Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity

Fouad Hadj Selem,
Laboratoire de Mathématiques UMR 6620 - CNRS, Université Blaise Pascal, Campus des Cézeaux -B.P. 80026
63171 Aubière cedex, France
E-mail: fouad.hadjselem@math.univ-bpclermont.fr
Hiroaki Kikuchi,
Department of Mathematics, Tsuda College, 2-1-1 Tsuda-machi, Kodaira-shi, Tokyo 187-8577, Japan
E-mail: hiroaki@tsuda.ac.jp
Juncheng Wei,
Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong-Kong, China
E-mail: wei@math.cunk.edu.hk

Abstract

In this paper, we study a singular solution to a stationary Schrödinger equation with the harmonic potential and the Sobolev supercritical nonlinearity in the spirit of Merle and Peletier [9]. Contrary to the situation Merle and Peletier [9] considered, our spatial domain is the whole space \mathbb{R}^{d} and our equation is non-autonomous. For these reasons, there are several points we need to take another approach in proving the existence and the uniqueness of the singular solution.

1 Introduction

In this paper, we consider the following semilinear elliptic equation:

$$
\left\{\begin{array}{l}
-\Delta u+|x|^{2} u-\lambda u-|u|^{p-1} u=0, \quad x \in \mathbb{R}^{d} \tag{1}\\
u(x)>0, \quad x \in \mathbb{R}^{d} \\
u(x) \rightarrow 0 \quad \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

where $d \geq 3, \lambda>0$ and $p>1$.

Hirose and Ohta [5, 6] showed that for each $\lambda>\lambda_{1}$, the equations (1)-(3) has a unique solution in case of $p \in\left(1,2^{*}-1\right)$, where λ_{1} is the first eigenvalue of the operator $-\Delta+|x|^{2}$ and 2^{*} is the Sobolev critical exponent, that is, $2^{*}=2 d /(d-2)$. On the other hand, there is a numerical observation which suggests that contrary to the Sobolev subcritical case $1<p<2^{*}-1$, the equations (1)-(3) has many solutions for some $\lambda \in\left(0, \lambda_{1}\right)$ in the Sobolev supercritical case $p>2^{*}-1$ (see Figures 10 and 11 of [3] in detail). The motivation of this study comes from the observation. We note that similar phenomena can be proved rigorously for the following semilinear elliptic equations:

$$
\left\{\begin{array}{l}
-\Delta u-\nu u-|u|^{p-1} u=0, \quad x \in B \tag{4}\\
u(x)>0, \quad x \in B \\
u=0, \quad x \in \partial B
\end{array}\right.
$$

where $\nu>0, p>1$ and B is the unit ball in \mathbb{R}^{d}. To state it more precisely, Dolbeault and Flores [1] and Guo and Wei [2] respectively showed that there exists a unique $\nu_{*} \in\left(0, \nu_{1}\right)$ such that for any $k \in \mathbb{N}$, the equations (4)-(6) has at least k solutions if ν is sufficiently close to ν_{*} in case of $p \in\left(2^{*}-1, p_{c}\right)$, where ν_{1} is the first eigenvalue of the operator $-\Delta$ in B with the Dirichlet boundary condition and p_{c} is the so-called Joseph and Lundgren exponent introduced in [7], that is,

$$
p_{c}:= \begin{cases}\infty & \text { if } 2 \leq d \leq 10 \\ \frac{(d-2)^{2}-4 d+8 \sqrt{d-1}}{(d-2)(d-10)} & \text { if } d \geq 11\end{cases}
$$

Guo and Wei [2] also showed that for any $\nu \in\left(\nu_{*}, \nu_{1}\right)$, (4)-(6) has exactly one solution for $\nu \in\left(\nu_{*}, \nu_{1}\right)$ and has no solution for $\nu>\nu_{*}$ in case of $p \geq p_{c}^{2}$, where $p_{c}^{2} \geq p_{c}$. In their proofs [1, 2], the analysis at $\nu=\nu_{*}$ is crucial. In fact, Merle and Peletier [9] showed that the equations (4)-(6) with $\nu=\nu_{*}$ has a singular solution V satisfying

$$
\begin{equation*}
V(x)=A(p, d)|x|^{-\frac{2}{p-1}}\left\{1-B\left(p, d, \nu_{*}\right)|x|^{2}+o\left(|x|^{2}\right)\right\} \quad \text { as }|x| \rightarrow 0 \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& A=A(p, d)=\left\{\frac{2}{p-1}\left(d-2-\frac{2}{p-1}\right)\right\}^{\frac{1}{p-1}} \tag{8}\\
& B=B(p, d, \lambda)=\lambda\left\{4\left(d-1-\frac{3}{p-1}\right)\right\}^{-1} \tag{9}
\end{align*}
$$

The singular solution V plays an important role in the above results [1, 2]. Therefore, in order to study the multiplicity of the solutions to (1)-(3), it seems worthwhile to investigate whether the equations (1)-(3) has a singular solution like (7). Our first result is the following:

Theorem 1. Let $p>2^{*}-1$. Then, there exists a unique value $\lambda_{*} \in\left(0, \lambda_{1}\right)$ such that the equations (1)-(3) with $\lambda=\lambda_{*}$ has a radial solution W satisfying

$$
\begin{equation*}
W(x)=A(p, d)|x|^{-\frac{2}{p-1}}\left\{1-B\left(p, d, \lambda_{*}\right)|x|^{2}+o\left(|x|^{2}\right)\right\} \quad \text { as }|x| \rightarrow 0 \tag{10}
\end{equation*}
$$

where the constants $A(p, d)$ and $B(p, d, \lambda)$ is given by (8) and (9).

Before stating our second result, we recall that it is shown in [4] that there exists a bifurcation branch $\mathcal{C} \subset\left(0, \lambda_{1}\right) \times \Sigma$ such that

$$
\begin{equation*}
\mathcal{C}=\left\{(\lambda, u) \in\left(0, \lambda_{1}\right) \times \Sigma \mid u \text { is a solution to (1)-(3) }\right\} \tag{11}
\end{equation*}
$$

satisfying

$$
\sup \left\{\|u\|_{L^{\infty}} \mid(\lambda, u) \in \mathcal{C}\right\}=\infty
$$

where Σ is the function space defined by

$$
\Sigma=\left\{u \in H^{1}\left(\mathbb{R}^{d}\right)| | x \mid u \in L^{2}\left(\mathbb{R}^{d}\right)\right\}
$$

We are concerned with the asymptotic behavior of the solution with $\|u\|_{L^{\infty}} \rightarrow \infty$. Concerning this problem, we obtain the following:

Theorem 2. Let $p>2^{*}-1$ and $\left\{\left(\lambda_{n}, u_{n}\right)\right\} \subset \mathcal{C}$ with $\left\|u_{n}\right\|_{L^{\infty}} \rightarrow \infty$ as $n \rightarrow \infty$, where \mathcal{C} is given by (11) Then, we have

$$
\begin{equation*}
\lambda_{n} \rightarrow \lambda_{*} \quad \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

where $\lambda_{*} \in\left(0, \lambda_{1}\right)$ is the unique value given in Theorem 1. Moreover, we have that

$$
\begin{equation*}
u_{n} \rightarrow W_{\lambda_{*}} \quad \text { in } \Sigma \text { as } n \rightarrow \infty \tag{13}
\end{equation*}
$$

The proof of Theorem 2 is quite similar to that of Merle and Peletier [9, Theorem 1.2]. Thus, we omit it.

We prove Theorem 1 in the sprit of Merle and Peletier [9]. However, we meet several difficulty to show the existence of the singular solution W and uniqueness of the value λ_{*}. One of the reason is that our spatial domain is whole space \mathbb{R}^{d} while Merle and Peletier [9] considered the equations (4)-(6) on the unit ball B. The difference forces us to do an additional argument to prove the existence of a singular solution. Indeed, after constructing a local solution W near the origin following Merle and Peletier [9], we need to extend the local solution globally. For this purpose, we shall employ the shooting method. The second difficulty comes from the fact that our equations (1)-(3) is non-autonomous. Merle and Peletier [9] obtained the existence of the singular solution V and the uniqueness of the value ν_{*} at the same time by a scaling argument. However, we cannot apply the scaling argument because of the presence of the potential term. For this, we need to take a different approach to show the uniqueness of the value λ_{*}. To this end, we shall use the ideas of Wang [11] and Guo and Wei [2].

This paper is organized as follows. In Section 2, following Merle and Peletier [9], we construct a local solution to (1) near the origin for any $\lambda>0$ and investigate the asymptotic behavior. In Section 3, we prove that there exists $\lambda_{*}>0$ such that the solution to (1) obtained in Section 2 exists globally and satisfies (2) and (3). In Section 4, we shall show the uniqueness of the value $\lambda_{*}>0$.

2 Local existence

In this section, we shall show a existence of a local solution to (1) near the origin $x=0$ and investigate the asymptotic behavior of the solution. To this end, we transform the equation (1). We first note that from the result of Li and Ni [8], the solution to (1) becomes radially symmetric. Therefore, the equations (1)-(3) becomes the following ordinary differential equations:

$$
\begin{cases}-u_{r r}-\frac{d-1}{r} u_{r}+r^{2} u-\lambda u-|u|^{p-1} u=0, & r>0 \tag{14}\\ u(r)>0 & r>0 \\ u(r) \rightarrow 0 & \text { as } r \rightarrow \infty\end{cases}
$$

We put

$$
\begin{equation*}
v=A^{-1} r^{\theta} u \tag{15}
\end{equation*}
$$

where $\theta=2 /(p-1)$. In order to prove Theorem 1 , we seek a solution to the following:

$$
\begin{cases}-v_{r r}-\frac{k-1}{r} v_{r}-\frac{A^{p-1}}{r^{2}}\left\{v^{p}-v\right\}+r^{2} v-\lambda v=0, & r>0, \tag{16}\\ v(r)>0, \quad r>0, & \text { and } \quad v(r) \rightarrow 0 \quad \text { as } r \rightarrow \infty,\end{cases}
$$

where $k=d-4 /(p-1)$.
We now carry out so called Emden-Fowler transformation to make the equation autonomous except for the potential term and the term involving the parameter λ. We set

$$
\begin{equation*}
t=\frac{\log r}{m}-\log \frac{\beta}{2 m}, \quad y(t)=v(r) \tag{17}
\end{equation*}
$$

where $\beta \in \mathbb{R}$ and $m \in \mathbb{R}$ are defined by

$$
\beta=\frac{\lambda}{m(d-2-\theta)}, \quad m=A^{-\frac{p-1}{2}}=\left\{\frac{2}{p-1}\left(d-2-\frac{2}{p-1}\right)\right\}^{-\frac{1}{2}}=\{\theta(d-2-\theta)\}^{-\frac{1}{2}} .
$$

Then, we see that $y(t)$ satisfies the following:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\alpha y^{\prime}-y+y^{p}-\gamma e^{4 m t} y+e^{2 m t} y=0, \quad-\infty<t<\infty \tag{18}\\
y(t) \rightarrow 1 \quad \text { as } t \rightarrow-\infty \\
v(t) \rightarrow 1 \quad \text { as } t \rightarrow-\infty \quad \text { and } \quad v(t) \rightarrow 0 \quad \text { as } t \rightarrow \infty
\end{array}\right.
$$

where $\alpha=(k-2) m$ and $\gamma=1 / \lambda^{2} m^{2}$. Here, we denote by y^{\prime} the derivative of y with respect to the variable t. Then, following Merle and Peletier [9], we obtain the following proposition:

Proposition 3. Let $p>2^{*}-1$. For each $\lambda>0$, there exist $T_{\lambda} \in \mathbb{R}$ and a unique solution $y_{\lambda} \in C\left(\left[-\infty, T_{\lambda}\right), \mathbb{R}\right)$ to (18) satisfying

$$
\begin{equation*}
y_{\lambda}(t)=1-\frac{\theta(d-2-\theta)}{4(d-1)-6 \theta} e^{2 m t}\left[1+O\left(e^{2 m t}\right)\right] \quad \text { as } t \rightarrow-\infty . \tag{21}
\end{equation*}
$$

Since the proof of Proposition 3 is similar to that of Merle and Peletier [9, Lemmata 3.1 and 3.2], we omit it.

3 Existence of the singular solution

In this section, we show that there exists $\lambda_{*}>0$ such that the local solution obtained in Proposition 3 to the equation (18) with $\lambda=\lambda_{*}$ exists globally and vanished at infinity. This shows that there exists a solution W to (1) satisfying (10). To this end, we shall employ the shooting method. For each $\lambda>0$, we denote by y_{λ} the solution to (18). We set
$I_{+}=\left\{\lambda>0 \mid\right.$ there exists $T \in \mathbb{R}$ such that $y_{\lambda}^{\prime}(T)=0$ and $y_{\lambda}(t)>0$ for all $\left.-\infty<t<\infty\right\}$, $I_{-}=\left\{\lambda>0 \mid\right.$ there exists $T \in \mathbb{R}$ such that $y_{\lambda}(T)=0$ and $y_{\lambda}^{\prime}(t)<0$ for all $\left.-\infty<t<T\right\}$, $I_{0}=\left\{\lambda>0 \mid y_{\lambda}(t)>0, y_{\lambda}^{\prime}(t)<0\right.$ for all $-\infty<t<\infty$ and $y_{\lambda}(t) \rightarrow 0$ as $\left.t \rightarrow \infty\right\}$.

Concerning these sets, we obtain the following result:
Lemma 4. Let the sets $I_{ \pm}$and I_{0} be defined above. Then, we have

$$
(0, \infty)=I_{+} \cup I_{0} \cup I_{-} .
$$

Proof. Obviously, $I_{+} \cap I_{-}=\emptyset$. We claim that if $\lambda \notin I_{+} \cup I_{-}$, we have $\lambda \in I_{0}$. Suppose that $\lambda \notin I_{+} \cup I_{-}$. Then, one of the following cases occurs:
(Case 1) y_{λ} meets the line $x=0$ with zero derivative,
(Case 2) y_{λ} blows up, that is, there exists $T_{\lambda} \in \mathbb{R}$ such that $y_{\lambda}^{\prime}(t), y_{\lambda}(t) \rightarrow \infty$ as $t \rightarrow T_{\lambda}$,
(Case 3) $\quad y_{\lambda}(t)>0, y_{\lambda}^{\prime}(t)<0$ for all $t \in \mathbb{R}$.
First, we show that (Case 1) does not occur. Suppose that there exists $R \in \mathbb{R}$ such that $y_{\lambda}(R)=y_{\lambda}^{\prime}(R)=0$. This implies $y_{\lambda} \equiv 0$ from the uniqueness of the Cauchy problem. Thus, this is impossible.

Second, we shall eliminate the possibility that (Case 2) occurs. Since $y_{\lambda}(t)>0$ for $t \in\left(-\infty, T_{\lambda}\right)$, we have

$$
\begin{equation*}
0>y_{\lambda}^{\prime \prime}+\alpha y_{\lambda}^{\prime}-y_{\lambda}-\gamma e^{4 m t} y_{\lambda}>y_{\lambda}^{\prime \prime}+\alpha y_{\lambda}^{\prime}-y_{\lambda}-\gamma e^{4 m T_{\lambda}} y_{\lambda} \tag{22}
\end{equation*}
$$

We put

$$
z_{\lambda}=y_{\lambda}^{\prime}+C_{\lambda} y_{\lambda},
$$

where

$$
C_{\lambda}=\frac{\alpha+\sqrt{\alpha^{2}+4\left(1+\gamma e^{4 m T_{\lambda}}\right)}}{2} .
$$

Then it follows (22) that

$$
\begin{equation*}
z_{\lambda}^{\prime}-\left(C_{\lambda}-\alpha\right) z_{\lambda}<0 \tag{23}
\end{equation*}
$$

for $t \in\left(-\infty, T_{\lambda}\right)$. Multiplying (23) by $e^{-\left(C_{\lambda}-\alpha\right) t}$, we obtain

$$
\left(e^{-\left(C_{\lambda}-\alpha\right) t} z_{\lambda}\right)^{\prime}<0
$$

for $t \in\left(-\infty, T_{\lambda}\right)$. Therefore, we see that

$$
\begin{equation*}
z_{\lambda}(t)<e^{\left(C_{\lambda}-\alpha\right)(t-s)} z_{\lambda}(s) \tag{24}
\end{equation*}
$$

for $-\infty<s<t<T_{\lambda}$. The estimate (24) implies that (Case 2) does not occur.
Therefore, we see that if $\lambda \notin I_{+} \cup I_{-}$, we have $y_{\lambda}(t)>0, y_{\lambda}^{\prime}(t)<0$ for all $t \in \mathbb{R}$. Then, there exist $\left\{t_{n}\right\} \subset \mathbb{R}$ with $\lim _{n \rightarrow \infty} t_{n}=\infty$ and $l \geq 0$ such that

$$
y_{\lambda}\left(t_{n}\right) \rightarrow l, \quad y_{\lambda}^{\prime}\left(t_{n}\right) \rightarrow 0, \quad y_{\lambda}^{\prime \prime}\left(t_{n}\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Suppose that $l \neq 0$. It follows from (18) that

$$
\begin{equation*}
0 \leftarrow y_{\lambda}^{\prime \prime}+\alpha y_{\lambda}^{\prime}=y_{\lambda}-y_{\lambda}^{p}+\gamma e^{4 m t_{n}} y_{\lambda}-e^{2 m t_{n}} y_{\lambda} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{25}
\end{equation*}
$$

which is a contradiction. Therefore, we obtain $l=0$. This complete the proof.
Lemma 5. The sets $I_{ \pm}$are open.
Proof. Openness of the set I_{-}is clear from the continuous dependence of the solution on λ. Thus, we consider the set I_{+}. Let $\lambda_{*} \in I_{+}$. We claim that there exist a local minimum $t_{*} \in \mathbb{R}$, that is, $y_{\lambda_{*}}^{\prime}\left(t_{*}\right)=0$ and $y_{\lambda_{*}}^{\prime \prime}\left(t_{*}\right)>0$. Suppose that $y_{\lambda_{*}}^{\prime}(t) \leq 0$ for all $-\infty<t<\infty$. Then, there exists $l \geq 0$ such that $y_{\lambda_{*}}(t) \rightarrow l$ as $t \rightarrow \infty$. Suppose that $l>0$. Then, we can drive a contradiction by a same argument as in (25). Thus, we have $l=0$, which implies that $y_{\lambda}^{\prime}(t)<0$ for all $-\infty<t<\infty$ from the result of Li and Ni [8]. This contradicts the fact that $\lambda_{*} \in I_{+}$. Therefore, there exists $t_{1} \in \mathbb{R}$ such that $y_{\lambda_{*}}^{\prime}\left(t_{1}\right)>0$. It follows from Proposition 3 that $y_{\lambda_{*}}^{\prime}\left(t_{2}\right)<0$ if $t_{2} \in \mathbb{R}$ is sufficiently small. From this, we infer that there exists $t_{*} \in \mathbb{R}$ such that $y_{\lambda_{*}}^{\prime}\left(t_{*}\right)=0$ and $y_{\lambda_{*}}^{\prime \prime}\left(t_{*}\right)>0$. Thus, our claim holds.

Then, there exist $t_{3}<t_{*}<t_{4}$ such that $y_{\lambda_{*}}\left(t_{i}\right)>y_{\lambda_{*}}\left(t_{*}\right) \quad$ for $i=3$ and 4 . It follows from the continuous dependence of the solution on the parameter λ that

$$
y_{\lambda}\left(t_{i}\right)>y_{\lambda}\left(t_{*}\right) \text { for } i=3 \text { and } 4 \text { if }\left|\lambda-\lambda_{*}\right|>0 \text { is sufficiently small. }
$$

Thus, there exists $t_{0} \in\left(t_{1}, t_{2}\right)$ such that $y_{\lambda}^{\prime}\left(t_{0}\right)=0$, which yields that $\lambda \in I_{+}$. This completes the proof.

Lemma 6. The set I_{-}is nonempty.
Proof. First, we note that from the result of Merle and Peletier [9] that there exist $T_{0} \in \mathbb{R}$ and a unique solution w_{0} to the following ordinary differential equation:

$$
\begin{cases}w^{\prime \prime}+\alpha w^{\prime}-w+w^{p}+e^{2 m t} w=0, & -\infty<t<T_{0} \tag{26}\\ w \rightarrow 1 & \text { as } t \rightarrow-\infty \\ w\left(T_{0}\right)=0 & \end{cases}
$$

Suppose the contrary that $\lambda \in I_{0} \cup I_{+}$for any $\lambda>0$. We take $\delta>0$ sufficiently small so that the solution $w(t)$ exists for $t \in\left(-\infty, T_{0}+\delta\right)$. Then, we put $T_{*}=T_{0}+\delta$. We first show
that there exist a sufficiently large $\lambda_{1}>0$ and a constant $C>0$, which is independent of λ, such that

$$
\begin{equation*}
\sup _{t \in\left(-\infty, T_{*}\right)} y_{\lambda}(t) \leq C \tag{27}
\end{equation*}
$$

for $\lambda>\lambda_{1}$. We can take $\lambda>0$ sufficiently large so that

$$
\begin{equation*}
\gamma=\frac{1}{\lambda^{2} m^{2}}<e^{-2 m T_{*}} \tag{28}
\end{equation*}
$$

For such $\gamma>0$, we have by (18) that

$$
0>y_{\lambda}^{\prime \prime}+\alpha y_{\lambda}^{\prime}-y_{\lambda}+y_{\lambda}^{p}
$$

for $t \in\left(-\infty, T_{*}\right)$, where we have used the fact that $y_{\lambda}(t)>0$ for all $-\infty<t<\infty$. This yields that

$$
\begin{equation*}
y_{\lambda}^{\prime \prime}+\alpha y_{\lambda}^{\prime}<y_{\lambda}-y_{\lambda}^{p}<\max _{s>0}\left\{s-s^{p}\right\}=(p-1) p^{-p /(p-1)} . \tag{29}
\end{equation*}
$$

It follows from (21) that there exists a sufficiently small ε_{0} and $T_{1} \in\left(-\infty, T_{*}\right)$ (independent of λ) such that

$$
\begin{equation*}
1-\varepsilon_{0}<y_{\lambda}(t)<1, \quad y_{\lambda}^{\prime}(t)<0 \tag{30}
\end{equation*}
$$

for $t \in\left(-\infty, T_{1}\right]$. Integrating (29) from T_{1} to t, we have

$$
\begin{equation*}
y_{\lambda}^{\prime}(t)+\alpha y_{\lambda}(t)<\left(1-\varepsilon_{0}\right) \alpha+C_{p}\left(t-T_{1}\right), \tag{31}
\end{equation*}
$$

where $C_{p}=(p-1) p^{-p /(p-1)}$. By (31), we see that (27) holds.
Next, we put

$$
\begin{equation*}
s=-t, \quad \eta(s)=w(s)-1 . \tag{32}
\end{equation*}
$$

Then, η satisfies

$$
\eta^{\prime \prime}-\alpha \eta^{\prime}+(p-1) \eta=f(s, \eta)
$$

where

$$
f(s, \eta)=-e^{-2 m s}(1+\eta)-\varphi(\eta), \quad \varphi(\eta)=(1+\eta)^{p}-1-p \eta .
$$

Similarly, we put

$$
\begin{equation*}
\zeta_{\lambda}(s)=y_{\lambda}(s)-1 \tag{33}
\end{equation*}
$$

Then, ζ_{λ} satisfies the following:

$$
\zeta_{\lambda}^{\prime \prime}-\alpha \zeta+(p-1) \zeta=g_{\lambda}(s, \zeta),
$$

where $g_{\lambda}(s, \zeta)=-\gamma e^{-4 m s}\{1+\zeta\}+f(s, \zeta)$. We distinguish the following there cases:

$$
\text { (Case 1) } p-1>\frac{\alpha^{2}}{4}, \quad\left(\text { Case 2) } p-1=\frac{\alpha^{2}}{4}, \quad \text { (Case 3) } p-1<\frac{\alpha^{2}}{4}\right.
$$

We shall discuss (Case 1) only and the other cases can be proved similarly. We put

$$
\mu=\sqrt{p-1-\frac{\alpha^{2}}{4}}
$$

Then, by using the method of variation of parameters, we see that η and ζ_{λ} satisfy the following integral equations respectively;

$$
\begin{aligned}
& \eta(s)=\frac{1}{\mu} e^{\frac{\alpha}{2} s} \int_{s}^{\infty} e^{-\frac{\alpha}{2} \sigma} \sin (\mu(\sigma-s)) f(\sigma, \eta) d \sigma, \\
& \zeta_{\lambda}=\frac{1}{\mu} e^{\frac{\alpha}{2} s} \int_{s}^{\infty} e^{-\frac{\alpha}{2} \sigma} \sin (\mu(\sigma-s)) g_{\lambda}\left(\sigma, \zeta_{\lambda}\right) d \sigma .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\left|\eta(s)-\zeta_{\lambda}(s)\right| & \leq \frac{1}{\mu} e^{\frac{\alpha}{2} s} \int_{s}^{\infty} e^{-\frac{\alpha}{2} \sigma}|\sin (\mu(\sigma-s))|\left|f(\sigma, \eta)-g_{\lambda}\left(\sigma, \zeta_{\lambda}\right)\right| d \sigma \\
& \leq \frac{1}{\mu} \int_{s}^{\infty} \gamma e^{-4 m \sigma}\left|1+\zeta_{\lambda}(\sigma)\right| d \sigma+\frac{1}{\mu} \int_{s}^{\infty}\left|f(\sigma, \eta)-f\left(\sigma, \zeta_{\lambda}\right)\right| d \sigma
\end{aligned}
$$

Since f is Lipschitz continuous, there exists a constant $L>0$ such that $\left|f(\sigma, \eta)-f\left(\sigma, \zeta_{\lambda}\right)\right| v \leq$ $L\left|\eta-\zeta_{\lambda}\right|$. This together with (27) gives us that

$$
\left|\eta(s)-\zeta_{\lambda}(s)\right| \leq \gamma \frac{C}{\mu}+\frac{L}{\mu} \int_{s}^{\infty}\left|\eta(\sigma)-\zeta_{\lambda}(\sigma)\right| d \sigma
$$

for some constant $C>0$. For any $\varepsilon>0$, we can take $\lambda>0$ sufficiently large so that

$$
\gamma \frac{C}{\mu}=\frac{C}{\mu m^{2} \lambda}<\varepsilon .
$$

This yields that

$$
\left|\eta(s)-\zeta_{\lambda}(s)\right| \leq \varepsilon+C_{1} \int_{s}^{\infty}\left|\eta-\zeta_{\lambda}\right| d \sigma
$$

for some constant $C_{1}>0$. Then, the Gronwall's inequality gives us that

$$
\left|\eta(s)-\zeta_{\lambda}(s)\right| \leq \varepsilon\left(1+C_{1} s e^{C_{1} s}\right)
$$

for all $s \in\left(-T_{*}, \infty\right)$. This together with (32) yields that

$$
\begin{equation*}
\left|y_{\lambda}(t)-w(t)\right| \leq \varepsilon\left(1+C_{1}|t| e^{-C_{1} t}\right) \tag{34}
\end{equation*}
$$

for all $t \in\left(-\infty, T_{*}\right)$. Since w has a zero at $t=T_{*}$, (34) implies that y_{λ} has a zero for sufficiently large $\lambda>0$. Thus, we see that the set I_{-}is nonempty.

Lemma 7. The set I_{+}is non-empty.
Proof. First, we shall show that if $\lambda>0$ is sufficiently small, y_{λ} does not have zero in $(-\infty, \infty)$. Suppose the contrary that there exists $\lambda_{n} \subset(0, \infty)$ with $\lim _{n \rightarrow \infty} \lambda_{n}=0$ such that $y_{\lambda_{n}}$ have a zero at $t=T_{n}$. Thanks to the asymptotic (21), there exists $C \in \mathbb{R}$ (independent of n) such that $T_{n} \geq C$ for all $n \in \mathbb{N}$. Multiplying the equation (18) by $y_{\lambda_{n}}^{\prime}$ and integrating the resulting equation from $-\infty$ to T_{n}, we have

$$
\begin{align*}
& {\left[\frac{1}{2}\left(y_{\lambda_{n}}^{\prime}\right)^{2}\right]_{-\infty}^{T_{n}}+\alpha \int_{-\infty}^{T_{n}}\left|y_{\lambda_{n}}^{\prime}\right|^{2} d s+\left[-\frac{y_{\lambda_{n}}^{2}}{2}+\frac{y_{\lambda_{n}}^{p+1}}{p+1}-\frac{\gamma}{2}\left|e^{4 m t} y_{\lambda_{n}}^{2}\right|+\frac{\left|e^{2 m t} y_{\lambda_{n}}^{2}\right|}{2}\right]_{-\infty}^{T_{n}} } \tag{35}\\
= & -2 \gamma \int_{-\infty}^{T_{n}} e^{4 m s}\left|y_{\lambda_{n}}\right|^{2} d s+m \int_{-\infty}^{T_{n}} e^{2 m s}\left|y_{\lambda_{n}}\right|^{2} d s .
\end{align*}
$$

Since $y_{\lambda_{n}}(t) \rightarrow 1$ as $t \rightarrow-\infty$, the left hand side of (35) yields

$$
\begin{align*}
& {\left[\frac{1}{2}\left(y_{\lambda_{n}}^{\prime}\right)^{2}\right]_{-\infty}^{T_{n}}+\alpha \int_{-\infty}^{T_{n}}\left|y_{\lambda_{n}}^{\prime}\right|^{2} d s+\left[-\frac{y_{\lambda_{n}}^{2}}{2}+\frac{y_{\lambda_{n}}^{p+1}}{p+1}-\frac{\gamma}{2}\left|e^{4 m t} y_{\lambda_{n}}^{2}\right|+\frac{\left|e^{2 m t} y_{\lambda_{n}}^{2}\right|}{2}\right]_{-\infty}^{T_{n}} } \\
\geq & \frac{1}{2} y_{\lambda_{n}}^{2}\left(T_{n}\right)+\left[-\frac{y_{\lambda_{n}}^{2}}{2}+\frac{y_{\lambda_{n}}^{p+1}}{p+1}-\frac{\gamma}{2}\left|e^{4 m t} y_{\lambda_{n}}^{2}\right|+\frac{\mid e^{2 m t} y_{\lambda_{n}}^{2}}{2}\right]_{-\infty}^{T_{n}} \tag{36}\\
\geq & {\left[-\frac{y_{\lambda_{n}}^{2}}{2}+\frac{y_{\lambda_{n}}^{p+1}}{p+1}-\frac{\gamma}{2}\left|e^{4 m t} y_{\lambda_{n}}^{2}\right|+\frac{\left|e^{2 m t} y_{\lambda_{n}}^{2}\right|}{2}\right]_{-\infty}^{T_{n}} } \\
= & \frac{1}{2}-\frac{1}{p+1}>0 .
\end{align*}
$$

On the other hand, using the asymptotic (21) of $y_{\lambda_{n}}$ again, there exists $\hat{T}\left(<T_{n}\right)$ (independent of λ) such that $1 / 2<y_{\lambda_{n}}<1$ for $t \in(-\infty, \hat{T})$. This together with the fact that $\gamma=1 / m^{2} \lambda_{n}^{2}$ yields that

$$
\begin{aligned}
& -\frac{2}{m^{2} \lambda_{n}^{2}} \int_{-\infty}^{T_{n}} e^{4 m s}\left|y_{\lambda_{n}}\right|^{2} d s+m \int_{-\infty}^{T_{n}} e^{2 m s}\left|y_{\lambda_{n}}\right|^{2} d s \\
= & -\frac{2}{m^{2} \lambda_{n}^{2}} \int_{-\infty}^{\hat{T}} e^{4 m s}\left|y_{\lambda_{n}}\right|^{2} d s-\frac{2}{m^{2} \lambda_{n}^{2}} \int_{\hat{T}}^{T_{n}} e^{4 m s}\left|y_{\lambda_{n}}\right|^{2} d s+m \int_{-\infty}^{\hat{T}} e^{2 m s}\left|y_{\lambda_{n}}\right|^{2} d s \\
& +m \int_{\hat{T}}^{T_{n}} e^{2 m s}\left|y_{\lambda_{n}}\right|^{2} d s \\
< & -\frac{1}{m^{2} \lambda_{n}^{2}} \int_{-\infty}^{\hat{T}} e^{4 m s} d s-\frac{2}{m^{2} \lambda_{n}^{2}} \int_{\hat{T}}^{T_{n}} e^{4 m s}\left|y_{\lambda_{n}}\right|^{2} d s+m \int_{-\infty}^{\hat{T}} e^{2 m s} d s+m \int_{\hat{T}}^{T_{n}} e^{2 m s}\left|y_{\lambda_{n}}\right|^{2} d s \\
< & -\frac{1}{m^{2} \lambda_{n}^{2}}\left[\frac{e^{4 m s}}{4 m}\right]_{-\infty}^{\hat{T}}+m\left[\frac{e^{2 m s}}{2 m}\right]_{-\infty}^{\hat{T}}+\int_{\hat{T}}^{T_{n}}\left(-\frac{2}{m^{2} \lambda_{n}^{2}}+m e^{-2 m s}\right) e^{4 m s}\left|y_{\lambda_{n}}\right|^{2} d s \\
= & \left(-\frac{1}{4 m^{2} \lambda_{n}^{2}}+\frac{e^{-2 m \hat{T}}}{2}\right) e^{4 m \hat{T}}+\int_{\hat{T}}^{T_{n}}\left(-\frac{2}{m^{2} \lambda_{n}^{2}}+m e^{-2 m \hat{T}}\right) e^{4 m s}\left|y_{\lambda_{n}}\right|^{2} d s
\end{aligned}
$$

$$
<0 \quad \text { for sufficiently large } n \in \mathbb{N} \text {. }
$$

This together with (35) and (36) yields a contradiction. Thus, we see that $\lambda \in I_{0} \cup I_{+}$for sufficiently small $\lambda>0$.

Next, we shall show that $\lambda \in I_{+}$for sufficiently small $\lambda>0$. Suppose the contrary that there exists a sequence $\left\{\lambda_{n}\right\} \subset(0, \infty)$ with $\lim _{n \rightarrow \infty} \lambda_{n}=0$ such that $y_{\lambda_{n}}$ has no critical point. Then, by Lemma 4, we see that $y_{\lambda_{n}}^{\prime}(t)<0$ and $y_{\lambda_{n}}(t) \rightarrow 0$ as $t \rightarrow \infty$. Moreover, since $y_{\lambda_{n}}(t) \rightarrow 1$ as $t \rightarrow-\infty$, we have

$$
\begin{equation*}
y_{\lambda_{n}}(t)<1 \quad \text { for all }-\infty<t<\infty . \tag{37}
\end{equation*}
$$

Then, there exists $T_{1, n} \in \mathbb{R}$ such that

$$
\begin{equation*}
y_{\lambda_{n}}(t) \leq 1 / 4 \quad \text { for all } t \geq T_{1, n} . \tag{38}
\end{equation*}
$$

It follows from (21) that there exists $T_{0}>0$ (independent of n) such that $T_{1, n} \geq T_{0}$. We take $\lambda>$ sufficiently small so that $-\log \gamma / 2 m=\log \left(\lambda^{2} m^{2}\right) / 2 m<T_{0}$. Then, integrating the equation (18) from $-\infty$ to $T_{1, n}$, we have, by (37) and (38), that

$$
\begin{aligned}
y_{\lambda_{n}}^{\prime}\left(T_{1, n}\right)= & -\alpha\left[y_{\lambda_{n}}\right]_{-\infty}^{T_{1, n}}+\int_{-\infty}^{T_{1, n}}\left\{y_{\lambda_{n}}-y_{\lambda_{n}}^{p}+\gamma e^{4 m s} y_{\lambda_{n}}-e^{2 m s} y_{\lambda_{n}}\right\} d s \\
= & \frac{3}{4} \alpha+\int_{-\infty}^{-\frac{\log \gamma}{2 m}}\left\{y_{\lambda_{n}}-y_{\lambda_{n}}^{p}+\gamma e^{4 m s} y_{\lambda_{n}}-e^{2 m s} y_{\lambda_{n}}\right\} d s \\
& +\int_{-\frac{\log \gamma}{2 m}}^{T_{1, n}}\left\{y_{\lambda_{n}}-y_{\lambda_{n}}^{p}+\gamma e^{4 m s} y_{\lambda_{n}}-e^{2 m s} y_{\lambda_{n}}\right\} d s \\
\geq & \frac{3}{4} \alpha+\int_{-\infty}^{-\frac{\log \gamma}{2 m}}\left\{\gamma e^{4 m s} y_{\lambda_{n}}-e^{2 m s} y_{\lambda_{n}}\right\} d s .
\end{aligned}
$$

Taking $\lambda>0$ sufficiently small so that $1 / 2<y_{\lambda_{n}}<1$ for $t \in(-\infty,-\log \gamma / 2 m)$, we have

$$
y_{\lambda_{n}}^{\prime}\left(T_{1, n}\right) \geq \frac{3}{4} \alpha+\frac{\gamma}{2} \int_{-\infty}^{-\frac{\log \gamma}{2 m}} e^{4 m s} d s-\int_{-\infty}^{-\frac{\log \gamma}{2 m}} e^{2 m s} d s=\frac{3}{4} \alpha+\frac{1}{8 m \gamma}-\frac{1}{2 m \gamma}>\frac{\alpha}{2} .
$$

This contradicts with the fact that $y_{\lambda_{n}}^{\prime}(t)<0$ for all $-\infty<t<\infty$. Thus, we infer that $\lambda \in I_{+}$for sufficiently small $\lambda>0$.

It follows from Lemma 4 to 7 that there exists $\lambda_{*} \in(0, \infty)$ such that $\lambda_{*} \in I_{0}$. Therefore, $y_{\lambda_{*}}$ satisfies the equations (1)-(3).

4 Uniqueness of the singular solution

This section is devoted to the proof of Theorem 1. Since we have already shown the existence of a solution satisfying (10), it is enough to prove the uniqueness of the value λ_{*}. Suppose that there exist two different solutions u and v to the equations (1)-(3) with $\lambda=\lambda_{1}$ and λ_{2} respectively satisfying (10). Without loss of the generality, we may assume that

$$
\begin{equation*}
\lambda_{1}<\lambda_{2} \tag{39}
\end{equation*}
$$

This together with (10) implies that there exists $R_{1}>0$ such that

$$
\begin{equation*}
u>v \quad \text { for } r \in\left(0, R_{1}\right) \tag{40}
\end{equation*}
$$

We rescale the solution as follows:

$$
\begin{equation*}
u(r)=\nu^{1 /(p-1)} \widetilde{u}(\sqrt{\nu} r), \quad v(r)=\nu^{1 /(p-1)} \widetilde{v}(\sqrt{\nu} r) \tag{41}
\end{equation*}
$$

for $\nu>0$. Then, the functions \widetilde{u} and \widetilde{v} satisfy the following equations respectively:

$$
\begin{align*}
& -\widetilde{u}_{r r}-\frac{d-1}{r} \widetilde{u}_{r}+\frac{r^{2}}{\nu^{2}} \widetilde{u}-\frac{\lambda_{1}}{\nu} \widetilde{u}-\widetilde{u}^{p}=0, \quad r>0, \tag{42}\\
& -\widetilde{v}_{r r}-\frac{d-1}{r} \widetilde{v}_{r}+\frac{r^{2}}{\nu^{2}} \widetilde{v}-\frac{\lambda_{2}}{\nu} \widetilde{v}-\widetilde{v}^{p}=0, \quad r>0 . \tag{43}
\end{align*}
$$

We put

$$
\begin{equation*}
W=\frac{\widetilde{u}}{\frac{\widetilde{v}}{}} \tag{44}
\end{equation*}
$$

Then, W satisfies

$$
\begin{align*}
& W_{r r}+\left(\frac{d-1}{r}+\frac{2}{\widetilde{v}} \widetilde{v}_{r}\right) W_{r}+\frac{\left(\lambda_{1}-\lambda_{2}\right)}{\nu} W+W\left(\widetilde{u}^{p}-\widetilde{v}^{p}\right)=0, \quad r>0 \tag{45}\\
& W(r) \rightarrow 1 \quad \text { as } r \rightarrow 0 . \tag{46}
\end{align*}
$$

Furthermore, we put

$$
\begin{equation*}
\rho=\log r, \quad W(\rho)=W(r) \tag{47}
\end{equation*}
$$

Then, the equation (45) is transformed into the following:

$$
\begin{equation*}
W_{\rho \rho}+\left(d-2+2 r \frac{\widetilde{v}_{r}}{\widetilde{v}}\right) W_{\rho}+\frac{\left(\lambda_{1}-\lambda_{2}\right)}{\nu} r^{2} W+r^{2} \widetilde{v}^{p-1}\left(W^{p}-W\right)=0, \quad \rho \in(-\infty, \infty) . \tag{48}
\end{equation*}
$$

It follows from (40) that there exists $T_{1}=T_{1}(\nu)>0$ such that

$$
\begin{equation*}
W(\rho)>1 \quad \text { for } \rho \in\left(-\infty,-T_{1}\right) \tag{49}
\end{equation*}
$$

By (10), we see that

$$
\begin{gather*}
d-2+\frac{2 r \widetilde{v}_{r}}{\widetilde{v}} \rightarrow \alpha_{1} \quad \text { as } \rho \rightarrow-\infty, \tag{50}\\
r^{2} \widetilde{v}^{p-1} \frac{W^{p}-W}{1-W} \rightarrow-(p-1) \beta_{1} \quad \text { as } \rho \rightarrow-\infty, \tag{51}
\end{gather*}
$$

where

$$
\alpha_{1}=d-2-\frac{4}{p-1}, \quad \beta_{1}=A(p, d)^{p-1}=\frac{2}{p-1}\left(d-2-\frac{2}{p-1}\right)
$$

Finally, we put

$$
\begin{equation*}
Z=1-W . \tag{52}
\end{equation*}
$$

Then, Z satisfies the following:

$$
\begin{equation*}
Z_{\rho \rho}+\left(d-2+2 r \frac{\widetilde{v}_{r}}{\widetilde{v}}\right) Z_{\rho}-\frac{\left(\lambda_{1}-\lambda_{2}\right)}{\nu} r^{2}(1-Z)-r^{2} \widetilde{v}^{p-1} \frac{W^{p}-W}{1-W} Z=0, \quad \rho \in(-\infty, \infty) . \tag{53}
\end{equation*}
$$

It follows from (10) that

$$
\begin{equation*}
\frac{Z}{r^{2}}=\frac{1-W}{r^{2}}=\frac{\widetilde{v}-\widetilde{u}}{r^{2} \widetilde{v}} \rightarrow\left(\lambda_{1}-\lambda_{2}\right)\left\{4\left(d-1-\frac{3}{p-1}\right)\right\}^{-1} \quad \text { as } \rho \rightarrow-\infty \tag{54}
\end{equation*}
$$

Before proving Theorem 1, we prepare the following result:
Lemma 8. There exists $\nu_{0}>0$ and $T_{2}>0$ such that if we take $\nu>\nu_{0}$, we have that

$$
\begin{equation*}
Z_{\rho}(\rho) \leq 0 \quad \text { for } \rho \in\left(-\infty,-T_{2}\right) \tag{55}
\end{equation*}
$$

Proof. We show this by contradiction. Suppose the contrary that there exists a sequence $\left\{\rho_{n}\right\} \subset\left(-\infty,-T_{1}\right)$ with $\lim _{n \rightarrow \infty} \rho_{n}=-\infty$ satisfying $Z_{\rho}\left(\rho_{n}\right)>0$. Note that $Z(\rho)<0$ for $\rho \in\left(-\infty,-T_{1}\right)$ and $Z(\rho) \rightarrow 0$ as $\rho \rightarrow-\infty$. This yields that there exists $\left\{r_{n}\right\} \subset\left(-\infty,-T_{1}\right)$ with $\lim _{n \rightarrow \infty} r_{n}=-\infty$ such that

$$
\begin{equation*}
Z_{\rho}\left(r_{n}\right)=0 \quad \text { and } \quad Z_{\rho \rho}\left(r_{n}\right) \leq 0 \tag{56}
\end{equation*}
$$

Namely, r_{n} is a local maximum point of Z. For $\rho=r_{n}$, we have by (53) that

$$
\begin{equation*}
-\frac{\left(\lambda_{1}-\lambda_{2}\right)}{\nu} r_{n}^{2}\left(1-Z\left(r_{n}\right)\right)-r_{n}^{2} \widetilde{v}^{p-1}\left(r_{n}\right) \frac{W^{p}\left(r_{n}\right)-W\left(r_{n}\right)}{1-W\left(r_{n}\right)} Z\left(r_{n}\right) \geq 0 \tag{57}
\end{equation*}
$$

This together with (46), (51) and (54) gives us that

$$
\begin{align*}
\frac{2}{\nu} \geq \frac{1-Z\left(r_{n}\right)}{\nu} & \geq-r_{n}^{2} \widetilde{v}^{p-1}\left(r_{n}\right) \frac{W^{p}\left(r_{n}\right)-W\left(r_{n}\right)}{1-W\left(r_{n}\right)} \frac{Z\left(r_{n}\right)}{r_{n}^{2}\left(\lambda_{1}-\lambda_{2}\right)} \\
& \geq \frac{(p-1) \beta_{1}}{2}\left\{4\left(d-1-\frac{3}{p-1}\right)\right\}^{-1} \tag{58}
\end{align*}
$$

However, we can take $\nu>0$ sufficiently large so that

$$
\frac{1}{\nu}<\frac{(p-1) \beta_{1}}{4}\left\{4\left(d-1-\frac{3}{p-1}\right)\right\}^{-1}
$$

which contradicts with (58). Thus, (55) holds.
We are now in position to prove Theorem 1.
Proof of Theorem 1. We first consider the case of $2^{*}-1<p<p_{\mathrm{c}}$.
It follows from (53) and (54) that there exists $T_{3}=T_{3}(\nu)>0$ such that for $\rho \in$ $\left(-\infty,-T_{3}\right)$, we have

$$
\begin{align*}
Z_{\rho \rho}+\left(d-2+2 r \frac{\widetilde{v}_{r}}{\widetilde{v}}\right) Z_{\rho}-r^{2} \widetilde{v}^{p-1} \frac{W^{p}-W}{1-W} Z & =\frac{\left(\lambda_{1}-\lambda_{2}\right)}{\nu} r^{2}(1-Z) \\
& \geq \frac{\left(\lambda_{1}-\lambda_{2}\right)}{\nu} r^{2} \tag{59}\\
& \geq \frac{1}{\nu}\left\{4\left(d-1-\frac{3}{p-1}\right)\right\} Z
\end{align*}
$$

Thus, we obtain

$$
\begin{equation*}
Z_{\rho \rho}+\left(d-2+2 r \frac{\widetilde{v}_{r}}{\widetilde{v}}\right) Z_{\rho}-\left\{r^{2} \widetilde{v}^{p-1} \frac{W^{p}-W}{1-W}+\frac{1}{\nu}\left(4 \nu\left(d-1-\frac{3}{p-1}\right)\right)\right\} Z \geq 0 \tag{60}
\end{equation*}
$$

We set

$$
\begin{equation*}
g_{1}(\rho):=d-2+2 r \frac{\widetilde{v}_{r}}{\widetilde{v}}, \quad g_{2}(\rho):=-\left\{r^{2} \widetilde{v}^{p-1} \frac{W^{p}-W}{1-W}+\frac{1}{\nu}\left(4\left(d-1-\frac{3}{p-1}\right)\right)\right\} . \tag{61}
\end{equation*}
$$

Note that for $2^{*}-1<p<p_{\mathrm{c}}$, we have

$$
\alpha_{1}^{2}-4(p-1) \beta_{1}<0 .
$$

We take $\nu>0$ sufficiently large so that

$$
\alpha_{1}^{2}-4(p-1) \beta_{1}-\frac{1}{\nu}\left(4\left(d-1-\frac{3}{p-1}\right)\right)<0
$$

This together with (50) and (51) implies that there exist $T_{4}=T_{4}(\nu)$ such that

$$
\begin{equation*}
\left[g_{1}(\rho)\right]^{2}-4 g_{2}(\rho)<0 \quad \text { for } \rho \in\left(-\infty,-T_{4}\right) \tag{62}
\end{equation*}
$$

Therefore, there exist two positive constants b_{1} and c_{1} such that

$$
\begin{equation*}
b_{1}^{2}-4 c_{1}<0, \quad b_{1}<g_{1}(\rho), \quad c_{1}<g_{2}(\rho) \quad \text { for } \rho \in\left(-\infty,-T_{4}\right) \tag{63}
\end{equation*}
$$

Let ω be a non-trivial solution to the following ordinary differential equation:

$$
\begin{equation*}
\omega_{\rho \rho}+b_{1} \omega_{\rho}+c_{1} \omega=0, \quad \rho \in(-\infty, \infty) . \tag{64}
\end{equation*}
$$

From (63), the solution ω is oscillatory. Thus, there exist a_{1} and a_{2} with $a_{2}<a_{1}<-T_{4}$ satisfying

$$
\begin{equation*}
\omega(\rho)>0 \quad \text { for } \rho \in\left(a_{2}, a_{1}\right), \quad \omega\left(a_{1}\right)=\omega\left(a_{2}\right)=0 \tag{65}
\end{equation*}
$$

Multiplying (60) by ω and (64) by Z, we have

$$
\begin{gather*}
Z_{\rho \rho} \omega+g_{1}(\rho) Z_{\rho} \omega+g_{2}(\rho) Z \omega \geq 0 \tag{66}\\
\omega_{\rho \rho} Z+b_{1} \omega_{\rho} Z+c_{1} Z \omega=0 . \tag{67}
\end{gather*}
$$

Subtracting (67) from (66), we obtain

$$
\left(Z_{\rho} \omega-\omega_{\rho} Z\right)_{\rho}+g_{1}(\rho) Z_{\rho} \omega-b_{1} \omega_{\rho} Z+\left(g_{2}(\rho)-c_{1}\right) \omega Z \geq 0 .
$$

This together with (63) and (65) implies that

$$
\begin{aligned}
\left\{e^{b_{1} \rho}\left(Z_{\rho} \omega-\omega_{\rho} Z\right)\right\}_{\rho} & =e^{b_{1} \rho}\left\{\left(Z_{\rho} \omega-\omega_{\rho} Z\right)_{\rho}+b_{1}\left(Z_{\rho} \omega-\omega_{\rho} Z\right)\right\} \\
& \geq\left\{-g_{1}(\rho) Z_{\rho} \omega+b_{1} \omega_{\rho} Z-\left(g_{2}(\rho)-c_{1}\right) \omega Z+b_{1}\left(Z_{\rho} \omega-\omega_{\rho} Z\right)\right\} \\
& \geq\left\{-\left(g_{1}(\rho)-b_{1}\right) Z_{\rho} \omega-\left(g_{2}(\rho)-c_{1}\right) \omega Z\right\} \\
& \geq 0
\end{aligned}
$$

Integrating the above from a_{2} to a_{1}, we obtain

$$
0<-e^{b_{1} a_{2}} \omega_{\rho}\left(a_{2}\right) Z\left(a_{2}\right) \leq-e^{b_{1} a_{1}} \omega_{\rho}\left(a_{1}\right) Z\left(a_{1}\right)<0
$$

since $\omega_{\rho}\left(a_{2}\right)>0$ and $\omega_{\rho}\left(a_{1}\right)<0$. This is a contradiction. Thus, we obtain the desired result.

Next, we consider the case of $p \geq p_{\mathrm{c}}$. We put $Z=e^{\tau_{1} \rho} \varphi$, where

$$
\tau_{1}=-\frac{\alpha_{1}}{2}+\frac{1}{2} \sqrt{\alpha_{1}^{2}-4(p-1) \beta_{1}} .
$$

We note that $\alpha_{1}^{2}-4(p-1) \beta_{1} \geq 0$ and $\tau_{1}<-2$ for $p \geq p_{\mathrm{c}}$. Then, (49), (52) and (54) gives us that there exists $T_{5}>0$ such that

$$
\begin{equation*}
\varphi(\rho)<0 \quad \text { for } \rho \in\left(-\infty,-T_{5}\right) \tag{68}
\end{equation*}
$$

and

$$
\begin{equation*}
|\varphi(\rho)| \leq C e^{\left(2-\tau_{1}\right) \rho} \quad \text { for } \rho \in\left(-\infty,-T_{5}\right) \tag{69}
\end{equation*}
$$

Since $Z_{\rho}=\tau_{1} e^{\tau_{1} \rho} \varphi+e^{\tau_{1} \rho} \varphi_{\rho}<0, \tau_{1}<0$ and $\varphi(\rho)<0$ for $\rho \in\left(-\infty,-T_{5}\right)$, we have

$$
\begin{equation*}
\varphi_{\rho} \leq 0, \quad \tau_{1} \varphi \leq-\varphi_{\rho} \quad \text { for } \rho \in\left(-\infty,-T_{5}\right) \tag{70}
\end{equation*}
$$

It follows from (53) and (54) that

$$
\begin{align*}
0= & e^{\tau_{1} \rho} \varphi_{\rho \rho}+2 \tau_{1} e^{\tau_{1} \rho} \varphi_{\rho}+\tau_{1}^{2} e^{\tau_{1} \rho} \varphi+\left(d-2+\frac{2 r \widetilde{v}_{r}}{\widetilde{v}}\right)\left(\tau_{1} e^{\tau_{1} \rho} \varphi+e^{\tau_{1} \rho} \varphi_{\rho}\right) \\
& -\frac{\left(\lambda_{1}-\lambda_{2}\right)}{\nu} r^{2}\left(1-e^{\tau_{1} \rho} \varphi\right)-r^{2} \widetilde{v}^{p-1} \frac{W^{p}-W}{1-W} e^{\tau_{1} \rho} \varphi \\
\leq & e^{\tau_{1} \rho} \varphi_{\rho \rho}+\left(2 \tau_{1}+\alpha_{1}\right) e^{\tau_{1} \rho} \varphi_{\rho}+\left(d-2+\frac{2 r \widetilde{v}_{r}}{\widetilde{v}}-\alpha_{1}\right) e^{\tau_{1} \rho} \varphi_{\rho} \tag{71}\\
& +\left\{\tau_{1}^{2}+\left(d-2+\frac{2 r \widetilde{v}_{r}}{\widetilde{v}}\right) \tau_{1}-r^{2} \widetilde{v}^{p-1} \frac{W^{p}-W}{1-W}\right\} e^{\tau_{1} \rho} \varphi-\frac{\left(\lambda_{1}-\lambda_{2}\right)}{\nu} r^{2}\left(1-e^{\tau_{1} \rho} \varphi\right) .
\end{align*}
$$

It follows from (50) that for any $\varepsilon>0$, there exists $T_{6}>0$ such that

$$
\left|d-2+\frac{2 r \widetilde{v}_{r}}{\widetilde{v}}-\alpha_{1}\right|<\frac{\varepsilon}{4} .
$$

Moreover, (50), (51) and the definition of τ_{1} yields that there exists $T_{7}>T_{6}$ such that

$$
\left|\tau_{1}^{2}+\left(d-2+\frac{2 r \widetilde{v}_{r}}{\widetilde{v}}\right)-r^{2} \widetilde{v}^{p-1} \frac{W^{p}-W}{1-W}\right|<-\tau_{1} \frac{\varepsilon}{4}
$$

By (54), there exists $T_{8}>T_{7}$ and $\nu_{*}>0$ such that for $\nu>\nu_{*}$, we have

$$
\left|\frac{\left(\lambda_{1}-\lambda_{2}\right)}{\nu} r^{2}\left(1-e^{\tau_{1} \rho} \varphi\right)\right|<\frac{\varepsilon}{2} \tau_{1} \varphi
$$

for $\rho \in\left(-\infty,-T_{8}\right)$. These together with (71) imply that

$$
\begin{aligned}
0 & <\varphi_{\rho \rho}+\left(2 \tau_{1}+\alpha_{1}\right) \varphi_{\rho}+\frac{\varepsilon}{4}\left|\varphi_{\rho}\right|+\frac{\varepsilon}{4} \tau_{1} \varphi+\frac{\varepsilon}{4} \tau_{1} \varphi \\
& <\varphi_{\rho \rho}+\left(2 \tau_{1}+\alpha_{1}\right) \varphi_{\rho}+\frac{\varepsilon}{2}\left|\varphi_{\rho}\right|-\frac{\varepsilon}{2} \varphi_{\rho} \\
& <\varphi_{\rho \rho}+\left(2 \tau_{1}+\alpha_{1}-\varepsilon\right) \varphi_{\rho} .
\end{aligned}
$$

for $\rho \in\left(-\infty,-T_{8}\right)$.
(54) implies that $\lim _{\rho \rightarrow-\infty} Z_{\rho}(\rho)=0$. This together with (69) gives us that

$$
\lim _{\rho \rightarrow-\infty} \varphi(\rho)=\lim _{\rho \rightarrow-\infty} \varphi_{\rho}(\rho)=0
$$

Then, integrating from $-\infty$ to ρ yields that

$$
\begin{equation*}
0<\varphi_{\rho}+\left(2 \tau_{1}+\alpha_{1}-\varepsilon\right) \varphi \tag{72}
\end{equation*}
$$

Multiplying (72) by $e^{\left(2 \tau_{1}+\alpha_{1}-\varepsilon\right) \rho}$, we obtain

$$
\begin{equation*}
0<\left\{e^{\left(2 \tau_{1}+\alpha_{1}-\varepsilon\right) \rho} \varphi\right\}_{\rho}, \quad \text { for } \rho \in\left(-\infty,-T_{8}\right) \tag{73}
\end{equation*}
$$

On the other hands, (69) shows that

$$
\left|\varphi(\rho) e^{\left(2 \tau_{1}+\alpha_{1}-\epsilon\right) \rho}\right| \leq C e^{\left(2+\tau_{1}+\alpha_{1}-\epsilon\right) \rho}=C e^{\left(2+\frac{\alpha_{1}}{2}+\frac{1}{2} \sqrt{\alpha^{2}-4(p-1) \beta}-\varepsilon\right) \rho} \rightarrow 0 \quad \text { as } \rho \rightarrow-\infty .
$$

Then, integrating (73) from $-\infty$ to $\rho\left(<-T_{8}\right)$, we have

$$
0<e^{\left(2 \tau_{1}+\alpha_{1}-\varepsilon\right) \rho} \varphi(\rho)
$$

which yields that $\varphi(\rho)>0$ for $\rho \in\left(-\infty,-T_{8}\right)$. This contradicts with (68). Thus, we obtain the desired result.

Acknowledgements

H.K. is partially supported by the Grant-in Aid for Research Activity Start-up \# 23840037 of JSPS. J.W. is partially supported by a General Research Grant entitled "Traveling Wave Solutions and Parabolic De Giorgi Conjecture".

References

[1] J. Dolbeault and I. Flores, Geometry of phase space and solutions of semilinear elliptic equations in a ball, Trans. Amer. Math. Soc., 359 (2007), 4073-4087.
[2] Z. Guo and J. Wei, Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent, Trans. Amer. Math. Soc., 363 (2011), 4777-4799.
[3] F. HadjSelem, Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential, Nonlinearity, 24 (2011), 1795-1819.
[4] F. HadjSelem and H. Kikuchi, Existence and non-existence of solution for semilinear elliptic equation with harmonic potential and Sobolev critical/supercritical nonlinearities, J. Math. Anal. Appl., 387 (2012), 746-754.
[5] M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differential Equations, 178 (2002), 519-540.
[6] M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkcial. Ekvac., 50 (2007), 67-100.
[7] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.
[8] Y. Li and W.-M. Ni, Radial symmetry of positive solution of nonlinear elliptic equations in \mathbb{R}^{N}, Comm. Partial Differential Equations, 18 (1993), 1043-1054.
[9] F. Merle and L. A. Peletier, Positive solutions of elliptic equations involving supercritical growth, Proceeding of the Royal Society of Edingburgh, 118A (1991), 49-62.
[10] W.-M. Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The aumalous case, Atti dei Convegni Lincei 77, Roma, 6-9 maggio 1985.
[11] X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.

