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Abstract

In this paper, we study a singular solution to a stationary Schrödinger equation

with the harmonic potential and the Sobolev supercritical nonlinearity in the spirit of

Merle and Peletier [9]. Contrary to the situation Merle and Peletier [9] considered,

our spatial domain is the whole space Rd and our equation is non-autonomous. For

these reasons, there are several points we need to take another approach in proving the

existence and the uniqueness of the singular solution.

1 Introduction

In this paper, we consider the following semilinear elliptic equation:
−∆u+ |x|2u− λu− |u|p−1u = 0, x ∈ Rd, (1)

u(x) > 0, x ∈ Rd, (2)

u(x)→ 0 as |x| → ∞, (3)

where d ≥ 3, λ > 0 and p > 1.
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Hirose and Ohta [5, 6] showed that for each λ > λ1, the equations (1)–(3) has a unique

solution in case of p ∈ (1, 2∗ − 1), where λ1 is the first eigenvalue of the operator −∆+ |x|2

and 2∗ is the Sobolev critical exponent, that is, 2∗ = 2d/(d − 2). On the other hand, there

is a numerical observation which suggests that contrary to the Sobolev subcritical case

1 < p < 2∗− 1, the equations (1)–(3) has many solutions for some λ ∈ (0, λ1) in the Sobolev

supercritical case p > 2∗ − 1 (see Figures 10 and 11 of [3] in detail). The motivation of this

study comes from the observation. We note that similar phenomena can be proved rigorously

for the following semilinear elliptic equations:
−∆u− νu− |u|p−1u = 0, x ∈ B, (4)

u(x) > 0, x ∈ B, (5)

u = 0, x ∈ ∂B, (6)

where ν > 0, p > 1 and B is the unit ball in Rd. To state it more precisely, Dolbeault and

Flores [1] and Guo and Wei [2] respectively showed that there exists a unique ν∗ ∈ (0, ν1)

such that for any k ∈ N, the equations (4)–(6) has at least k solutions if ν is sufficiently

close to ν∗ in case of p ∈ (2∗−1, pc), where ν1 is the first eigenvalue of the operator −∆ in B

with the Dirichlet boundary condition and pc is the so-called Joseph and Lundgren exponent

introduced in [7], that is,

pc :=

∞ if 2 ≤ d ≤ 10,

(d−2)2−4d+8
√
d−1

(d−2)(d−10)
if d ≥ 11.

Guo and Wei [2] also showed that for any ν ∈ (ν∗, ν1), (4)–(6) has exactly one solution for

ν ∈ (ν∗, ν1) and has no solution for ν > ν∗ in case of p ≥ p2c , where p2c ≥ pc. In their proofs

[1, 2], the analysis at ν = ν∗ is crucial. In fact, Merle and Peletier [9] showed that the

equations (4)–(6) with ν = ν∗ has a singular solution V satisfying

V (x) = A(p, d)|x|−
2

p−1
{
1−B(p, d, ν∗)|x|2 + o(|x|2)

}
as |x| → 0, (7)

where

A = A(p, d) =

{
2

p− 1

(
d− 2− 2

p− 1

)} 1
p−1

, (8)

B = B(p, d, λ) = λ

{
4

(
d− 1− 3

p− 1

)}−1

. (9)

The singular solution V plays an important role in the above results [1, 2]. Therefore, in

order to study the multiplicity of the solutions to (1)-(3), it seems worthwhile to investigate

whether the equations (1)-(3) has a singular solution like (7). Our first result is the following:

Theorem 1. Let p > 2∗ − 1. Then, there exists a unique value λ∗ ∈ (0, λ1) such that the

equations (1)–(3) with λ = λ∗ has a radial solution W satisfying

W (x) = A(p, d)|x|−
2

p−1
{
1−B(p, d, λ∗)|x|2 + o(|x|2)

}
as |x| → 0, (10)

where the constants A(p, d) and B(p, d, λ) is given by (8) and (9).

2



Before stating our second result, we recall that it is shown in [4] that there exists a

bifurcation branch C ⊂ (0, λ1)× Σ such that

C = {(λ, u) ∈ (0, λ1)× Σ | u is a solution to (1)–(3)} (11)

satisfying

sup {∥u∥L∞ | (λ, u) ∈ C} =∞,

where Σ is the function space defined by

Σ =
{
u ∈ H1(Rd) | |x|u ∈ L2(Rd)

}
.

We are concerned with the asymptotic behavior of the solution with ∥u∥L∞ →∞. Concern-

ing this problem, we obtain the following:

Theorem 2. Let p > 2∗ − 1 and {(λn, un)} ⊂ C with ∥un∥L∞ → ∞ as n → ∞, where C is

given by (11) Then, we have

λn → λ∗ as n→∞, (12)

where λ∗ ∈ (0, λ1) is the unique value given in Theorem 1. Moreover, we have that

un → Wλ∗ in Σ as n→∞. (13)

The proof of Theorem 2 is quite similar to that of Merle and Peletier [9, Theorem 1.2].

Thus, we omit it.

We prove Theorem 1 in the sprit of Merle and Peletier [9]. However, we meet several

difficulty to show the existence of the singular solution W and uniqueness of the value λ∗.

One of the reason is that our spatial domain is whole space Rd while Merle and Peletier [9]

considered the equations (4)–(6) on the unit ball B. The difference forces us to do an

additional argument to prove the existence of a singular solution. Indeed, after constructing

a local solution W near the origin following Merle and Peletier [9], we need to extend the

local solution globally. For this purpose, we shall employ the shooting method. The second

difficulty comes from the fact that our equations (1)–(3) is non-autonomous. Merle and

Peletier [9] obtained the existence of the singular solution V and the uniqueness of the value

ν∗ at the same time by a scaling argument. However, we cannot apply the scaling argument

because of the presence of the potential term. For this, we need to take a different approach

to show the uniqueness of the value λ∗. To this end, we shall use the ideas of Wang [11] and

Guo and Wei [2].

This paper is organized as follows. In Section 2, following Merle and Peletier [9], we

construct a local solution to (1) near the origin for any λ > 0 and investigate the asymptotic

behavior. In Section 3, we prove that there exists λ∗ > 0 such that the solution to (1)

obtained in Section 2 exists globally and satisfies (2) and (3). In Section 4, we shall show

the uniqueness of the value λ∗ > 0.
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2 Local existence

In this section, we shall show a existence of a local solution to (1) near the origin x = 0 and

investigate the asymptotic behavior of the solution. To this end, we transform the equation

(1). We first note that from the result of Li and Ni [8], the solution to (1) becomes radially

symmetric. Therefore, the equations (1)–(3) becomes the following ordinary differential

equations: 
−urr − d−1

r
ur + r2u− λu− |u|p−1u = 0, r > 0,

u(r) > 0 r > 0,

u(r)→ 0 as r →∞.

(14)

We put

v = A−1rθu, (15)

where θ = 2/(p− 1). In order to prove Theorem 1, we seek a solution to the following:
−vrr − k−1

r
vr − Ap−1

r2
{vp − v}+ r2v − λv = 0, r > 0,

v(r) > 0, r > 0,

v(r)→ 1 as r → 0 and v(r)→ 0 as r →∞,

(16)

where k = d− 4/(p− 1).

We now carry out so called Emden-Fowler transformation to make the equation au-

tonomous except for the potential term and the term involving the parameter λ. We set

t =
log r

m
− log

β

2m
, y(t) = v(r), (17)

where β ∈ R and m ∈ R are defined by

β =
λ

m(d− 2− θ)
, m = A− p−1

2 =

{
2

p− 1

(
d− 2− 2

p− 1

)}− 1
2

= {θ(d− 2− θ)}−
1
2 .

Then, we see that y(t) satisfies the following:
y′′ + αy′ − y + yp − γe4mty + e2mty = 0, −∞ < t <∞, (18)

y(t)→ 1 as t→ −∞, (19)

v(t)→ 1 as t→ −∞ and v(t)→ 0 as t→∞, (20)

where α = (k− 2)m and γ = 1/λ2m2. Here, we denote by y′ the derivative of y with respect

to the variable t. Then, following Merle and Peletier [9], we obtain the following proposition:

Proposition 3. Let p > 2∗ − 1. For each λ > 0, there exist Tλ ∈ R and a unique solution

yλ ∈ C([−∞, Tλ),R) to (18) satisfying

yλ(t) = 1− θ(d− 2− θ)

4(d− 1)− 6θ
e2mt[1 +O(e2mt)] as t→ −∞. (21)

Since the proof of Proposition 3 is similar to that of Merle and Peletier [9, Lemmata 3.1

and 3.2], we omit it.
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3 Existence of the singular solution

In this section, we show that there exists λ∗ > 0 such that the local solution obtained in

Proposition 3 to the equation (18) with λ = λ∗ exists globally and vanished at infinity. This

shows that there exists a solution W to (1) satisfying (10). To this end, we shall employ the

shooting method. For each λ > 0, we denote by yλ the solution to (18). We set

I+ = {λ > 0 | there exists T ∈ R such that y′λ(T ) = 0 and yλ(t) > 0 for all −∞ < t <∞} ,
I− = {λ > 0 | there exists T ∈ R such that yλ(T ) = 0 and y′λ(t) < 0 for all −∞ < t < T} ,

I0 = {λ > 0 | yλ(t) > 0, y′λ(t) < 0 for all −∞ < t <∞ and yλ(t)→ 0 as t→∞} .

Concerning these sets, we obtain the following result:

Lemma 4. Let the sets I± and I0 be defined above. Then, we have

(0,∞) = I+ ∪ I0 ∪ I−.

Proof. Obviously, I+ ∩ I− = ∅. We claim that if λ /∈ I+ ∪ I−, we have λ ∈ I0. Suppose that

λ /∈ I+ ∪ I−. Then, one of the following cases occurs:

(Case 1) yλ meets the line x = 0 with zero derivative,

(Case 2) yλ blows up, that is, there exists Tλ ∈ R such that y′λ(t), yλ(t)→∞ as t→ Tλ,

(Case 3) yλ(t) > 0, y′λ(t) < 0 for all t ∈ R.

First, we show that (Case 1) does not occur. Suppose that there exists R ∈ R such that

yλ(R) = y′λ(R) = 0. This implies yλ ≡ 0 from the uniqueness of the Cauchy problem. Thus,

this is impossible.

Second, we shall eliminate the possibility that (Case 2) occurs. Since yλ(t) > 0 for

t ∈ (−∞, Tλ), we have

0 > y′′λ + αy′λ − yλ − γe4mtyλ > y′′λ + αy′λ − yλ − γe4mTλyλ. (22)

We put

zλ = y′λ + Cλyλ,

where

Cλ =
α +

√
α2 + 4(1 + γe4mTλ)

2
.

Then it follows (22) that

z′λ − (Cλ − α)zλ < 0 (23)

for t ∈ (−∞, Tλ). Multiplying (23) by e−(Cλ−α)t, we obtain(
e−(Cλ−α)tzλ

)′
< 0,
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for t ∈ (−∞, Tλ). Therefore, we see that

zλ(t) < e(Cλ−α)(t−s)zλ(s) (24)

for −∞ < s < t < Tλ. The estimate (24) implies that (Case 2) does not occur.

Therefore, we see that if λ /∈ I+ ∪ I−, we have yλ(t) > 0, y′λ(t) < 0 for all t ∈ R. Then,

there exist {tn} ⊂ R with limn→∞ tn =∞ and l ≥ 0 such that

yλ(tn)→ l, y′λ(tn)→ 0, y′′λ(tn)→ 0

as n→∞. Suppose that l ̸= 0. It follows from (18) that

0← y′′λ + αy′λ = yλ − ypλ + γe4mtnyλ − e2mtnyλ →∞ as n→∞, (25)

which is a contradiction. Therefore, we obtain l = 0. This complete the proof.

Lemma 5. The sets I± are open.

Proof. Openness of the set I− is clear from the continuous dependence of the solution on

λ. Thus, we consider the set I+. Let λ∗ ∈ I+. We claim that there exist a local minimum

t∗ ∈ R, that is, y′λ∗
(t∗) = 0 and y′′λ∗

(t∗) > 0. Suppose that y′λ∗
(t) ≤ 0 for all −∞ < t < ∞.

Then, there exists l ≥ 0 such that yλ∗(t)→ l as t→∞. Suppose that l > 0. Then, we can

drive a contradiction by a same argument as in (25). Thus, we have l = 0, which implies

that y′λ(t) < 0 for all −∞ < t < ∞ from the result of Li and Ni [8]. This contradicts the

fact that λ∗ ∈ I+. Therefore, there exists t1 ∈ R such that y′λ∗
(t1) > 0. It follows from

Proposition 3 that y′λ∗
(t2) < 0 if t2 ∈ R is sufficiently small. From this, we infer that there

exists t∗ ∈ R such that y′λ∗
(t∗) = 0 and y′′λ∗

(t∗) > 0. Thus, our claim holds.

Then, there exist t3 < t∗ < t4 such that yλ∗(ti) > yλ∗(t∗) for i = 3 and 4. It follows from

the continuous dependence of the solution on the parameter λ that

yλ(ti) > yλ(t∗) for i = 3 and 4 if |λ− λ∗| > 0 is sufficiently small.

Thus, there exists t0 ∈ (t1, t2) such that y′λ(t0) = 0, which yields that λ ∈ I+. This completes

the proof.

Lemma 6. The set I− is nonempty.

Proof. First, we note that from the result of Merle and Peletier [9] that there exist T0 ∈ R
and a unique solution w0 to the following ordinary differential equation:

w′′ + αw′ − w + wp + e2mtw = 0, −∞ < t < T0,

w → 1 as t→ −∞,

w(T0) = 0.

(26)

Suppose the contrary that λ ∈ I0 ∪ I+ for any λ > 0. We take δ > 0 sufficiently small so

that the solution w(t) exists for t ∈ (−∞, T0 + δ). Then, we put T∗ = T0 + δ. We first show
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that there exist a sufficiently large λ1 > 0 and a constant C > 0, which is independent of λ,

such that

sup
t∈(−∞,T∗)

yλ(t) ≤ C (27)

for λ > λ1. We can take λ > 0 sufficiently large so that

γ =
1

λ2m2
< e−2mT∗ . (28)

For such γ > 0, we have by (18) that

0 > y′′λ + αy′λ − yλ + ypλ

for t ∈ (−∞, T∗), where we have used the fact that yλ(t) > 0 for all −∞ < t < ∞. This

yields that

y′′λ + αy′λ < yλ − ypλ < max
s>0
{s− sp} = (p− 1)p−p/(p−1). (29)

It follows from (21) that there exists a sufficiently small ε0 and T1 ∈ (−∞, T∗) (independent

of λ) such that

1− ε0 < yλ(t) < 1, y′λ(t) < 0 (30)

for t ∈ (−∞, T1]. Integrating (29) from T1 to t, we have

y′λ(t) + αyλ(t) < (1− ε0)α+ Cp(t− T1), (31)

where Cp = (p− 1)p−p/(p−1). By (31), we see that (27) holds.

Next, we put

s = −t, η(s) = w(s)− 1. (32)

Then, η satisfies

η′′ − αη′ + (p− 1)η = f(s, η),

where

f(s, η) = −e−2ms(1 + η)− φ(η), φ(η) = (1 + η)p − 1− pη.

Similarly, we put

ζλ(s) = yλ(s)− 1. (33)

Then, ζλ satisfies the following:

ζ ′′λ − αζ + (p− 1)ζ = gλ(s, ζ),

where gλ(s, ζ) = −γe−4ms {1 + ζ}+ f(s, ζ). We distinguish the following there cases:

(Case 1) p− 1 >
α2

4
, (Case 2) p− 1 =

α2

4
, (Case 3) p− 1 <

α2

4
.

We shall discuss (Case 1) only and the other cases can be proved similarly. We put

µ =

√
p− 1− α2

4
.
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Then, by using the method of variation of parameters, we see that η and ζλ satisfy the

following integral equations respectively;

η(s) =
1

µ
e

α
2
s

∫ ∞

s

e−
α
2
σ sin(µ(σ − s))f(σ, η)dσ,

ζλ =
1

µ
e

α
2
s

∫ ∞

s

e−
α
2
σ sin(µ(σ − s))gλ(σ, ζλ)dσ.

Then, we have

|η(s)− ζλ(s)| ≤
1

µ
e

α
2
s

∫ ∞

s

e−
α
2
σ| sin(µ(σ − s))||f(σ, η)− gλ(σ, ζλ)|dσ

≤ 1

µ

∫ ∞

s

γe−4mσ|1 + ζλ(σ)|dσ +
1

µ

∫ ∞

s

|f(σ, η)− f(σ, ζλ)|dσ.

Since f is Lipschitz continuous, there exists a constant L > 0 such that |f(σ, η)−f(σ, ζλ)|v ≤
L|η − ζλ|. This together with (27) gives us that

|η(s)− ζλ(s)| ≤ γ
C

µ
+

L

µ

∫ ∞

s

|η(σ)− ζλ(σ)|dσ

for some constant C > 0. For any ε > 0, we can take λ > 0 sufficiently large so that

γ
C

µ
=

C

µm2λ
< ε.

This yields that

|η(s)− ζλ(s)| ≤ ε+ C1

∫ ∞

s

|η − ζλ|dσ

for some constant C1 > 0. Then, the Gronwall’s inequality gives us that

|η(s)− ζλ(s)| ≤ ε(1 + C1se
C1s)

for all s ∈ (−T∗,∞). This together with (32) yields that

|yλ(t)− w(t)| ≤ ε(1 + C1|t|e−C1t) (34)

for all t ∈ (−∞, T∗). Since w has a zero at t = T∗, (34) implies that yλ has a zero for

sufficiently large λ > 0. Thus, we see that the set I− is nonempty.

Lemma 7. The set I+ is non-empty.

Proof. First, we shall show that if λ > 0 is sufficiently small, yλ does not have zero in

(−∞,∞). Suppose the contrary that there exists λn ⊂ (0,∞) with limn→∞ λn = 0 such that

yλn have a zero at t = Tn. Thanks to the asymptotic (21), there exists C ∈ R (independent

of n) such that Tn ≥ C for all n ∈ N. Multiplying the equation (18) by y′λn
and integrating

the resulting equation from −∞ to Tn, we have[
1

2
(y′λn

)2
]Tn

−∞
+ α

∫ Tn

−∞
|y′λn
|2ds+

[
−
y2λn

2
+

yp+1
λn

p+ 1
− γ

2
|e4mty2λn

|+
|e2mty2λn

|
2

]Tn

−∞

= −2γ
∫ Tn

−∞
e4ms|yλn |2ds+m

∫ Tn

−∞
e2ms|yλn |2ds.

(35)
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Since yλn(t)→ 1 as t→ −∞, the left hand side of (35) yields[
1

2
(y′λn

)2
]Tn

−∞
+ α

∫ Tn

−∞
|y′λn
|2ds+

[
−
y2λn

2
+

yp+1
λn

p+ 1
− γ

2
|e4mty2λn

|+
|e2mty2λn

|
2

]Tn

−∞

≥ 1

2
y2λn

(Tn) +

[
−
y2λn

2
+

yp+1
λn

p+ 1
− γ

2
|e4mty2λn

|+
|e2mty2λn

|
2

]Tn

−∞

≥

[
−
y2λn

2
+

yp+1
λn

p+ 1
− γ

2
|e4mty2λn

|+
|e2mty2λn

|
2

]Tn

−∞

=
1

2
− 1

p+ 1
> 0.

(36)

On the other hand, using the asymptotic (21) of yλn again, there exists T̂ (< Tn) (independent

of λ) such that 1/2 < yλn < 1 for t ∈ (−∞, T̂ ). This together with the fact that γ = 1/m2λ2
n

yields that

− 2

m2λ2
n

∫ Tn

−∞
e4ms|yλn |2ds+m

∫ Tn

−∞
e2ms|yλn|2ds

= − 2

m2λ2
n

∫ T̂

−∞
e4ms|yλn |2ds−

2

m2λ2
n

∫ Tn

T̂

e4ms|yλn |2ds+m

∫ T̂

−∞
e2ms|yλn|2ds

+m

∫ Tn

T̂

e2ms|yλn |2ds

< − 1

m2λ2
n

∫ T̂

−∞
e4msds− 2

m2λ2
n

∫ Tn

T̂

e4ms|yλn |2ds+m

∫ T̂

−∞
e2msds+m

∫ Tn

T̂

e2ms|yλn |2ds

< − 1

m2λ2
n

[
e4ms

4m

]T̂
−∞

+m

[
e2ms

2m

]T̂
−∞

+

∫ Tn

T̂

(
− 2

m2λ2
n

+me−2ms

)
e4ms|yλn |2ds

=

(
− 1

4m2λ2
n

+
e−2mT̂

2

)
e4mT̂ +

∫ Tn

T̂

(
− 2

m2λ2
n

+me−2mT̂

)
e4ms|yλn |2ds

< 0 for sufficiently large n ∈ N.

This together with (35) and (36) yields a contradiction. Thus, we see that λ ∈ I0 ∪ I+ for

sufficiently small λ > 0.

Next, we shall show that λ ∈ I+ for sufficiently small λ > 0. Suppose the contrary that

there exists a sequence {λn} ⊂ (0,∞) with limn→∞ λn = 0 such that yλn has no critical

point. Then, by Lemma 4, we see that y′λn
(t) < 0 and yλn(t)→ 0 as t→∞. Moreover, since

yλn(t)→ 1 as t→ −∞, we have

yλn(t) < 1 for all −∞ < t <∞. (37)

Then, there exists T1,n ∈ R such that

yλn(t) ≤ 1/4 for all t ≥ T1,n. (38)

9



It follows from (21) that there exists T0 > 0 (independent of n) such that T1,n ≥ T0. We

take λ > sufficiently small so that − log γ/2m = log(λ2m2)/2m < T0. Then, integrating the

equation (18) from −∞ to T1,n, we have, by (37) and (38), that

y′λn
(T1,n) = −α[yλn ]

T1,n

−∞ +

∫ T1,n

−∞

{
yλn − ypλn

+ γe4msyλn − e2msyλn

}
ds

=
3

4
α +

∫ − log γ
2m

−∞

{
yλn − ypλn

+ γe4msyλn − e2msyλn

}
ds

+

∫ T1,n

− log γ
2m

{
yλn − ypλn

+ γe4msyλn − e2msyλn

}
ds

≥ 3

4
α+

∫ − log γ
2m

−∞

{
γe4msyλn − e2msyλn

}
ds.

Taking λ > 0 sufficiently small so that 1/2 < yλn < 1 for t ∈ (−∞,− log γ/2m), we have

y′λn
(T1,n) ≥

3

4
α +

γ

2

∫ − log γ
2m

−∞
e4msds−

∫ − log γ
2m

−∞
e2msds =

3

4
α +

1

8mγ
− 1

2mγ
>

α

2
.

This contradicts with the fact that y′λn
(t) < 0 for all −∞ < t < ∞. Thus, we infer that

λ ∈ I+ for sufficiently small λ > 0.

It follows from Lemma 4 to 7 that there exists λ∗ ∈ (0,∞) such that λ∗ ∈ I0. Therefore,

yλ∗ satisfies the equations (1)–(3).

4 Uniqueness of the singular solution

This section is devoted to the proof of Theorem 1. Since we have already shown the existence

of a solution satisfying (10), it is enough to prove the uniqueness of the value λ∗. Suppose

that there exist two different solutions u and v to the equations (1)–(3) with λ = λ1 and λ2

respectively satisfying (10). Without loss of the generality, we may assume that

λ1 < λ2. (39)

This together with (10) implies that there exists R1 > 0 such that

u > v for r ∈ (0, R1). (40)

We rescale the solution as follows:

u(r) = ν1/(p−1)ũ(
√
νr), v(r) = ν1/(p−1)ṽ(

√
νr) (41)

for ν > 0. Then, the functions ũ and ṽ satisfy the following equations respectively:

−ũrr −
d− 1

r
ũr +

r2

ν2
ũ− λ1

ν
ũ− ũp = 0, r > 0, (42)

−ṽrr −
d− 1

r
ṽr +

r2

ν2
ṽ − λ2

ν
ṽ − ṽp = 0, r > 0. (43)
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We put

W =
ũ

ṽ
. (44)

Then, W satisfies

Wrr +

(
d− 1

r
+

2

ṽ
ṽr

)
Wr +

(λ1 − λ2)

ν
W +W (ũp − ṽp) = 0, r > 0, (45)

W (r)→ 1 as r → 0. (46)

Furthermore, we put

ρ = log r, W (ρ) = W (r). (47)

Then, the equation (45) is transformed into the following:

Wρρ+

(
d− 2 + 2r

ṽr
ṽ

)
Wρ+

(λ1 − λ2)

ν
r2W +r2ṽp−1(W p−W ) = 0, ρ ∈ (−∞,∞). (48)

It follows from (40) that there exists T1 = T1(ν) > 0 such that

W (ρ) > 1 for ρ ∈ (−∞,−T1) (49)

By (10), we see that

d− 2 +
2rṽr
ṽ
→ α1 as ρ→ −∞, (50)

r2ṽp−1W
p −W

1−W
→ −(p− 1)β1 as ρ→ −∞, (51)

where

α1 = d− 2− 4

p− 1
, β1 = A(p, d)p−1 =

2

p− 1

(
d− 2− 2

p− 1

)
Finally, we put

Z = 1−W. (52)

Then, Z satisfies the following:

Zρρ +

(
d− 2 + 2r

ṽr
ṽ

)
Zρ −

(λ1 − λ2)

ν
r2(1− Z)− r2ṽp−1W

p −W

1−W
Z = 0, ρ ∈ (−∞,∞).

(53)

It follows from (10) that

Z

r2
=

1−W

r2
=

ṽ − ũ

r2ṽ
→ (λ1 − λ2)

{
4

(
d− 1− 3

p− 1

)}−1

as ρ→ −∞. (54)

Before proving Theorem 1, we prepare the following result:

Lemma 8. There exists ν0 > 0 and T2 > 0 such that if we take ν > ν0, we have that

Zρ(ρ) ≤ 0 for ρ ∈ (−∞,−T2). (55)
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Proof. We show this by contradiction. Suppose the contrary that there exists a sequence

{ρn} ⊂ (−∞,−T1) with limn→∞ ρn = −∞ satisfying Zρ(ρn) > 0. Note that Z(ρ) < 0 for

ρ ∈ (−∞,−T1) and Z(ρ)→ 0 as ρ→ −∞. This yields that there exists {rn} ⊂ (−∞,−T1)

with limn→∞ rn = −∞ such that

Zρ(rn) = 0 and Zρρ(rn) ≤ 0. (56)

Namely, rn is a local maximum point of Z. For ρ = rn, we have by (53) that

−(λ1 − λ2)

ν
r2n(1− Z(rn))− r2nṽ

p−1(rn)
W p(rn)−W (rn)

1−W (rn)
Z(rn) ≥ 0. (57)

This together with (46), (51) and (54) gives us that

2

ν
≥ 1− Z(rn)

ν
≥ −r2nṽp−1(rn)

W p(rn)−W (rn)

1−W (rn)

Z(rn)

r2n(λ1 − λ2)

≥ (p− 1)β1

2

{
4(d− 1− 3

p− 1
)

}−1

.

(58)

However, we can take ν > 0 sufficiently large so that

1

ν
<

(p− 1)β1

4

{
4(d− 1− 3

p− 1
)

}−1

,

which contradicts with (58). Thus, (55) holds.

We are now in position to prove Theorem 1.

Proof of Theorem 1. We first consider the case of 2∗ − 1 < p < pc.

It follows from (53) and (54) that there exists T3 = T3(ν) > 0 such that for ρ ∈
(−∞,−T3), we have

Zρρ +

(
d− 2 + 2r

ṽr
ṽ

)
Zρ − r2ṽp−1W

p −W

1−W
Z =

(λ1 − λ2)

ν
r2(1− Z)

≥ (λ1 − λ2)

ν
r2

≥ 1

ν

{
4(d− 1− 3

p− 1
)

}
Z.

(59)

Thus, we obtain

Zρρ +

(
d− 2 + 2r

ṽr
ṽ

)
Zρ −

{
r2ṽp−1W

p −W

1−W
+

1

ν

(
4ν(d− 1− 3

p− 1
)

)}
Z ≥ 0. (60)

We set

g1(ρ) := d− 2 + 2r
ṽr
ṽ
, g2(ρ) := −

{
r2ṽp−1W

p −W

1−W
+

1

ν

(
4(d− 1− 3

p− 1
)

)}
. (61)
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Note that for 2∗ − 1 < p < pc, we have

α2
1 − 4(p− 1)β1 < 0.

We take ν > 0 sufficiently large so that

α2
1 − 4(p− 1)β1 −

1

ν

(
4(d− 1− 3

p− 1
)

)
< 0

This together with (50) and (51) implies that there exist T4 = T4(ν) such that

[g1(ρ)]
2 − 4g2(ρ) < 0 for ρ ∈ (−∞,−T4). (62)

Therefore, there exist two positive constants b1 and c1 such that

b21 − 4c1 < 0, b1 < g1(ρ), c1 < g2(ρ) for ρ ∈ (−∞,−T4). (63)

Let ω be a non-trivial solution to the following ordinary differential equation:

ωρρ + b1ωρ + c1ω = 0, ρ ∈ (−∞,∞). (64)

From (63), the solution ω is oscillatory. Thus, there exist a1 and a2 with a2 < a1 < −T4

satisfying

ω(ρ) > 0 for ρ ∈ (a2, a1), ω(a1) = ω(a2) = 0. (65)

Multiplying (60) by ω and (64) by Z, we have

Zρρω + g1(ρ)Zρω + g2(ρ)Zω ≥ 0, (66)

ωρρZ + b1ωρZ + c1Zω = 0. (67)

Subtracting (67) from (66), we obtain

(Zρω − ωρZ)ρ + g1(ρ)Zρω − b1ωρZ + (g2(ρ)− c1)ωZ ≥ 0.

This together with (63) and (65) implies that{
eb1ρ(Zρω − ωρZ)

}
ρ
= eb1ρ {(Zρω − ωρZ)ρ + b1(Zρω − ωρZ)}

≥ {−g1(ρ)Zρω + b1ωρZ − (g2(ρ)− c1)ωZ + b1(Zρω − ωρZ)}
≥ {−(g1(ρ)− b1)Zρω − (g2(ρ)− c1)ωZ}
≥ 0.

Integrating the above from a2 to a1, we obtain

0 < −eb1a2ωρ(a2)Z(a2) ≤ −eb1a1ωρ(a1)Z(a1) < 0

since ωρ(a2) > 0 and ωρ(a1) < 0. This is a contradiction. Thus, we obtain the desired result.
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Next, we consider the case of p ≥ pc. We put Z = eτ1ρφ, where

τ1 = −
α1

2
+

1

2

√
α2
1 − 4(p− 1)β1.

We note that α2
1 − 4(p − 1)β1 ≥ 0 and τ1 < −2 for p ≥ pc. Then, (49), (52) and (54) gives

us that there exists T5 > 0 such that

φ(ρ) < 0 for ρ ∈ (−∞,−T5) (68)

and

|φ(ρ)| ≤ Ce(2−τ1)ρ for ρ ∈ (−∞,−T5). (69)

Since Zρ = τ1e
τ1ρφ+ eτ1ρφρ < 0, τ1 < 0 and φ(ρ) < 0 for ρ ∈ (−∞,−T5), we have

φρ ≤ 0, τ1φ ≤ −φρ for ρ ∈ (−∞,−T5). (70)

It follows from (53) and (54) that

0 = eτ1ρφρρ + 2τ1e
τ1ρφρ + τ 21 e

τ1ρφ+

(
d− 2 +

2rṽr
ṽ

)
(τ1e

τ1ρφ+ eτ1ρφρ)

− (λ1 − λ2)

ν
r2(1− eτ1ρφ)− r2ṽp−1W

p −W

1−W
eτ1ρφ

≤ eτ1ρφρρ + (2τ1 + α1)e
τ1ρφρ +

(
d− 2 +

2rṽr
ṽ
− α1

)
eτ1ρφρ

+

{
τ 21 +

(
d− 2 +

2rṽr
ṽ

)
τ1 − r2ṽp−1W

p −W

1−W

}
eτ1ρφ− (λ1 − λ2)

ν
r2(1− eτ1ρφ).

(71)

It follows from (50) that for any ε > 0, there exists T6 > 0 such that∣∣∣∣d− 2 +
2rṽr
ṽ
− α1

∣∣∣∣< ε

4
.

Moreover, (50), (51) and the definition of τ1 yields that there exists T7 > T6 such that∣∣∣∣τ 21 +

(
d− 2 +

2rṽr
ṽ

)
− r2ṽp−1W

p −W

1−W

∣∣∣∣< −τ1 ε4 .
By (54), there exists T8 > T7 and ν∗ > 0 such that for ν > ν∗, we have∣∣∣∣(λ1 − λ2)

ν
r2(1− eτ1ρφ)

∣∣∣∣< ε

2
τ1φ

for ρ ∈ (−∞,−T8). These together with (71) imply that

0 < φρρ + (2τ1 + α1)φρ +
ε

4
|φρ|+

ε

4
τ1φ+

ε

4
τ1φ

< φρρ + (2τ1 + α1)φρ +
ε

2
|φρ| −

ε

2
φρ

< φρρ + (2τ1 + α1 − ε)φρ.
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for ρ ∈ (−∞,−T8).

(54) implies that limρ→−∞ Zρ(ρ) = 0. This together with (69) gives us that

lim
ρ→−∞

φ(ρ) = lim
ρ→−∞

φρ(ρ) = 0.

Then, integrating from −∞ to ρ yields that

0 < φρ + (2τ1 + α1 − ε)φ. (72)

Multiplying (72) by e(2τ1+α1−ε)ρ, we obtain

0 <
{
e(2τ1+α1−ε)ρφ

}
ρ
, for ρ ∈ (−∞,−T8). (73)

On the other hands, (69) shows that

|φ(ρ)e(2τ1+α1−ϵ)ρ| ≤ Ce(2+τ1+α1−ϵ)ρ = Ce(2+
α1
2
+ 1

2

√
α2−4(p−1)β−ε)ρ → 0 as ρ→ −∞.

Then, integrating (73) from −∞ to ρ (< −T8), we have

0 < e(2τ1+α1−ε)ρφ(ρ),

which yields that φ(ρ) > 0 for ρ ∈ (−∞,−T8). This contradicts with (68). Thus, we obtain

the desired result.
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