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Abstract

In this paper, we study a singular solution to a stationary Schriodinger equation
with the harmonic potential and the Sobolev supercritical nonlinearity in the spirit of
Merle and Peletier [9]. Contrary to the situation Merle and Peletier [9] considered,
our spatial domain is the whole space R% and our equation is non-autonomous. For
these reasons, there are several points we need to take another approach in proving the

existence and the uniqueness of the singular solution.

1 Introduction

In this paper, we consider the following semilinear elliptic equation:

—Au+ |z]Pu— I — |uffTlu =0, x€R% (1)
u(r) >0, xR (2)
u(z) -0 as|z| — oo, (3)

where d > 3, A > 0 and p > 1.



Hirose and Ohta [5, 6] showed that for each A > Ay, the equations (1)—(3) has a unique
solution in case of p € (1,2* — 1), where )\ is the first eigenvalue of the operator —A + |x|?
and 2* is the Sobolev critical exponent, that is, 2* = 2d/(d — 2). On the other hand, there
is a numerical observation which suggests that contrary to the Sobolev subcritical case
1 < p < 2*—1, the equations (1)-(3) has many solutions for some A € (0, A;) in the Sobolev
supercritical case p > 2* — 1 (see Figures 10 and 11 of [3] in detail). The motivation of this
study comes from the observation. We note that similar phenomena can be proved rigorously

for the following semilinear elliptic equations:

~Au—vu— |[uff'u=0, € B, (4)
u(z) >0, z€B, (5)
u=0, x€dB, (6)

where v > 0,p > 1 and B is the unit ball in R?. To state it more precisely, Dolbeault and
Flores [1] and Guo and Wei [2] respectively showed that there exists a unique v, € (0,11)
such that for any k& € N, the equations (4)—(6) has at least k solutions if v is sufficiently
close to v, in case of p € (2*— 1, p.), where v is the first eigenvalue of the operator —A in B
with the Dirichlet boundary condition and p, is the so-called Joseph and Lundgren exponent
introduced in [7], that is,

00 if 2 < d < 10,

pC = 2
(d—2)?—4d+8+/d—1 .
(a2 (d-10) ifd > 11.

Guo and Wei [2] also showed that for any v € (v, 1), (4)—(6) has exactly one solution for
v € (V4,11) and has no solution for v > v, in case of p > p?, where p? > p.. In their proofs
[1, 2], the analysis at v = v, is crucial. In fact, Merle and Peletier [9] showed that the
equations (4)—(6) with v = v, has a singular solution V' satisfying

V(z) = A(p, d)]xfﬁ {1 — B(p, d,v.)|z]* + 0(|x\2)} as |x| — 0, (7)

where

B:B(p,d,A)zA{él(d—l—i)}_l. (9)

p—1
The singular solution V' plays an important role in the above results [1, 2]. Therefore, in
order to study the multiplicity of the solutions to (1)-(3), it seems worthwhile to investigate

whether the equations (1)-(3) has a singular solution like (7). Our first result is the following:

Theorem 1. Let p > 2* — 1. Then, there exists a unique value A, € (0,\1) such that the
equations (1)—~(3) with A = A\, has a radial solution W satisfying

W(2) = Alp,d)|z| 71 {1 = B(p,d, \)|e* + o(|z*)} s [2] =0, (10)
where the constants A(p,d) and B(p,d, \) is given by (8) and (9).
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Before stating our second result, we recall that it is shown in [4] that there exists a
bifurcation branch C C (0, A\;) x X such that

C={(\u) € (0,\)xX|uis asolution to (1)—(3)} (11)

satisfying
sup { [[ullz | (A, u) € C} = o0,

where ¥ is the function space defined by
Y ={ue H'RY | |zjue L*R?}.

We are concerned with the asymptotic behavior of the solution with ||u|/z~ — co. Concern-

ing this problem, we obtain the following:

Theorem 2. Let p > 2* — 1 and {(A\,, un)} C C with ||u,| L= — 00 as n — oo, where C is
giwen by (11) Then, we have
An = A as n — 0o, (12)

where A\, € (0, A1) is the unique value given in Theorem 1. Moreover, we have that
Uy, — Wi, in X asn — oo. (13)

The proof of Theorem 2 is quite similar to that of Merle and Peletier [9, Theorem 1.2].
Thus, we omit it.

We prove Theorem 1 in the sprit of Merle and Peletier [9]. However, we meet several
difficulty to show the existence of the singular solution W and uniqueness of the value A,.
One of the reason is that our spatial domain is whole space R? while Merle and Peletier [9]
considered the equations (4)—(6) on the unit ball B. The difference forces us to do an
additional argument to prove the existence of a singular solution. Indeed, after constructing
a local solution W near the origin following Merle and Peletier [9], we need to extend the
local solution globally. For this purpose, we shall employ the shooting method. The second
difficulty comes from the fact that our equations (1)—(3) is non-autonomous. Merle and
Peletier [9] obtained the existence of the singular solution V' and the uniqueness of the value
v, at the same time by a scaling argument. However, we cannot apply the scaling argument
because of the presence of the potential term. For this, we need to take a different approach
to show the uniqueness of the value A,. To this end, we shall use the ideas of Wang [11] and
Guo and Wei [2].

This paper is organized as follows. In Section 2, following Merle and Peletier [9], we
construct a local solution to (1) near the origin for any A > 0 and investigate the asymptotic
behavior. In Section 3, we prove that there exists A, > 0 such that the solution to (1)
obtained in Section 2 exists globally and satisfies (2) and (3). In Section 4, we shall show

the uniqueness of the value A\, > 0.



2 Local existence

In this section, we shall show a existence of a local solution to (1) near the origin x = 0 and
investigate the asymptotic behavior of the solution. To this end, we transform the equation
(1). We first note that from the result of Li and Ni [8], the solution to (1) becomes radially

symmetric. Therefore, the equations (1)—(3) becomes the following ordinary differential

equations:
—tp — Sy 7% — Mu— [uPTlu=0, >0,
u(r) >0 r >0, (14)
u(r) =0 as r — o0.

We put

v= A", (15)

where § = 2/(p — 1). In order to prove Theorem 1, we seek a solution to the following:

— p—1
—UM—%UT—ATQ {vP — v} + 1?0 — v =0, r >0,

v(r) >0, >0, (16)
v(ir) =1 asr—0 and v(r) =0 asr — oo,

where k =d —4/(p—1).
We now carry out so called Emden-Fowler transformation to make the equation au-

tonomous except for the potential term and the term involving the parameter A\. We set

log r 15}
= — log —

t )
2m

y(t) = w(r), (17)

where § € R and m € R are defined by

@:m, m:A—”Sl:{% (d—Q—%)}é:{Q(d—Q—Q)}é.

Then, we see that y(t) satisfies the following:

Y +ay —y+yf — ety + ey =0, —oo <t < oo, (18)
y(t) =1 ast— —oo, (19)
v(t) =1 ast— —o0 and  o(t) =0 ast— oo, (20)

where a = (k —2)m and v = 1/A\*m?. Here, we denote by 3’ the derivative of y with respect
to the variable t. Then, following Merle and Peletier [9], we obtain the following proposition:

Proposition 3. Let p > 2* — 1. For each A > 0, there exist T\ € R and a unique solution
yx € C([—00,Ty),R) to (18) satisfying
O(d—2—10)

— mem”t[l +0(e*™)] ast— —oc0. (21)

ya(t) =

Since the proof of Proposition 3 is similar to that of Merle and Peletier [9, Lemmata 3.1

and 3.2|, we omit it.



3 Existence of the singular solution

In this section, we show that there exists A\, > 0 such that the local solution obtained in
Proposition 3 to the equation (18) with A = A, exists globally and vanished at infinity. This
shows that there exists a solution W to (1) satisfying (10). To this end, we shall employ the
shooting method. For each A > 0, we denote by y, the solution to (18). We set

Iy = {\ > 0] there exists T € R such that y}(T) = 0 and y,(¢) > 0 for all — oo <t < oo},
I ={X\ > 0] there exists T € R such that y,(7T) = 0 and 3} (¢t) < 0 for all —oo <t < T},
Io={XA>0]yx(t) > 0,y5(t) <0 for all —co <t < oo and y\(t) — 0ast — oo}.

Concerning these sets, we obtain the following result:

Lemma 4. Let the sets I and Iy be defined above. Then, we have
(0,00) =T UyUI_.

Proof. Obviously, I, N I_ = (). We claim that if A ¢ I, UI_, we have X\ € I;. Suppose that

A ¢ I, UI_. Then, one of the following cases occurs:

(Case 1) y, meets the line x = 0 with zero derivative,
(Case 2) g, blows up, that is, there exists T\ € R such that 3 (t), yr(t) — oo as t — T),
(Case 3) ya(t) > 0,9y5(¢t) <O for all t € R.

First, we show that (Case 1) does not occur. Suppose that there exists R € R such that
yx(R) = yA(R) = 0. This implies y, = 0 from the uniqueness of the Cauchy problem. Thus,
this is impossible.

Second, we shall eliminate the possibility that (Case 2) occurs. Since y,(t) > 0 for

t € (—o00,Ty), we have

0> yy +ayh —yn — 7™ yn > y5 + ay) — ya — e Py, (22)
We put
2 = Y\ + Chy,
where
a4+ /a2 + 4(1 + yetmDy)
Cy = .
2
Then it follows (22) that
2 — (Ch—a)zy <0 (23)

for t € (—oo,Ty). Multiplying (23) by e~(©x=*)" we obtain
(e_(o*_o‘)tz,\)/ <0,
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for t € (—o0,T)). Therefore, we see that
23 (t) < =9 4 () (24)

for —oco < s <t < T). The estimate (24) implies that (Case 2) does not occur.
Therefore, we see that if A ¢ I, U I_, we have y,(t) > 0, y}(t) < 0 for all ¢t € R. Then,
there exist {t,} C R with lim, , ¢, = 0o and | > 0 such that

un(tn) = 1, ya(t,) = 0, yi(t,) =0

as n — o0o. Suppose that [ # 0. It follows from (18) that

0 < ¥y +ayh = yn — 3§ +ye'™ryy — 2y, — 00 as n — 0o, (25)
which is a contradiction. Therefore, we obtain [ = 0. This complete the proof. O]

Lemma 5. The sets I+ are open.

Proof. Openness of the set I_ is clear from the continuous dependence of the solution on
A. Thus, we consider the set /.. Let A\, € I.. We claim that there exist a local minimum
t. € R, that is, y}_(t.) = 0 and g} (¢.) > 0. Suppose that y} (t) < 0 for all —oo <t < oo.
Then, there exists [ > 0 such that y,,(t) — [ as t — co. Suppose that [ > 0. Then, we can
drive a contradiction by a same argument as in (25). Thus, we have [ = 0, which implies
that y4(¢) < 0 for all —oco < ¢t < oo from the result of Li and Ni [8]. This contradicts the
fact that A, € I,. Therefore, there exists ¢; € R such that 3\ (¢,) > 0. It follows from
Proposition 3 that gy (t2) < 0 if ¢, € R is sufficiently small. From this, we infer that there
exists ¢, € R such that ¢} (¢,) =0 and yy (t,) > 0. Thus, our claim holds.

Then, there exist t3 < t. < t4 such that yy, (t;) > y»,(t.) for i =3 and 4. It follows from

the continuous dependence of the solution on the parameter A\ that
yx(t;) > ya(ts) for i =3 and 4 if |\ — A\, > 0 is sufficiently small.

Thus, there exists ty € (t1,t2) such that v} (o) = 0, which yields that A € I,. This completes
the proof. O

Lemma 6. The set I_ is nonempty.

Proof. First, we note that from the result of Merle and Peletier [9] that there exist Ty € R
and a unique solution wy to the following ordinary differential equation:

w" + aw' —w + wP + e = 0, —oo < t < Ty,
w— 1 ast — —o0, (26)

Suppose the contrary that A € Iy U I, for any A > 0. We take § > 0 sufficiently small so
that the solution w(t) exists for t € (—oo, Ty + §). Then, we put T, = Ty + 6. We first show

6



that there exist a sufficiently large A\; > 0 and a constant C' > 0, which is independent of A,
such that
sup  ya(t) <C (27)

te(—o0,T%)

for A > A;. We can take A > 0 sufficiently large so that

1 —2m/
V= ez < ol (28)

For such v > 0, we have by (18) that
0> 5 + gy — ya + 15

for t € (—o0,T,), where we have used the fact that y,(¢f) > 0 for all —co < ¢ < co. This
yields that
Yy +ayy <yy—yh < I£1>a§{{$ — P} = (p—1)p P/, (29)

It follows from (21) that there exists a sufficiently small £y and 77 € (—o0, T}) (independent
of A\) such that
1L—eo<uyn(t) <1, wi(t) <O (30)

for t € (—o0,T1]. Integrating (29) from 7} to ¢, we have
YA (t) + ayx(t) < (1 —eo)a + Cp(t — T1), (31)

where C, = (p — 1)p~?/®=1). By (31), we see that (27) holds.
Next, we put
s = —t, n(s) =w(s) — 1. (32)
Then, n satisfies
n' =o' +(p—1n=f(s,n),
where
fsym) =—e™ (1 +m) —¢m),  ¢m)=1+n"—1-pn.
Similarly, we put
G(s) =yals) — L. (33)

Then, () satisfies the following:

x—aC+ (p—1)¢ = gals,Q),

where gy(s,() = —ve ™ {1 + (} + f(s,¢). We distinguish the following there cases:
o2 2 o2

(Case 1)p—1>z, (CaseQ)p—lzz, (CaseS)p—1<Z.
We shall discuss (Case 1) only and the other cases can be proved similarly. We put

012
—y\/p—1——.
p=/p 1
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Then, by using the method of variation of parameters, we see that n and (, satisfy the

following integral equations respectively;

o) = et [ sinuto - ) f(on)do,
(= %egs/s e~ 37 sin(p(o — 5))ga(0, () do.

Then, we have

) = (o) < et [ e 5 sinlulor = 5))|(02) = gn(02C)ldo

1
1
< %/m e~ |1+ (\(0)|do + % /:o [f(o,m) = f(o,0)lde

Since f is Lipschitz continuous, there exists a constant L > 0 such that |f(o,n)— f(o,(\)|v <
L|n — ¢,|. This together with (27) gives us that

n(s) = (s <42+ § / " n(0) - (o) |do

]
for some constant C' > 0. For any € > 0, we can take A\ > 0 sufficiently large so that
c C -
LTI S

This yields that .
o5) = G <+ G [ = Gldo
for some constant C; > 0. Then, the Gronwall’s inesquality gives us that
[1(s) = Ca(s)] < e(1+ Crse™?)
for all s € (—T%,00). This together with (32) yields that
[ya(t) — w(t)] < (1 + Ciltle ) (34)

for all t € (—oo0,T,). Since w has a zero at ¢t = T, (34) implies that y, has a zero for
sufficiently large A > 0. Thus, we see that the set I_ is nonempty. O]

Lemma 7. The set 1. is non-empty.

Proof. First, we shall show that if A > 0 is sufficiently small, y, does not have zero in
(—00,00). Suppose the contrary that there exists A, C (0, 00) with lim,,_,, A, = 0 such that
Y, have a zero at t = T,,. Thanks to the asymptotic (21), there exists C' € R (independent
of n) such that T,, > C for all n € N. Multiplying the equation (18) by ¥} and integrating
the resulting equation from —oo to 7T,,, we have

1 T T
[5(%”)2] +a/ lyh, IPds +

— 00

T,
le?miy? ||

2 p+1
y>\n y>\n o Fy| Amt, 2
2

oty 2l

—c0 (35)
T Tn
= —27/ 64m5|y)\n|2d8 + m/ 62m8|ykn|2ds.

—0o0
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Since yy, (t) — 1 as t — —o0, the left hand side of (35) yields

T,
Lo o Tn ro2 3//2\ yiﬂ Y o4 ‘€2mty§\
I A e e AP
T,
1 vty |e2mty? |
+1 m Tn
> W Y _1’€4mty2 ’_|_|62 Y3l
= 2 " p+1l 2 An 2
1 1
2 p+1

On the other hand, using the asymptotic (21) of 35, again, there exists T'(< T},) (independent
of \) such that 1/2 < y,, < 1 for t € (—oo,T). This together with the fact that y = 1/m2A2

yields that

2 Tn Tn
_/ €4ms|y)\n|2d8+m/ 62m8|y>\n|2d8

2 r 4 2 2 ™, 2 T 2 2
- _ e*ms ds — e*"s ds+m/ e ™ ds

Tn
—i—m[ e?"S|yy, |*ds
7

1 7 2 (T 7 "
- / oAms g _ / e4ms\yAn ]2ds + m/ e ds + m[ eQms\yxn !2ds
oo 7

2)2 2)2
m)‘n —00 m)‘nT

1 e4ms T e2ms T Th 9 ) . )
< — o + —2ms ms d
m2\2 l 4m ] tm { 2m | +/T m2A\2 me ¢y, s

—00

1 =27 AmT T 2 omT \ 4 2
— _4m2)\2+ 5 e +/T <—m2)\2+m6 )e lyx, |“ds

< 0 for sufficiently large n € N.

This together with (35) and (36) yields a contradiction. Thus, we see that A € [y U I for

sufficiently small A > 0.
Next, we shall show that A € I for sufficiently small A > 0. Suppose the contrary that

there exists a sequence {\,} C (0,00) with lim, _,, A, = 0 such that y,, has no critical
point. Then, by Lemma 4, we see that v} (t) <0 and y,(t) — 0 as t — oo. Moreover, since

Y, (1) — 1 as t — —oo, we have
yn, (1) <1 for all —oco < t < 0. (37)

Then, there exists 77, € R such that

Un, (t) < 1/4 for all t > T ,,. (38)



It follows from (21) that there exists 7o > 0 (independent of n) such that 77, > T,. We
take A > sufficiently small so that —log~y/2m = log(A>m?)/2m < Ty. Then, integrating the
equation (18) from —oo to T}, we have, by (37) and (38), that

Tl,n
Yy, (Tin) = —afya B+ / {yr, =8 +7e ™y, — €™ yn, }ds

—0o0
log v

3 2m
= Jo+ {yr, =8 +7eyn, — € yn, } ds

Tl,n
i / L {y)‘n o y;f\n + 7€4m5y)\n - e2msy)\n} ds
_ogy

2m
_logy

> Za —i—/ " {764’"‘9%” — ezmsy,\n} ds.

Taking A > 0 sufficiently small so that 1/2 < y,, <1 for t € (—o0, —log~y/2m), we have

log v _log~y

3 N [ o 3 1 1 a
/ Tn>_ A 4msd_ 2msd:_ N
v\, (T1n) > 4a+ 5 /oo e s N e s 40z+ Sy amy 2

This contradicts with the fact that y\ (t) < 0 for all —co <t < co. Thus, we infer that
A € I, for sufficiently small A > 0. O

It follows from Lemma 4 to 7 that there exists A, € (0, 00) such that A\, € I,. Therefore,
Yy, satisfies the equations (1)—(3).

4 Uniqueness of the singular solution

This section is devoted to the proof of Theorem 1. Since we have already shown the existence
of a solution satisfying (10), it is enough to prove the uniqueness of the value A.. Suppose
that there exist two different solutions v and v to the equations (1)—(3) with A = A\; and Ay
respectively satisfying (10). Without loss of the generality, we may assume that

AL < Ao (39)
This together with (10) implies that there exists Ry > 0 such that
u>v forre (0,R). (40)
We rescale the solution as follows:
u(r) = VG, () = D) (41)

for v > 0. Then, the functions u and v satisfy the following equations respectively:

~ d—lN 7’2~ )\1~

Uy — ——— Uy + —U— —u—u’ =0, r>0, (42)
r v v
~ d—1_ 2 Ao
— Uy Uy %v D25 P = 0, >0 (43)
r v v



We put

u
W==. 4
- (44)
Then, W satisfies
d—1  2_ AL — A -
ww( ; +5w>m+¥w+muﬁ—w:o, r>0, (1)
W(r)—1 asr — 0. (46)
Furthermore, we put
p=logr,  W(p)=W(r). (47)

Then, the equation (45) is transformed into the following:

g A=A
W,p+ (d -2+ 27”%) W,+ ¥r2w+r2@"pl(Wp—W) =0, p € (—00,00). (48)

It follows from (40) that there exists 77 = T1(v) > 0 such that

W(p)>1  forpe (—o0,—T1) (49)
By (10), we see that
210,
d—2+ — — o as p — —o0, (50)
v
wr —Ww
2gp-12° T —(p — —
r S (p—1)B1  asp— —o0, (51)
where A ) )
=d—2— —— =Alp,df = —"—(d—-2- ———
Finally, we put
Z=1-W (52)

Then, Z satisfies the following:

()\1 — >‘2) 7"2

: Wr— W
zm+(d—2+m@Jz;—
v

y (]_—Z)—T’Q’ﬁp_lwz:(L pG (—O0,00)

It follows from (10) that

Z:1_M/zgiﬁ—+Qy—M%P(d—Lr;i>}4 as p— —co.  (54)

72 72 r2p p—1

Before proving Theorem 1, we prepare the following result:

Lemma 8. There exists vy > 0 and 15 > 0 such that if we take v > vy, we have that

Zy(p) <0 forpe (—oo0,—T5). (55)
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Proof. We show this by contradiction. Suppose the contrary that there exists a sequence
{pn} C (=00, —T1) with lim,,,o p, = —o0 satistying Z,(p,) > 0. Note that Z(p) < 0 for
p € (—oo,—T1) and Z(p) — 0 as p — —oo. This yields that there exists {r,} C (—oo, —=T1)

with lim,,_,. 7, = —o0 such that
Zy(rn) =0 and Zpp(r) < 0. (56)

Namely, 7, is a local maximum point of Z. For p = r,,, we have by (53) that

SRz gr,)) 2 g P )

- 2 2 0. (57)

This together with (46), (51) and (54) gives us that

— p —
2 > 1= Z(ru) > —riifp_l(rn)w o) = Wirn)__Ztra)
v v L—=W(r,)  72(A — Ag)
(p—1)8 3 17 o
> u{qd_l_—)} |
2 p—1
However, we can take v > 0 sufficiently large so that
1 (p—1h 3 -
- < ——4d—-1-—
v S 4 ( p— 1) ’
which contradicts with (58). Thus, (55) holds. O

We are now in position to prove Theorem 1.

Proof of Theorem 1. We first consider the case of 2* — 1 < p < p..
It follows from (53) and (54) that there exists T3 = T3(r) > 0 such that for p €

(—o0, —T3), we have

oy WP —W (A1 — A2)
pr+(d—2+2r%)2p—r2@7’11_WZ: ~ r*(1—Z)
> M) s (59)
14
3
>—{4(d—1——)}Z
v p—1

Thus, we obtain

0] wr—w 1 3
7 — 4Lz P ———— 4 (dy(d—-1—- —— Z > 0. 60
pp+<d + r,ﬁ) Y {rv =W +V(1/(d p—l))} > (60)
We set
=d— U L VWL Md—1-— 1
R (e == R T (R R | S CY
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Note that for 2* — 1 < p < p., we have
o —4(p—1)p. < 0.

We take v > 0 sufficiently large so that

a%—4(p—1)61—%<4(d—1—p%1)) <0

This together with (50) and (51) implies that there exist Ty = T4(v) such that
[91(p)]* = 4ga(p) <O for p € (—o0, ~Th). (62)
Therefore, there exist two positive constants b; and c¢; such that
b2 —4c; <0, by < g1(p), ¢ < ga2(p) for p € (—o0, —Ty). (63)
Let w be a non-trivial solution to the following ordinary differential equation:
Wpp + biw, + crw = 0, p € (—00,00). (64)

From (63), the solution w is oscillatory. Thus, there exist a; and ay with ay < a1 < —T}
satisfying
w(p) >0 for p € (a2, a1), w(ar) = w(az) = 0. (65)

Multiplying (60) by w and (64) by Z, we have

Zppw + g1(p) Zpw + g2(p) Zw > 0, (66)
WopZ + biw,Z + ¢1Zw = 0. (67)

Subtracting (67) from (66), we obtain
(Zyw —wpZ),+ g1(p) Zyw — biw,Z + (g2(p) — c1)wZ > 0.
This together with (63) and (65) implies that

{eblp(pr — pr)}p = P {Zpw —w,2), +b1(Zpw —w,Z)}
> {—g1(p)Zyw + biw,Z — (92(p) — ct)wZ + by (Zyw — w,Z)}

> {=(g91(p) = b1)Zpw — (g2(p) — c1)wZ}
> 0.

Integrating the above from as to a;, we obtain
0 < —e"w,(a)Z(az) < —e""w,(a1)Z(ar) < 0
since w,(az) > 0 and w,(a;) < 0. This is a contradiction. Thus, we obtain the desired result.
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Next, we consider the case of p > p.. We put Z = e™?p, where

aq 1

T = —7 -+ 5\/0&% — 4(]9 — 1)51.

We note that o —4(p — 1)B; > 0 and 71 < —2 for p > p.. Then, (49), (52) and (54) gives

us that there exists T5 > 0 such that
p(p) <0 for p € (—o0, =T5)

and
lo(p)| < Ce®> ™7 for p € (oo, —T5).

(68)

(69)

Since Z, = me™Pp + ey, < 0,71 < 0 and p(p) < 0 for p € (—oo0, —T5), we have

0, <0, T < —p, for p € (—o0, —T5).

It follows from (53) and (54) that

2ro,
0= ey, +2mem g, + e p + (d —2+ 7;) ) (T1€™P0 + €7 p,)

-~ -7 1 _ pTip — P - ,T1p
a— (1 —e™Pp) —r7v T e
< emP 2 mp d_oy 2o r1p
< ey, + (21 + a1)e™Pp, + + = a ) e,

210, P — A=A
S

v 1-W v

It follows from (50) that for any £ > 0, there exists 75 > 0 such that

2%,
‘d—2+ T —

<

W~ ™

v

(70)

(71)

ePp).

Moreover, (50), (51) and the definition of 7 yields that there exists 77 > Tg such that

210, wr — W
7'12‘|‘ <d— 2+ %) —7"2?]/})71W < —7'12.

By (54), there exists Ty > T7 and v, > 0 such that for v > v,, we have

‘(M - )\Q)Tz

2

€
” (1— e”pgo)’< —T1

for p € (—oo, —Tg). These together with (71) imply that

€ £ £
0 < @pp + (271 + a1)p, + Z’SDM + 171804' 1Y

19 19
< Pop + (27—1 + al)@p + 5’90p| - 590;)

< Ppp+ (271 + 1 =€)y
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for p € (—o0, —T5).
(54) implies that lim, , ., Z,(p) = 0. This together with (69) gives us that

lim ¢(p) = lim @,(p) = 0.

p—r—00 p—r—00
Then, integrating from —oo to p yields that
0 <@, + (21 + a1 —e)p. (72)
Multiplying (72) by em1e1=¢)r e obtain
0< {6(271+0‘1_8)”g0}p, for p € (—o0, —T5). (73)
On the other hands, (69) shows that
|('0(p)€(2’r1+a1—e)p| < Cetntai—ap _ Ot +3\/02—4p-1)p—e)p _, ( as p — —00.
Then, integrating (73) from —oo to p (< —T3), we have
0 < ety (p)

which yields that ¢(p) > 0 for p € (—oo, —Tg). This contradicts with (68). Thus, we obtain
the desired result. O
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