudes νm of ν− versus t. Right figure: plot of the spike location x2 versus t.

For (1.3) we take D = 0.75, k = 2, ε = 0.03, and τ = 2.0. For this two-spike equilibrium solution, the

stability thresholds for the small and large eigenvalues, obtained from (3.37) and (A.4), respectively, are

A2S = 6.296 and A2L = 5.633. Since τ is below the stability threshold τhL, there is no Hopf bifurcation

for the equilibrium profile. For the initial condition for (1.3), we take the equilibrium solution of Principal

Result 2.1, with initial spike locations xj(0) slightly offset from their equilibrium values of ± 1
2 .

We first take A = 6.5 > A2S , and x1(0) = 0.52, x2(0) = −0.48. For this value of A, the two small

eigenvalues are negative. Therefore, the equilibrium solution should be stable with respect to translations

of the profile. In Fig. 3(a) we plot the spike amplitudes νm(t) = ν−(xj , t), for j = 1, 2, versus t showing

the convergence towards a symmetric two-spike equilibrium solution over a long time-scale. In Fig. 3(b)

we plot x2 versus t, which shows that x2 → 1/2 as t increases. A similar plot can be made for x1.

Next, we take A = 6.0, so that A2L < A < A2S . We again choose x1(0) = 0.52, x2(0) = −0.48. In

Fig. 4(a) we plot the locations of the two spikes as a function of time showing the divergence away from

the two-spike equilibrium locations ± 1
2 . In Fig. 4(b) we plot the amplitudes νm of the two spikes versus

t. The numerical solution for ν versus x is shown in Fig. 5(a) at different times. This example suggests
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Figure 4: Numerical solution to (1.3) with D = 0.75, k = 2, ε = 0.03, τ = 2.0, and A = 6.0. Left figure:
plot of spike locations xj versus t. Right figure: plot of the spike amplitudes νm versus t.
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Figure 5: Left figure: plot of numerical solution to (1.3) at different times for the parameter values of
Fig. 4. The clustered solid curves correspond to t = 0, 150, 300, and the heavy solid curve corresponds to
t = 500. Only one spike remains at t = 500. Right figure: plot of the spike location x2 versus t for the
parameter values of Fig. 4, except now with symmetric initial locations x1(0) = 0.52 and x2(0) = −0.52.
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the following scenario: For this value of A = 6.0, the equilibrium two-spike solution is stable with respect

to profile instabilities (large eigenvalues), but is unstable with respect to translations (small eigenvalues).

Therefore, the locations of the two spikes diverge away from ± 1
2 . During their evolution, a competition

instability occurs on a fast O(1) time scale as a result of a large eigenvalue crossing into the right half-

plane. Recall that the results in §2 and Appendix A pertain only to profile instabilities associated with

equilibrium spike solutions, and not the quasi-equilibrium solutions where the spike locations are not at

their equilibrium positions. This competition instability annihilates one of the spikes at approximately

t ≈ 500, and the other spike then slowly drifts to the stable one-spike equilibrium solution centered at the

origin. Since λk < 0 in Proposition 3.3, a one-spike equilibrium solution is always stable with respect to

translations.

Finally, we take A = 6.0, but we now introduce a symmetric perturbation in the initial spike locations

so that x1(0) = −0.52 and x2(0) = 0.52. Although, the equilibrium solution is unstable with respect to

translations, the spike location x2 is shown in Fig. 5(b) to approach its equilibrium value. An identical

convergence occurs for x1. To explain this, we recall from Proposition 3.3 that, although λ1 > 0 for

A = 6.0, we always have that λ2 < 0. Therefore, there is a saddle-structure for the two-spike equilibrium

solution. From Proposition 3.3, and from the form of the stable eigenvector c2, given in (3.28) with k = 2,

it follows that symmetric perturbations of the initial spike locations are, locally, on the stable manifold of

the saddle point. Therefore, with sufficient numerical resolution it may be possible that we can approach

the saddle point as t increases. This is what is observed in Fig. 5(b).

4 Asymmetric k-Spike Equilibria

We now construct asymmetric equilibrium spike patterns, where the spikes have different heights. We

follow a similar approach as in [45] for the GM model (1.4) by first constructing a one-spike solution

centered at the origin for (1.3) posed on −l < x < l, with ux(±l) = νx(±l) = 0. For ε � 1, such a solution

for ν and u is even, ν(l) is exponentially small, and u(l) = O(1). We determine all values of l, labeled

by l1, . . . , ln, such that u(l1) =, . . . ,= u(ln). For a certain range of the parameters, as found below, there

are exactly two such values of l. These “local” solutions are then used to construct a global asymmetric

equilibrium k-spike pattern for (1.3) on [−1, 1].

To construct a solution to (1.3) on −l < x < l with a spike at the origin, we proceed as in §2 for a

symmetric spike pattern. We obtain that

ν(x) ∼ 1

AU
w (x/ε) , u(x) ∼ 1 − 6

A2U
Gl(x; 0) . (4.1)

Here w(y) satisfies (2.2), and Gl(x; 0) is the Green’s function on −l < x < l satisfying

DGlxx − Gl = −δ(x) , −l < x < l ; Glx(±l; 0) = 0 ; Gl(x; 0) =

(

θ0

2

)

cosh [(l − |x|)θ0]

sinh (lθ0)
, (4.2)

where θ0 ≡ D−1/2. The constant U in (4.1), representing the leading-order approximation for u in the
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inner region, is obtained by setting u(0) = U in (4.1). By solving the resulting quadratic equation we get

U =
1

2



1 ±
√

1 − coth(θ0l)

Ã2



 , A ≡
√

12θ0Ã , θ0 ≡ D−1/2 . (4.3)

To construct asymmetric patterns, we must calculate u(l). Using (4.1) and (4.2), we get

u(l) − 1

U − 1
=

Gl(l; 0)

Gl(0; 0)
= sech (lθ0) . (4.4)

Combining (4.4) and (4.3), we obtain a key formula for u(l)

u(l) = E±(z) ≡ 1 +
1

2
sech(z)



−1 ±
√

1 − coth(z)

Ã2



 , z ≡ θ0l . (4.5)

The minus and plus signs in (4.5) refer to the large and small solutions, respectively. In (4.5), E±(z) is

defined only when Ã2 ≥ coth z > 1. This yields that z > z0, where

z0 ≡ 1

2
ln

(

Ã2 + 1

Ã2 − 1

)

. (4.6)

Clearly E±(z) > 0 for z > z0. For z > z0, we readily derive some key properties of E±(z).

Lemma 4.1: Let Ã > 1. Then, for z > z0, E
′

+(z) > 0 with E+(z0) < 1, and E+(z) → 1 as z → ∞.

Alternatively, E−(z0) < 1 with E
′

−(z) < 0 for z0 < z < zm, and E
′

−(z) > 0 for z > zm. Moreover,

E−(z) → 1 as z → ∞. The point zm where E−(z) has its minimum value is the unique root of

Ã = [tanh z]−1/2 [tanh(2z)]−1 . (4.7)

Proof: Clearly E±(z0) < 1 and E±(z) → 1 as z → ∞. In addition, by differentiating (4.5) it follows

readily that E
′

+(z) > 0 for z > z0. For E−(z), we calculate

E
′

−(z) =
sinh z

2 cosh2 z

[

1 +

√

1 − coth z

Ã2

]

− sechz

Ã2

csch2z
√

1 − coth z
Ã2

. (4.8)

Therefore, E
′

−(z) < 0 only when

2Ã2 tanh z

[

√

1 − coth z

Ã2
+ 1 − coth z

Ã2

]

> csch2z . (4.9)

By manipulating (4.9), we get that E
′

−(z) < 0 if and only if
√

1 − coth z

Ã2
>

cosh(2z)

2Ã2 sinh2 z
coth z − 1 . (4.10)

It is easy to see from (4.10) that there exists a zm such that E
′

−(z) < 0 for z0 < z < zm, and E
′

−(z) > 0

for z > zm. To determine where E
′

−(z) = 0, we square both sides of (4.10) to obtain

1 − t =

(

t cosh(2z)

2 sinh2 z
− 1

)2

, t ≡ coth z

Ã2
. (4.11)

20



�`� �
�`� �
�`� �
�`� �
�`� �
��� �

��� � ��� � ��� � ��� �

���������

�

Figure 6: Plot of E− versus z for z ≥ z0 when Ã = 3.

By solving (4.11) for t > 0 we get that t = tanh2(2z). Since, Ã2 = (coth z)/t, we obtain (4.7) for Ã. �

Therefore, when Ã > 1, it follows that for any z in z0 < z < zm, there exists a unique z̃, with z̃ > zm,

such that E−(z) = E−(z̃). In Fig. 6 we plot E−(z) versus z when Ã = 3. Since z = θ0l and z̃ = θ0 l̃, the

implication of this result is that given any l with z0 < lθ0 < zm, there exists a unique l̃, with l̃θ0 > zm,

such that u(l) = u(l̃). This implies that in any asymmetric pattern generated using E−(z) there are only

two distinct types of spikes. Furthermore, since E+(z) is monotonically increasing we cannot construct

asymmetric patterns for the small solution.

For E−(z), solutions of length l and l̃ are called S-type and B-type spikes, respectively. We now

construct asymmetric k-spike patterns to the global problem (1.3) on [−1, 1] with k1 > 0 S-type spikes and

k2 = k − k1 > 0 B-type spikes arranged in any sequence from left to right across the interval as

SBSSB....B , k1 − S’s , k2 − B’s. (4.12)

To do so, we use translation invariance and the condition u(l) = u( l̃) to glue S and B type spikes together

to satisfy C1 continuity for the global function u on [−1, 1]. The global function ν is asymptotically C 1

continuous since the local function is such that ν(l) and ν( l̃) are exponentially small when ε � 1.

Since the supports of an S-spike and a B-spike are 2l and 2 l̃, respectively, we get the length constraint

2k1l+2k2 l̃ = 2. The other condition, which ensures that u is C 1 continuous is that E−(z) = E−(z̃). Using,

l = zθ0 and l̃ = z̃θ0, we obtain a nonlinear coupled algebraic system for z and z̃

k1z + k2z̃ = θ0 , E−(z) = E−(z̃) ; l = zθ−1
0 , l̃ = z̃θ−1

0 , θ0 = D−1/2. (4.13)

Here E−(z) is defined in (4.5). In terms of the half-lengths l and l̃ of the supports of the spikes as given

in (4.13), we formally obtain the following result for asymmetric k-spike patterns:

Principal Result 4.2: Let Ã > 1 and D > 0. Then, for ε → 0, an asymmetric equilibrium k-spike
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pattern for (1.3) with k1 spikes of type S and k2 = k − k1 spikes of type B is characterized by

ν−(x) ∼
k
∑

j=1

1

AU(lj)
w
[

ε−1(x − xj)
]

, U(lj) ≡
1

2



1 −
√

1 − coth(θ0lj)

Ã2



 , A ≡
√

12θ0Ã ,

(4.14a)

where w(y) satisfies (2.2). Here for each j, lj = l or lj = l̃, where l and l̃ are determined in terms of k1,

k2, θ0, and Ã by (4.13). The value lj = l occurs k1 > 0 times, while lj = l̃ occurs k2 = k − k1 > 0 times.

The small and large spikes are arranged in any sequence. For ε � 1, the leading-order outer solution is

u(x) = 1 −
k
∑

j=1

2 [1 − U(lj)]

θ0 coth(θ0lj)
G(x;xj) , (4.14b)

Here G(x;xj) is the (global) Green’s function satisfying (2.5). The spike locations xj are found from

x1 = l1 − 1 , xk = 1 − lk , xj+1 = xj + lj+1 + lj , j = 1, .., k − 2 . (4.14c)

To recover the symmetric k-spike equilibrium solutions constructed earlier in §2, we set z = z̃ = θ0/k,

which solves (4.13). Then, (4.13) has a solution only when z = z̃ = zm. Therefore, setting z = θ0/k in

(4.7) we obtain the critical value of Ã for the emergence of the asymmetric branch. By comparing this

critical value with that in Proposition 3.4 of §3, we obtain the following bifurcation result:

Principal Result 4.3: Let k > 1 and ε � 1. For a fixed D > 0 the asymmetric k-spike equilibrium

solutions bifurcate from the k-spike symmetric large equilibrium solution branch of Principal Result 2.1 at

the value A = AkS in (3.37) of Proposition 3.4. Alternatively, for a fixed ratio A/Ake > 1, the asymmetric

k-spike branches bifurcate from the large symmetric k-spike solution branch at the value D = DkS in (3.35)

of Proposition 3.3. These critical values are precisely the thresholds where k−1 small eigenvalues associated

with the translational stability of the large symmetric solution simultaneously cross through zero.

Neglecting the positioning of the small and large spikes in a k-spike sequence, there are k − 1 possible

asymmetric patterns for a k-spike solution. Principal Result 4.3 shows that these patterns emerge at the

simultaneous zero-crossings of k − 1 small eigenvalues for the symmetric k-spike solution branch.

This result was illustrated graphically in Fig. 1(a) of §1. To display the bifurcation diagram for the

asymmetric branches we use (4.14a) to calculate the L2 norm |ν|2 as

|ν|2 ≡
(

ε−1

∫ 1

−1
ν2 dx

)1/2

∼ 1

A

[

(

6k1/ [U(l)]2
)

+

(

6k2/
[

U(l̃)
]2
)]1/2

. (4.15)

In Fig. 1(a) we plotted |ν|2 versus A for the symmetric and asymmetric solution branches for k = 1, . . . , 4

when D = 0.75. The dashed lines in Fig. 1(a) of §1 correspond to plots of (4.15) versus A for all of the

asymmetric branches that emerge from the symmetric branches at the bifurcation values A = AkS, for

k = 1, . . . , 4. In this bifurcation diagram, the ordering of spikes on the interval is invisible to the norm

(4.15). From (4.13), (4.15), and Fig. 1(a), it can be seen that an asymmetric branch with k1 small spikes

asymptotes to the symmetric branch with k − k1 spikes as A → ∞.
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(f) k = 4 : SSSB pattern

Figure 7: Asymmetric patterns for D = 0.75 and ε = 0.02. The thresholds are A2S = 6.296, A3S = 9.500,
and A4S = 13.487. Top left: SB: A = A2S (heavy solid), A = 6.60 (solid), A = 6.90 (dotted), and A = 7.20
(widely spaced dots). Top right: SBB: A = A3S (heavy solid), A = 9.90 (solid), A = 10.40 (dotted), and
A = 11.10 (widely spaced dots). Middle Left: SSB: A = A3S (heavy solid), A = 9.020 (solid), A = 8.90
(dotted), and A = 9.04 (widely spaced dots). Middle right: SBBB: A = A4S (heavy solid), A = 15.30
(solid), A = 16.43 (dotted), and A = 17.83 (widely spaced dots). Bottom Left: SSBB: A = A4S (heavy
solid), A = 13.60 (solid), A = 13.95 (dotted), and A = 14.37 (widely spaced dots). Bottom right: SSSB:
A = A4S (heavy solid), A = 12.34 (solid), A = 11.30 (dotted), and A = 11.12 (widely spaced dots).
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In Fig. 7 we plot a few of the asymmetric patterns for ν when D = 0.75, ε = 0.02, and k = 1, . . . , 4.

These parameters correspond to those in the bifurcation diagram of Fig. 1(a). The plots in Fig. 7 are

obtained by first solving (4.13) using Newton’s method with different numbers k1 of small spikes on the

interval and for different values of A. The different patterns for ν are then obtained from (4.14).

Finally, we comment on the stability of the asymmetric solutions. Although we do not analyze this

problem here, we expect that these branches are all unstable with respect to the small eigenvalues. From

numerical computations of a certain matrix eigenvalue problem, it was shown in [45] that the asymmetric

spike patterns for the GM model (1.4) are unstable with respect to translations. However, since the

asymmetric patterns emerge at the point A = AkS > AkL, where the NLEP problem (A.1) has no

unstable eigenvalues for τ < τhL, we would expect by continuity that the asymmetric branches are stable

with respect to the large eigenvalues for A−AkS sufficiently small and when τ is below some threshold.

5 A Traveling-Wave, or Drift, Instability for τ = O(ε−2)

In §3 we analyzed the small eigenvalues for τ = O(1). In this section, we study the initiation of a traveling-

wave, or drift, instability for a one-spike large equilibrium solution u−, ν− centered at the origin for the

regime where τ � 1. For this solution, we show that a small eigenvalue can become complex when τ � 1.

In addition, we derive a formula for the critical value τTW of τ , with τTW � 1, where a traveling-wave

instability occurs as a result of a pair of complex small eigenvalues entering the unstable right half-plane

through a Hopf bifurcation. The path of these small eigenvalues as a function of τ for τ > τTW is analyzed.

This instability with respect to translations in the spike profile leads to oscillations in the spike location,

and is distinct from the Hopf bifurcation of §2 for the amplitude of the spike profile. The thresholds for drift

and profile instabilities are compared, and it is shown that a drift instability is the dominant instability on

the asymptotic subrange O(ε−1/3) � A � O(ε−1/2) of the intermediate regime, and is subdominant to the

profile instability when O(1) � A � O(ε−1/3). In the context of the infinite-line problem this interchange

in the dominant instability mechanism was explored in [28].

For τ = O(ε−2), we now derive a formula for the small eigenvalue associated with a one-spike solution.

By repeating the analysis leading to Principal Result 3.1, we obtain the following result:

Principal Result 5.1: Let ε � 1 and τ = O(ε−2). Then, the small eigenvalue of (2.13) for a one-spike

large solution satisfies

λ ∼ 2ε2s

[

〈η̃0x〉0 −
1

D

]

. (5.1)

Here 〈η̃0x〉0 is to be calculated from the auxiliary problem

Dη̃0xx − [1 + τλ] η̃0 = 0 , −1 < x < 1 ; η̃0x(±1) = 0 , (5.2a)

[Dη̃0]0 = − 1

ag
; [Dη̃0x]0 =

−s

ag
〈η̃0〉0 . (5.2b)

Here 〈ζ〉0 ≡ 1
2 (ζ(0+) + ζ(0−)), [ζ]0 ≡ ζ(0+) − ζ(0−), s = (1 − U−)/U−, ag =

[

2
√

D tanh θ0

]−1
, and U− is

given in (2.9).
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An eigenvalue with Re(λ) > 0 yields a drift instability since, from (3.5), the perturbation in ν is

ν−(x) ∼ 1

AU−

[

w(ε−1x) + δeλtw
′

(ε−1x)
]

∼ 1

AU−
w(ε−1 [x − x0(t)]) , x0 ∼ −εδeλt , (5.3)

where δ � 1. An instability with λ > 0 and real leads to a monotonic drift of the spike away from x = 0.

An instability with λ = ±iλI and λI > 0 leads to the onset of small-scale oscillations around x = 0.

To determine an explicit formula for λ in (5.1), we must calculate 〈η̃0x〉0. By solving (5.2) we obtain

〈η̃0x〉0 =
β

D
tanh(θ0β) tanh θ0 , β ≡

√
1 + τλ . (5.4)

Substituting (5.4) into (5.1), we get

λ ∼ 2ε2s

D
[β tanh(θ0β) tanh θ0 − 1] . (5.5)

To analyze (5.5), it is convenient to introduce the new variables τd, ω, and ξ, defined by

τ =

(

D

2sε2

)

τd , λ =

(

2sε2

D

)

ω , ξ = τdω = τλ . (5.6)

Substituting (5.6) into (5.5), we obtain that ξ satisfies F (ξ) = 0, where

F (ξ) ≡ ξ

τd
− G(ξ) , G(ξ) ≡ β tanh θ0 tanh(θ0β) − 1 , β ≡

√

1 + ξ , θ0 = D−1/2 . (5.7)

In (5.7), the principal value of the square root is taken. In terms of the roots F (ξ) = 0, the scaled

eigenvalues ω are recovered from ω = ξ/τd.

We seek complex roots ξ = ξR + iξI to F (ξ) = 0. For each D > 0, we will show that F (ξ) = 0 has a

pair of complex conjugate roots on the imaginary axis ξR = 0 when τd = τdh. Increasing τd past τdh, this

complex conjugate pair of roots merges onto the positive real axis in the ξ plane when τd = τdm. At this

value of τd, (5.7) has a double real root. For τd > τdm, (5.7) always has two positive real roots.

Before analyzing the zeroes of F (ξ) in (5.7), we discuss the implications for the stability of a one-spike

solution in the intermediate regime O(1) � A � O(ε−1/2) as τ is increased. Since s = O(A2) in this

regime, (5.6) shows that a traveling-wave instability occurs when τ = τTW = O
(

A−2ε−2
)

. In contrast,

from (A.7) a Hopf bifurcation in the spike profile will occur when τ = τH = O
(

A4
)

. Comparing the

asymptotic orders of these two scales, we conclude

τH � τTW , for 1 � A � O(ε−1/3) ; τTW � τH , for O(ε−1/3) � A � O(ε−1/2) . (5.8)

For the infinite-line problem, (5.8) was also observed in [28]. Therefore, there is some scaling regime within

the intermediate range O(1) � A � O(ε−1/2) where, as τ is increased, a traveling-wave instability will

occur before the onset of the Hopf bifurcation associated with the spike profile.

We first look for roots of F (ξ) = 0 along the real axis. These roots correspond to the intersections

points of the line ξ/τd with G(ξ). A simple calculation using (5.7) shows that

Gξ(ξ) =
tanh θ0

2β

[

tanh(θ0β) + βθ0sech
2(θ0β)

]

, (5.9a)

Gξξ(ξ) =
tanh θ0

4β3

[

(θ0β)sech2(θ0β) − tanh(θ0β)
]

− θ2
0

2β
tanh θ0 tanh(θ0β)sech2(θ0β) . (5.9b)
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Since z sech2z − tanh z < 0 for all z > 0, it follows that G(ξ) is a monotonically increasing, and concave,

function on ξ ≥ 0. In addition, G(0) = −sech2θ0 < 0. Therefore, there are exactly two real roots to

F (ξ) = 0 when τd > τdm and no such roots when 0 < τd < τdm. Here τdm is the value of τd for which the

straight line ξ/τd intersects G(ξ) tangentially at some point ξm. By combining the equations F = Fξ = 0

for the double root at τd = τdm and ξ = ξm, we obtain, after a little algebra, that ξm is the unique root of

(

β2 + 1
) tanh(θ0β)

θ0β
−
(

β2 − 1
)

sech2 (θ0β) =
2

θ0 tanh θ0
, β =

√

1 + ξ . (5.10)

This yields ξm as a function of θ0 = D−1/2, which can be computed numerically using Newton’s method.

In terms of ξm, we then calculate τdm and the eigenvalue ωm from τdm = ξm/G(ξm) and ωm = ξm/τdm.
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Figure 8: Left figure: τdm (heavy solid curve) and ωm (solid curve) versus D. Right figure: graphical
determination of real roots to F = 0 when D = 0.75: Here G(ξ) (heavy solid curve), and ξ/τd are shown
for τd = 2.0 (dotted curve), τd = τdm ≈ 4.91 (solid curve), and τd = 6.0 (widely spaced dots).

In Fig. 8(a) we plot the numerical results for τdm and ωm versus D. For D = 0.75 and D = 0.1, we get

D = 0.75 , τdm = 4.914 , ωm = 0.717 ; D = 0.1 , τdm = 2.229 , ωm = 0.116 . (5.11)

For D = 0.75, in Fig. 8(b) we plot G(ξ) together with the straight line ξ/τd for three different values of τd,

one of which is the double root value τd = τdm. From this figure we see that there are two real roots to

F (ξ) = 0 when τd > τdm and none when 0 < τd < τdm. Fig. 8(a) suggests that τdm and ωm have limiting

values as D → 0 and D → ∞, respectively. Let D → 0 so that θ0 → ∞. In this limit, ξm → 0 from (5.10).

Therefore, for D → 0, τdm corresponds to the value of τd for which F (ξ) = 0 has a double root at the

origin. Using (5.7), we set F (0) = Fξ(0) = 0, and let θ0 → ∞ to obtain

1

τdm
=

1

2

[

tanh2 θ0 + θ0 tanh θ0 sech2θ0

]

→ 1

2
as θ0 → ∞ . (5.12)
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Hence, τdm → 2 as D → 0, which is consistent with Fig. 8(a). To determine the limiting behavior of ωm

as D → ∞, we let θ0 → 0 in (5.10) to conclude that ξm → ∞. Using β ∼
√

ξ when ξ � 1, the double root

condition for F can be written asymptotically as

ξ

τd
∼
√

ξθ0 tanh
(

√

ξθ0

)

− 1 ,
1

τd
∼ 1

2
√

ξ

[

θ0 tanh
(

√

ξθ0

)

+
√

ξθ2
0 sech2

(

√

ξθ0

)]

. (5.13)

Assuming that
√

ξθ0 → µ as θ0 → 0 for some µ = O(1), we can combine the equations in (5.13) to get

µ tanhµ − 2 = µ2 sech2µ . (5.14)

The unique root of (5.14) is µ = 2.2649. Then, since ωm = ξm/τdm and ξm ∼ Dµ2, we conclude that

ωm → µ tanhµ − 1 ≈ 1.2166 , ξm → 5.1298D , τdm → 4.2165D , as D → ∞ . (5.15)

Hence for D � 1, τdm is linear in D. The limiting behavior for ωm is clearly seen in Fig. 8(a).

Next, we look for roots of F (ξ) = 0 on the positive imaginary axis ξ = iξI with ξI ≥ 0. Separating

(5.7) into real and imaginary parts, we obtain

FR(ξI) = −GR(ξI) , FI(ξI) =
ξI

τd
− GI(ξI) , (5.16)

where FR(ξI) ≡ Re[F (iξI)], FI(ξI) ≡ Im[F (iξI)], GR(ξI) ≡ Re[G(iξI )], and GI(ξI) ≡ Re[G(iξI)].

Using (5.7), we readily see that for each D > 0 we have GR(0) = −sech2θ0 < 0 and that GR(ξI) is

monotonically increasing with GR → +∞ as ξI → ∞. Therefore, FR(ξI) = 0 has a unique root, which we

label by ξh. Then, setting FI(ξh) = 0, we determine the Hopf bifurcation value of τd as

τdh =

(

θ0

tanh θ0

)

ξh

Im(z tanh z)
, z ≡ θ0

√

1 + iξh . (5.17)

The corresponding value of ω for the frequency of small-scale oscillations is ωh = ξh/τdh. In Fig. 9(a) we

plot the numerical results for τdh and ωm versus D. For D = 0.75 and D = 0.1, we get

D = 0.75 , τdh = 2.617 , ωh = 0.772 ; D = 0.1 , τdh = 1.986 , ωh = 0.115 . (5.18)

Clearly, τdh → τdm → 2 as D → 0.

By calculating the roots of F (ξ) = 0 with ξ = ξR + iξI numerically on the range τdh < τd < τdm

we obtain a path in the complex ξ plane. In Fig. 9(b) we plot this path in terms of ω = ξ/τd for both

D = 0.75 and D = 0.1. These numerical results suggest that for each τd > τdh there are exactly two small

eigenvalues in the right half-plane.

To prove that, for each D > 0, there are exactly two small eigenvalues in the right half-plane when

τd > τdh we must show that F (ξ) = 0 has exactly two roots in Re(ξ) > 0 when τd > τdh. This is done by

calculating the winding number of F (ξ) over the counterclockwise contour composed of the imaginary axis

−iR ≤ Imξ ≤ iR and the semi-circle ΓR, given by |ξ| = R > 0, for Re(ξ) > 0. For any τd > 0, (5.7) shows

that F (ξ) ∼ ξ
τd

[

1 + O(ξ−1/2)
]

as |ξ| → ∞ in Re(ξ) > 0. Therefore, the change in the argument of F (ξ)
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Figure 9: Left figure: The Hopf bifurcation values: τdh (heavy solid curve) and ωh (solid curve) versus D.
Right figure: eigenvalues ω = ωR + iωI in the right half-plane for τ > τdh when D = 0.75 (heavy solid
curve) and D = 0.1 (solid curve).

over ΓR as R → ∞ is π. Since F (ξ) is analytic in Re(ξ) > 0, we then use the argument principle, together

with F (ξ) = F (ξ), to show that the number M of zeroes of F (ξ) in Re(ξ) > 0 is

M =
1

2
+

1

π
[arg F ]ΓI

. (5.19)

Here [arg F ]ΓI
denotes the change in the argument of F (ξ) along the semi-infinite imaginary axis ΓI = iξI ,

0 ≤ ξI < ∞, traversed in the downwards direction.

To calculate M we note that FI = O(ξI) and FR = O(
√

ξI) as ξI → ∞, and that FI(0) = 0 with

FR(0) > 0. Therefore, argF = π/2 as ξI → +∞, and argF = 0 at ξI = 0. Since the root to FR(ξI) = 0 is

unique, we obtain that [arg F ]ΓI
, is either 3π/2 or −π/2 whenever FI(ξI) < 0 or FI(ξI) > 0, respectively,

at the unique root of FR(ξI) = 0. Therefore, M = 0 or M = 2 from (5.19). Finally, since the root ξh

to FR(ξI) = 0 is independent of τd, we conclude that FI(ξI) < 0 when τd > τdh and FI(ξI) > 0 when

τd < τdh. This leads to a strict transversal crossing condition at the Hopf bifurcation point. This result is

illustrated in Fig. 10(a) and Fig. 10(b) where we show a graphical determination of the roots of FR(ξI) = 0

and FI(ξI) = 0. We summarize our results as follows:

Proposition 5.2: Let ε � 1 and τ = O(ε−2), and consider the small eigenvalue with λ = O(ε2) for

the large one-spike solution. Then, there is a complex conjugate pair of pure imaginary eigenvalues when

τd = τdh. For any τd > τdh there are exactly two eigenvalues in the right half-plane. These eigenvalues

have nonzero imaginary parts when τdh < τd < τdm, and they merge onto the positive real axis at τd = τdm.

They remain on the positive real axis for all τd > τdm.

We now compare the two thresholds of instability for a one-spike solution in the intermediate regime.

Let τH denote the Hopf bifurcation threshold of the spike amplitude, and the τTW denote the drift stability
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Figure 10: Graphical determination of the roots of F (iξI) = 0 when D = 0.75. Left figure: Re[G(iξI)]
versus ξI . Right figure: Im[G(iξI)] versus ξI (heavy solid curve). We also plot ξI/τd for τd = 1.5 (dotted
curve), τd = τdh = 2.6169 (solid curve), and τd = 4.0 (widely spaced dots).

threshold for a spike-layer oscillation. Then, from (A.7) and (5.6), we obtain

τH = 1.748 tanh2(θ0)s
2 , τTW =

D

2sε2
τdh , (5.20a)

where

s =
1 − U−

U−
, U− =

1

2

[

1 −
√

1 − A2
1e

A2

]

, A = ε−1/2A , A1e ≡
√

12θ0

tanh (θ0)
, (5.20b)

and θ0 ≡ D−1/2. For D = 0.1 and D = 0.75, we plot log10(τH) and log10(τTW ) in Fig. 11(a) and Fig. 11(b),

respectively, for two values of ε on the parameter range ε1/2A1e < A < 1. We observe that when ε is

sufficiently small, the curves τH and τTW will cross at some point in the intermediate parameter regime.

To determine this crossing point, we set τH = τTW and solve for A. Using (5.20) and s ∼ 4ε−1A2/A2
1e, we

obtain that the de-stabilization of a one-spike solution occurs by a traveling-wave instability when

A > Asw ∼
(

εDτdh

223.744 tanh2(θ0)

)1/6

A1e . (5.21)

Alternatively, a de-stabilization by a Hopf bifurcation in the spike amplitude occurs when A < Asw. This

interchange in the instability mechanism from profile to drift instabilities as τ is increased, suggests that

drift instabilities will be the dominant instabilities with τTW = O(ε−1) in the pulse-splitting regime where

A = O(1). These instabilities are indeed found to play an important role in this regime (see [22]).

We now recover the result of [29] (see section 2.6 of [29]) for the infinite-line problem by letting D → 0.

In (5.21) we let θ0 → ∞, τdh → 2, and we set ε̃ ≡ ε/
√

D and A1e =
√

12θ0. Then, (5.21) becomes

Asw = 1.578ε̃1/6 , ε̃ ≡ ε/
√

D , (5.22)
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Figure 11: Plots of log10(τH) (increasing curves) and log10(τTW ) (decreasing curves) as a function of A on
the range ε1/2A1e < A < 1. The left figure and right figures are for D = 0.1 and D = 0.75, respectively.
The heavy solid curves are for ε = 0.005 and the solid curves are for ε = 0.01.

which agrees with the result derived in [29]. The result (5.21) for the finite domain problem is new.

Qualitatively, the effect of the finite domain on the traveling-wave instability is to de-stablize a one-spike

solution through a Hopf bifurcation leading to oscillations in the spike-layer location. This will occur for

any fixed D > 0. Alternatively, for the infinite-domain problem corresponding to the limit D → 0, the

unstable complex conjugate eigenvalues merge into the origin (see Fig. 9(b) for a plot where D = 0.1).

This leads to a monotonic drift instability of a one-spike solution for the infinite-line problem.

To illustrate the analysis, we take D = 0.75, A = 0.96436, and ε = .005. For D = 0.75, we get

τdh = 2.617 from (5.18). Then, from (5.20), we calculate τTW ≈ 935 and τH ≈ 2066 > τTW . For four

values of τ , we then compute the numerical solution to (1.1) and output the spike location x0 as a function

of t. The initial condition for v in (1.1) was

v(x, 0) = 60sech2
[

ε−1(x + .01)
]

, (5.23)

which represents a layer initially located at x0(0) = −0.01. In Fig. 12(a) we show that the spike location

has a decaying oscillation around x0 = 0 for τ = 850 and τ = 920 < τTW . Alternatively, in Fig. 12(b),

where τ = 950 > τTW and τ = 1000, the oscillations are found to grow. The ultimate fate of these

large-scale oscillations in the spike-layer location is unknown.

6 Discussion and Conclusion

We have analyzed slow translational instabilities for two parameter regimes of the GS model (1.3). In the

low feed-rate regime, we have shown analytically that k − 1 small eigenvalues, governing the translational

stability of a symmetric k-spike pattern, simultaneously cross through zero at precisely the same parameter
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Figure 12: Example 1: D = 0.75, A = 0.96436, and ε = 0.005. Left figure: x0(t) versus t for τ = 850
(heavy solid curve) and τ = 920 (solid curve). Right figure: x0(t) versus t for τ = 950 (solid curve) and
τ = 1000 (heavy solid curve). In these figures x0(t) is the location of the maximum of v(x, t).

value at which k − 1 different asymmetric equilibria of the form BS..SB (neglecting the positioning of the

B and S spikes in the spike sequence) bifurcate from the symmetric k-spike solution branch. For a one-

spike equilibrium solution for (1.3) in the intermediate regime O(1) � A � O(ε−1/2), we showed that a

traveling wave-instability will result from a Hopf bifurcation in the spike-layer location when τ = τTW , for

some threshold τTW � 1. Locally, this instability yields small-scale oscillations in the spike-layer location.

There are some specific open problems that should be investigated. The first problem is to determine the

stability of asymmetric k-spike equilibria with respect to the large and small eigenvalues. We expect that

these equilibria are all unstable with respect to translational instabilities, but that they should be stable

with respect to the large O(1) eigenvalues sufficiently close to the bifurcation points where they originate

from the symmetric solution branches. Another open problem is to study the large-scale oscillations of the

spike-layer location seen in §5 after the onset of the Hopf bifurcation that occurs when τ = τTW . The large-

scale oscillations presumably arise from a local spike motion coupled to memory effects of a time-dependent

Green’s function. Finally, it would be interesting to study the transition between spectral properties in

the weak interaction regime D = O(ε2) and those analyzed here in the semi-strong regime D = O(1).

In particular, for periodic waves of a sufficiently long wavelength it was proved in [12] that there is a

continuous loop of spectra in the neighborhood of each isolated eigenvalue of the infinite-period homoclinic

connection. For the GS model (1.3), this result pertains to a k-spike solution in the weak interaction regime

D = O(ε2), where the spikes are separated by O(1) distances. In Remark 3.1 of §3, we have shown that

our discrete critical spectra λj , j = 1, . . . , k, for the Neumann problem, are all exponentially small when

D � 1. However, our analysis is not valid when D = O(ε2). Therefore, it would be interesting to see

how the discrete critical spectra emerge from a loop spectrum in terms of a homotopy parameter, such as

D = ε2−p with 0 ≤ p ≤ 2, which connects the weak and semi-strong interaction regimes.
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In a more general context, as discussed in §1 and §2, our method of analysis is related to the SLEP

method originally developed and analyzed for transition-layer stability problems associated with two-

component reaction-diffusion systems in the semi-strong limit (cf. [32], [33], [34]). In these systems, where

the nonlinearity in the fast variable is of bistable type, the study of the critical spectrum is reduced to the

study of the spectrum of a matrix eigenvalue problem (cf. [34]). Under reasonable hypotheses, the critical

spectrum for these problems are all negative and there are no bifurcations to other patterns (cf. [34]). In

this sense, it would be worthwhile to extend the case-study analyses presented here, and for the GM model

(1.4) in [17], [45], and [47], in order to develop a “SLEP method for spikes” for general two-component

systems in the semi-strong regime, where the fast component has a homoclinic connection. For this class

of systems, in what sense is it generic that the critical spectra will have simultaneous zero crossings leading

to asymmetric spike patterns? In this more general context, once we have derived an equivalent auxiliary

problem as in Principal Result 3.1, the matrix manipulations of Appendix B could then still be used to

calculate the critical spectrum explicitly.

A The Instabilities of the Large Eigenvalues

In this appendix we summarize some stability results for the large eigenvalues of (2.13). For the low feed-

rate regime, a formal asymptotic analysis was used in §3.1 of [21] to derive a nonlocal eigenvalue problem

(NLEP), which determines the stability of a k-spike equilibrium solution on an O(1) time-scale. The result

in Principal Result 3.2 of [21] is as follows:

Principal Result A.1(From [21]): Let ε � 1 and A = O(1). Then, with Φ = Φ(y), the O(1) eigenvalues

of (2.13) satisfy the NLEP

L0Φ − χw2

(
∫∞
−∞ wΦ dy
∫∞
−∞ w dy

)

= λΦ , −∞ < y < ∞ ; Φ → 0 , as |y| → ∞ . (A.1a)

Here L0 is the local operator L0Φ ≡ Φ
′′ − Φ + 2wΦ associated with Fisher’s equation. The k choices for

the multiplier χ = χj(z), and its reciprocal Cj(z), for j = 1, . . . , k, are given by

[Cj(λ)]−1 ≡ χj(λ) = 2s

(

s +

√
1 + z

tanh (θ0/k)

[

tanh (θλ/k) +
(1 − cos [π(j − 1)/k])

sinh (2θλ/k)

])−1

, (A.1b)

where z ≡ τλ, θλ ≡ θ0

√
1 + z, and θ0 ≡ D−1/2. Here s is given in (2.11). There are k independent choices

for the vector of coefficients bt = (b1, . . . , bk) in (2.14),, given explicitly by bt
j = (b1,j , . . . , bk,j) where

bt
1 =

1√
k

(1, . . . , 1) ; bl,j =

√

2

k
cos

(

π(j − 1)

k
(l − 1/2)

)

, j = 2, . . . , k . (A.2)

Here t denotes transpose.

There is an equivalent formulation of (A.1). A simple calculation shows that the eigenvalues of (A.1)

with
∫∞
−∞ wΦ dy 6= 0 are the union of the zeros of the functions gj(λ) = 0 for j = 1, .., k, where

gj(λ) ≡ Cj(λ) − f(λ) , f(λ) ≡
∫∞
−∞ w (L0 − λ)−1 w2 dy

∫∞
−∞ w2 dy

. (A.3)
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Since L0w = w2, the condition Cj(0) = 1 implies that the NLEP problem (A.1) has a zero eigenvalue. From

a rigorous analysis of the zeroes of gj(λ) in Re(λ) ≥ 0, the following main stability result for multi-spike

solutions in the low feed-rate regime was obtained in Proposition 3.10 and 3.13 of [21]:

Proposition A.2(From [21]): The small solution u+, v+ is unstable on an O(1) time-scale for any

0 < s < 1, k ≥ 1, and D > 0. Next, let k > 1, and consider the multi-spike large solution u−, v−, where

s > 1. For D < DkL, or A > AkL, this solution will be stable on an O(1) time-scale when 0 < τ < τhL, for

some τhL > 0. Alternatively, suppose that D > DkL, or Ake < A < AkL. Then, this solution is unstable

for any τ > 0. The thresholds AkL and DkL are given explicitly by

DkL ≡ 4

k2
[

ln
(

rk +
√

r2
k − 1

)]2 , AkL ≡ Ake

(

(γk/2) + 2 sinh2 (θ0/k)
)

(

[

(γk/2) + 2 sinh2 (θ0/k)
]2 − (γk/2)2

)1/2
, (A.4)

where γk ≡ 1 + cos (π/k) and rk ≡ 1 + γk/(s − 1).

Suppose that A satisfies A > AkL. Then, as τ increases beyond τhL, a Hopf bifurcation in the spike

amplitudes was computed numerically in [21]. The threshold τhL is given by the minimum value of the set

τj, j = 1, .., k, for which gj(λ) = 0, j = 1, .., k, has complex conjugate roots on the imaginary axis. Let

λ = ±iλh be the corresponding value of λ. Then, as was shown in [21], the unstable eigenfunction most

typically has the form of a synchronous oscillatory instability with

ν ∼ ν− + δeiλhtφ + c.c , φ(x) =
k
∑

l=1

blΦ
[

ε−1(x − xl)
]

, bl = 1 , l = 1, .., k . (A.5)

Here c.c denotes complex conjugate and δ << 1. This eigenfunction corresponds to bt
1 in (A.2)

Alternatively, suppose that Ake < A < AkL. Then, for any τ > 0, the dominant initial instability was

shown in [21] to have the form

ν ∼ ν− + δeλRktφ , φ(x) =

k
∑

l=1

bl,kΦ
[

ε−1(x − xl)
]

, bl,k = cos

(

π(k − 1)

k
(l − 1/2)

)

, l = 1, .., k .

(A.6a)

Here δ � 1, and λRk > 0 is the unique root of gk(λR) = 0. This form corresponds to the choice bk in (A.2).

Since
∑k

l=1 bl,k = 0, this instability locally conserves the sum of the heights of the spikes. Hence, it is

referred to as a competition instability. The numerical experiments in §3.3 of [21] show that this instability

leads to a spike competition process whereby certain spikes in a spike sequence are ultimately annihilated.

The first qualitative discussion of competition instabilities for other systems, referred to there as activator

re-pumping, was given in [19] and [18] ( (see Sections 14.4.8, 15.3, Fig. 14.13, and Fig 14.16 of [18]).

In the intermediate regime O(1) � A � O(ε−1/2), corresponding to s → ∞ in (2.11), the stability

results for symmetric k-spike patterns simplify considerably. By letting s → ∞ in (A.1), an instability

occurs only when τ � 1. In this way, the following result can be obtained:

Principal Result A.3(From [21]): Let ε � 1, D = O(1), and O(1) � A � O(ε−1/2). Then, the

k-spike equilibrium large solution u−, ν−, is stable on an O(1) time-scale when τ < τH , where τH = O(A4)

is given by

τH ∼ A4D

9
tanh4 (θ0/k) τ0h

(

1 − 6θ0

A2 tanh(θ0/k)

)2

+ o(1) , (A.7)
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and τ0h = 1.748. As τ increases past τH , stability is lost due to a Hopf bifurcation. The critical value for

τ0h is the minimum value of τ0 for which the following NLEP has eigenvalues on the imaginary axis:

L0Φ − 2w2

1 +
√

τ0λ

(
∫∞
−∞ wΦ dy
∫∞
−∞ w dy

)

= λΦ , −∞ < y < ∞ ; Φ → 0 as |y| → ∞ . (A.8)

The result (A.7) is asymptotically equivalent to the stability result in the intermediate regime first

derived in equation (5.16) of [7] in terms of an alternative dimensionless form of the GS model. In the

form (A.7), this result was reported in Principal Result 4.2 and Proposition 4.3 of [21]. A rigorous analysis

of (A.8) was given in [8], with an alternative analysis given in §4 of [21]. In the intermediate regime,

competition instabilities for multi-spike solutions can only occur if D � 1, or equivalently if the inter-spike

separation distance L = 2
k is too small. The result, as obtained in §4 of [21], is given in (3.42) above.

B Matrix Calculations of the Small Eigenvalues

In this appendix we give a brief outline of the derivation of the explicit formulae in Proposition 3.2 for the

small eigenvalues. The solution to (3.25) is decomposed as

η̃0(x) =
1

ag





k
∑

j=1

cjg(x;xj) +
k
∑

j=1

mjG(x;xj)



 , (B.1)

for some unknown coefficients mj , for j = 1, . . . , k. Here G(x;xj) is the Green’s function satisfying (2.5),

while g(x;xj) is the dipole Green’s function satisfying

Dgxx − g = −δ
′

(x − xj) , −1 < x < 1 ; gx(±1;xj) = 0 . (B.2)

Define the vectors mt ≡ (m1, . . . ,mk) and ct ≡ (c1, . . . , ck), where t denotes transpose. Then, by satisfying

the jump conditions in (3.25b), we get a matrix problem for m in terms of c of the form
(

− s

ag
G + I

)

m =
s

ag
Pgc . (B.3)

Here G and Pg are matrices associated with G and g, defined by

G ≡







G(x1;x1) · · · G(x1;xk)
...

. . .
...

G(xk;x1) · · · G(xk;xk)






, Pg ≡







〈g(x1;x1)〉1 · · · g(x1;xk)
...

. . .
...

g(xk;x1) · · · 〈g(xk;xk)〉k






. (B.4)

As in §3, the angle brackets in (B.4) again denote the average of the right and left-sided limits.

In (3.24) we must calculate 〈η̃0x〉t ≡ (〈η̃0x〉1, . . . , 〈η̃0x〉k). To do so, we use (B.1) to get

〈η̃0x〉 =
1

ag
(Ggc + Pm) , (B.5)

where Gg and P are two additional Green’s function matrices defined by

Gg ≡







gx(x1;x1) · · · gx(x1;xk)
...

. . .
...

gx(xk;x1) · · · gx(xk;xk)






, P ≡







〈Gx(x1;x1)〉1 · · · Gx(x1;xk)
...

. . .
...

Gx(xk;x1) · · · 〈Gx(xk;xk)〉k






. (B.6)
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Next, we define a new eigenvalue variable σ in terms of λ by

λ =
2ε2s

ag
σ . (B.7)

Combining (3.24), (B.5), and (B.7), we obtain a matrix eigenvalue problem for σ and c given by

Ggc + Pm =
(

σ +
ag

D

)

c , (B.8)

where m is determined in terms of c by (B.3).

In Appendices A and C of [17] it was shown that the inverses of G and Gg are tridiagonal matrices,

which are given explicitly by

G =
B−1

√
D

, Gg =
B−1

g

D3/2
, (B.9)

Here B is a tridiagonal matrix defined by

B ≡



























d f 0 · · · 0 0 0
f e f · · · 0 0 0

0 f e
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . e f 0

0 0 0 · · · f e f
0 0 0 · · · 0 f d



























, (B.10a)

with matrix entries

d ≡ coth (2θ0/k) + tanh (θ0/k) ; e ≡ 2 coth (2θ0/k) ; f ≡ −csch (2θ0/k) . (B.10b)

Here θ0 ≡ D−1/2. The matrix Bg has exactly the same tridiagonal form as in (B.10a), except that the

coefficients d, e, and f , in (B.10b) are to be replaced with dg, eg, and fg, respectively, where

dg ≡ coth(2θ0/k) + coth(θ0/k) , eg ≡ 2 coth(2θ0/k) , fg ≡ −csch(2θ0/k) . (B.11)

A key condition is that we can solve (B.3) for m in terms of c. This requires that the matrix in (B.3)

is invertible. Using (2.6) for ag and (B.9) for G, we can write this invertibility condition as

sγ − κj 6= 0 , j = 1, . . . , k , γ ≡
[

ag

√
D
]−1

= 2 tanh (θ0/k) . (B.12)

Here κj is an eigenvalue of B. The spectra κj and qj of B was calculated in Proposition 2 of [17] as

κj = 2 tanh (θ0/k) + 2

[

1 − cos

(

π(j − 1)

k

)]

csch (2θ0/k) , j = 1, . . . , k , (B.13a)

qt
1 =

1√
k

(1, . . . , 1) ; ql,j =

√

2

k
cos

(

π(j − 1)

k
(l − 1/2)

)

, j = 2, . . . , k . (B.13b)
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Here qt
j = (q1,j, . . . , qk,j). The invertibility condition (B.12) has an interpretation in terms of the large

eigenvalues of Appendix A. To see this, we write Cj(0) in (A.3) and (A.1b) in terms of κj as

Cj(0) = 1 − 1

2sγ
(sγ − κj) . (B.14)

In Appendix A it was shown that Cj(0) = 1 implies that the NLEP problem of Principal Result A.1 has a

zero eigenvalue. Therefore, (B.12) is equivalent to the condition that the parameters s, k, and D, do not

correspond to a zero large eigenvalue. Assuming that (B.12) holds, we can combine (B.3) and (B.8) to get

Ggc +
s

ag
P
(

− s

ag
G + I

)−1

Pgc =
(

σ +
ag

D

)

c . (B.15)

To calculate σ in (B.15) explicitly, we first introduce the spectral decomposition of B

B = QKQt . (B.16)

Here Q is the orthogonal matrix of eigenvectors qj of B, and K is the diagonal matrix of eigenvalues κj .

In addition, we use the following key identity of equation (4.37c) of [17]:

PB = − (PgBg)
t . (B.17)

By substituting (B.9), (B.16), and (B.17), into (B.15), and assuming that the invertibility condition (B.12)

holds, we can derive the following generalized symmetric eigenvalue problem:

Bgu = ω (I + R)u . (B.18a)

Here the symmetric matrix R is defined in terms of a diagonal matrix D by

R ≡ (PgBg)
t QDQtPgBg , Djj =

sD2γ

sγ − κj
, j = 1, . . . , k , γ ≡ 2 tanh

(

θ0

k

)

. (B.18b)

The spectra of (B.18) and (B.15) are related by

σ =
1

D3/2

(

1

ω
− 1

γ

)

, c = Bgu . (B.19)

Since Bg is invertible, then ω = 0 is not an eigenvalue.

In §4.2 of [17] (see equations (4.47)–(4.57) of [17]) it was shown that R and Bg have the same eigenspace.

In Proposition 9 of [17] the eigenvalues ξj and eigenvectors uj of Bg were calculated explicitly as

ξj = 2 coth

(

2θ0

k

)

− 2csch

(

2θ0

k

)

cos

(

πj

k

)

, j = 1, . . . , k , (B.20a)

ut
k =

1√
k

(

1,−1, 1, . . . , (−1)k+1
)

; ul,j =

√

2

k
sin

(

πj

k
(l − 1/2)

)

, j = 1, . . . , k − 1 . (B.20b)

Here ut
j = (u1,j , . . . , uk,j). The matrix R has the same eigenvectors as Bg and its eigenvalues zj for

j = 1, . . . , k can be calculated explicitly as (see equation (4.56) of [17])

zj =
sγ

sγ − ξj
csch2

(

2θ0

k

)

sin2

(

πj

k

)

, j = 1, . . . , k . (B.21)
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Therefore, uj is an eigenvector of (B.18a), with eigenvalue

ωj = ξj/(1 + zj) , j = 1, . . . , k , (B.22)

Next, we substitute (B.20a) and (B.21) into (B.22). Then, from (B.19), we can determine λj in (B.7). The

result is given in (3.26a) of Proposition 3.2.

Since cj = Bguj = ξjuj , the components of each eigenvector of Bg generates a set of coefficients

c1, . . . , ck in (3.5b). This is expressed in (3.27a). Finally, we calculate the O(ε) term in the eigenfunction

of (3.27a). From (3.10), (3.11), (3.14), and (3.23), we obtain

cjφ1j ∼ f(xj)wj =
〈η0〉j
AU2

±
=

6ag

A2U2
±
〈η̃0〉j = s〈η̃0〉j , j = 1, . . . , k . (B.23)

We then use (B.1) and (B.3) to write 〈η̃0〉
t = (〈η̃0〉1, . . . , 〈η̃0〉k) as

〈η̃0〉 =
1

ag
(Pgc + Gm) =

1

ag

(

I +
s

ag
G
(

− s

ag
G + I

)−1
)

Pgc . (B.24)

Then, by using (B.9), we can write 〈η̃0〉 as in (3.27b).
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