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Abstract. In the past years, there has been a new light shed on the harmonic

map problem with free boundary in view of its connection with nonlocal equa-
tions. Here we fully exploit this link, considering the harmonic map flow with

free boundary
ut = ∆u in R2

+ × (0, T ),

u(x, 0, t) ∈ S1 for all (x, 0, t) ∈ ∂R2
+ × (0, T ),

du
dy

(x, 0, t) ⊥ Tu(x,0,t)S1 for all (x, 0, t) ∈ ∂R2
+ × (0, T ),

u(·, 0) = u0 in R2
+

(0.1)

for a function u : R2
+× [0, T )→ R2. Here u0 : R2

+ → R2 is a given smooth map

and ⊥ stands for orthogonality. We prove the existence of initial data u0 such
that (0.1) blows up at finite time with a profile being the half-harmonic map.

This answers a question raised by Yunmei Chen and Fanghua Lin in Remark

4.9 of [4].

1. Introduction

Let (M, g) be an m-dimensional Riemannian manifold with boundary ∂M and
N be an l-dimensional manifold without boundary. Suppsoe Σ is a k-dimensional
submanifold in N without boundary. Any continuous map u0 : M → N satisfying
u0(∂M) ⊂ Σ defines a relative homotopy class in maps from (M,∂M) to (N,Σ).
A map u : M → N with u(∂M) ⊂ Σ is called homotopic to u0 if there exist a
continuous homotopy h : [0, 1]×M → N satisfying h([0, 1]× ∂M) ⊂ Σ, h(0) = u0

and h(1) = u. An interesting problem is that whether or not each relative homotopy
class of maps has a representation by harmonic maps, which is equivalent to the
following problem, 

−∆u = Γ(u)(∇u,∇u),

u(∂M) ⊂ Σ,
∂
∂νu ⊥ TuΣ.

(1.1)

Here ν is the unit normal vector of M along the boundary ∂M , ∆ ≡ ∆M is
Laplace-Beltrami operator of M , Γ is the second fundamental form of N (viewed
as a submanifold in Rn), TpN is the tangent space in Rn of N at p and ⊥ means
orthogonal in Rn. (1.1) is the Euler-Lagrangian equation for critical points of the
following energy functional

E(u) =

∫
M

|∇u|2dM

defined on the space of maps

H1
Σ(M,N) = {u ∈ H1(M,N) : u(∂M) ⊂ Σ}.

1
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Here H1(M,N) is the usual Sobolev space of maps u : M → N satisfying ∇u ∈ L2.
Existence results and partial regularity of energy minimizing maps on H1

Σ(M,N)
were established (for example) in [1], [12], [13], [14], [16]. A classical method for
(1.1) is to study the following parabolic problem

∂tu−∆u = Γ(u)(∇u,∇u) on M × [0,∞),

u(x, t) ∈ Σ on x ∈ ∂M, t ≥ 0,
∂
∂νu(x, t) ⊥ Tu(x,t)Σ for x ∈ ∂M, t ≥ 0,

u(·, 0) = u0 on M.

(1.2)

This is the so-called harmonic map flow with free boundary. (1.2) was first studied
by Ma [18] in the case m = dimM = 2, where a global existence and uniqueness
result for finite energy weak solutions were obtained under geometrical hypotheses
on N and Σ. Global existence theorem for weak solutions of (1.2) were also estab-
lished by Struwe in [25]. In [15], Hamilton considered the case when ∂N = Σ is
totally geodesic and kN ≤ 0. He proved the global existence of a classical solution
for (1.2). When N = Rn, (1.2) is the standard heat equation

ut −∆u = 0 on M × [0,∞).

As pointed out in [4] and [25], estimates near the boundary for (1.2) are quite
difficult due to the high nonlinearity of the boundary conditions. In [17], Jost, Liu
and Zhu showed that the energy identity at finite singular time as well as at infinity
time and the no-neck property holds at infinite time in a blowing-up process for
(1.2).

In the seminal paper [4] by Chen and Lin, the blow-up phenomenon for harmonic
map flow with free boundary problem was studied, where the authors gave many
blow-up examples in higher dimensions and also a blowing-up theorem. In low
dimensions, they asked the following question: “When M is a smooth domain in
R2, N = Rn and Σ a smooth compact submanifold of Rn, is there is a smooth
initial datum u0 such that (1.2) has no global smooth solutions ?” . In this paper
we answer this question affirmatively. More precisely we consider the problem (1.2)
when M = R2

+ and Σ = S1 ⊂ R2, i.e. the following parabolic equation
ut = ∆u in R2

+ × (0, T ),

u(x, 0, t) ∈ S1 for all (x, 0, t) ∈ ∂R2
+ × (0, T ),

−dudy (x, 0, t) ⊥ Tu(x,0,t)S1 for all (x, 0, t) ∈ ∂R2
+ × (0, T ),

u(·, 0) = u0 in R2
+

(1.3)

for a function u : R2
+ × [0, T ) → R2. Here u0 : R2

+ → R2 is a given smooth map
and ⊥ stands for orthogonality.

The stationary solution of (1.3) u : R2
+ → R2 satisfies

∆u = 0 in R2
+ × (0, T ),

u(x, 0) ∈ S1 for all (x, 0) ∈ ∂R2
+ := R× {0},

−dudy (x, 0) ⊥ Tu(x,0)S1 for all (x, 0) ∈ ∂R2
+.

(1.4)

This is the harmonic extension form of the so-called half harmonic map from R into
S1, which was systematically studied in [20] and the nondegeneracy property was
proved in [22]. In particular, it was proved in [20] that
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Proposition 1.1. Let u ∈ Ḣ1/2(R,S1) be a non-constant entire half-harmonic map
and ue be its harmonic extension to R2

+ satisfying (1.4). There exist d ∈ N, ϑ ∈ R,

{λk}dk=1 ⊂ (0,∞) and {ak}dk=1 ⊂ R such that ue(z) or its complex conjugate equals
to

eiϑ
d∏
k=1

λk(z − ak)− i
λk(z − ak) + i

.

Furthermore, the energy can be expressed as

E(u,R) = [u]2H1/2(R) =
1

2

∫
R2

+

|∇ue|2dz = πd.

This proposition indicates that the map ω : R→ S1

x→

(
2x
x2+1
x2−1
x2+1

)
(1.5)

is a half-harmonic map which corresponds to the case ϑ = 0, d = 1, λ1 = 1 and
a1 = 0. Notice that the previous equations involve nonlinear Neumann boundary
conditions. This is a feature of nonlocal problems and as previously mentioned, we
shall exploit this fact in a systematic way. Our main result is

Theorem 1. Given points q = (q1, · · · , qk) ∈
(
∂R2

+

)k
:= (R × {0})k and any

sufficiently small T > 0, there exists u0 such that the solution uq(x, t) of Problem
(1.3) blows-up at exactly those k points as t ↗ T . More precisely, there exist
numbers k∗i > 0 and a function u∗ ∈ H1(R2

+) ∩ C(R2
+) such that

uq(x, y, t)− u∗(x, y)−
k∑
j=1

[
ω

(
x− qi
λi

,
y

λi

)
− ω(∞)

]
→ 0 as t↗ T,

in the H1 and uniform senses in R2
+ where

λi(t) = k∗i
T − t

| log(T − t)|2
(1 + o(1)) as t↗ T.

In particular, we have

|∇uq(·, ·, t)|2 ⇀ |∇u∗|2 + 2π

k∑
j=1

δqj as t↗ T.

To prove this theorem, we will use the inner-outer gluing scheme which was
proved to be useful in singular perturbation elliptic problems, for example, [8], [9],
[10]. This method has also been developed into various parabolic flows, for example,
the infinite time blowing-up solutions for critical nonlinear heat equation [5], [11],
singularity formation for two dimensional harmonic map flow [6], type II ancient
solution for Yamabe flow [7].

Results similar to Theorem 1 have been established by Davila, del Pino and the
second author in [6] in the case of two dimensional harmonic map flow into S2,
see [21] for earlier results in the corrotational case. Comparing with [6], the main
difficulty in this paper is the nonlocality of the problem (1.3). In fact, according
to [24], we can write problem (1.3) as√

∂t −∆u =
1

8π

[∫ +∞

0

∫
R
|u(x, 0, t)− u(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2
dzdτ

]
u(x, 0, t).
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The problem under consideration interpolates between the two-dimensional har-
monic map flow and the half-harmonic map flow. It inherits characteristics from
both problems. In [23] we showed that for the half-harmonic map flow, infinite time
blow-up exists. In this paper we combine techniques from both papers [6] and [23]
to prove finite time blow up for (1.3), which is unknown even in the corrotational
case. The flow under consideration is actually a reminiscence of a nonlocal geomet-
ric flow involving the operator

√
∂t −∆ described in [24], as previously mentioned,

and enjoys nice monotonicity properties (see for instance [2] for general consid-
erations ). The techniques used in the present paper can also used to deal with
infinite-time blow up for the flow{

ut −∆u = 0 in Rm+1
+ × (0,∞),

− limy→0+
∂u(.,t)
∂y = up∗ ,

where p∗ is the critical exponent for the Trace Sobolev embedding. We plan to
come back to this problem later.

2. Construction of the approximate solution

From [24], we know that problem (1.3) is equivalent to

ut = ∆u in R2
+ × (0, T ),

u(x, 0, t) ∈ S1 for all (x, 0, t) ∈ ∂R2
+ × (0, T ),

−dudy (x, 0, t) = 1
8π

[∫ +∞
0

∫
R |u(x, 0, t)− u(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2 dzdτ

]
u(x, 0, t)

for all (x, 0, t) ∈ ∂R2
+ × (0, T ),

u(x, y, t) = u0(x, y) for all (x, y, t) ∈ R2
+ × (−∞, 0].

(2.1)
Note that we use the factor 1

8π to keep (2.1) agree with the half-harmonic map

equation when u is independent of t. Here and in the following, du
dy (x, 0, t) always

means du
dy |(x,0,t).

2.1. Setting up the problem. Our aim is to find a solution of (2.1) which looks
like

U(x, y, t) := Uλ,ξ(x, y) = ω

(
x− ξ
λ

,
y

λ

)
at main order, where ω(x, y) =

(
2x

x2+(y+1)2

x2+y2−1
x2+(y+1)2

)
is the extension form of the canonical

least energy half-harmonic map (1.5). We look for parameter functions λ(t) and
ξ(t) of class C1 satisfying

lim
t→T

λ(t) = 0, lim
t→T

ξ(t) = q ∈ ∂R2
+,

and a solution to (2.1) with form u(x, y, t) = U(x, y, t) + ϕ(x, y, t) blowing up at
t = T and the point (q, 0). Here ϕ(x, y, t) is a small perturbation term.

Note that problem (2.1) is also equivalent to√
∂t −∆u =

1

8π

[∫ +∞

0

∫
R
|u(x, 0, t)− u(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2
dzdτ

]
u(x, 0, t).

(2.2)
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for all (x, 0, t) ∈ ∂R2
+× (−∞, T ). We refer the interested readers to [24] for the def-

inition of
√
∂t −∆u. Since u(x, 0, t) ∈ S1, as in [6], we parameterize the admissible

perturbation by free small functions ϕ : ∂R2
+ × (−∞, T ) → R2 with the following

form

p(ϕ) := ΠU⊥ϕ+ a(ΠU⊥ϕ)U,

where

ΠU⊥ϕ := ϕ−(ϕ·U)U, a(ΠU⊥ϕ) :=
√

1 + (ϕ · U)2 − |ϕ|2−1 =
√

1− |ΠU⊥ϕ|2−1,

hence |U + p(ϕ)|2 = 1 holds on ∂R2
+ × (−∞, T ). Considering the error operator

defined as

S(u) = −
√
∂t −∆u

+
1

8π

[∫ +∞

0

∫
R
|u(x, 0, t)− u(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2
dzdτ

]
u(x, 0, t),

a useful observation is that if ϕ solves

S(U + ΠU⊥ϕ+ a(ΠU⊥)U) + b̃(x, 0, t)U = 0 (2.3)

for some scalar function b̃(x, 0, t) and |ϕ| < 1
2 , then u = U + ΠU⊥ϕ + a(ΠU⊥ϕ)U

satisfies (2.2), that is to say, S(U + ΠU⊥ϕ+ a(ΠU⊥)U) = 0. Indeed, since |u| = 1,

−b̃(x, t)U ·u = S(u) ·u = 0. On the other hand, since |ϕ| ≤ 1
2 , |a(ΠU⊥ϕ)| ≤ 1

4 , thus

U · u = 1 + a(ΠU⊥ϕ) > 0 and therefore b̃ ≡ 0. Hence we only need to solve (2.3).
Equivalently, we will find ϕ : R2

+ → R such that

(U + ϕ)t = ∆(U + ϕ) in R2
+ × (0, T ),

−d(U+ϕ)
dy (x, 0, t) =(
1

8π

[∫ +∞
0

∫
R |u(x, 0, t)− u(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2 dzdτ

]
u(x, 0, t)

) ∣∣∣∣∣
u=U+ϕ

(U + ϕ) + b̃(x, 0, t)U for all (x, 0, t) ∈ ∂R2
+ × (0, T )

holds. Let us define the error operators as

S1(u) = −ut + ∆u in R2
+ × (0, T ),

S2(u) =
du

dy
(x, 0, t)

+
1

8π

[∫ +∞

0

∫
R
|u(x, 0, t)− u(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2
dzdτ

]
u(x, 0, t)

in (x, 0, t) ∈ ∂R2
+ × (0, T ). For each fixed t, since U is a half-harmonic map, we

have∆U = 0 in R2
+,

−dUdy (x, 0, t) = 1
8π

[∫ +∞
0

∫
R |U(x, 0, t)− U(x− z, 0, t)|2 e

− |z|
2

4τ

τ2 dzdτ

]
U(x, 0, t) in ∂R2

+.
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Hence S1(U) = −Ut and

S2(U) =

{
1

8π

[∫ +∞

0

∫
R
|U(x, 0, t)− U(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2
dzdτ

]

− 1

8π

[∫ +∞

0

∫
R
|U(x, 0, t)− U(x− z, 0, t)|2 e

− |z|
2

4τ

τ2
dzdτ

]}
U(x, 0, t)

Now we compute

0 = S1(U + ϕ) = −Ut − ∂tϕ+ ∆ϕ (2.4)

and

0 = S2(U + ϕ) = S2(U + ΠU⊥ϕ+ aU)

=
d

dy
ϕ(x, 0, τ) + LU (ΠU⊥ϕ) +NU (ΠU⊥ϕ) + b(ΠU⊥ϕ)U

(2.5)

where

LU (ΠU⊥ϕ)

=
1

8π

[∫ +∞

0

∫
R
|U(x, 0, t)− U(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2
dzdτ

]
ΠU⊥ϕ

+
1

4π

[∫ +∞

0

∫
R

(U(x, 0, t)− U(x− z, 0, t− τ))

· (ΠU⊥ϕ(x, 0, t)−ΠU⊥ϕ(x− z, 0, t− τ))
e−
|z|2
4τ

τ2
dzdτ

]
U(x, 0, t),

NU (ΠU⊥ϕ)

=

(
1

4π

∫ +∞

0

∫
R

(a(x, 0, t)U(x, 0, t)− a(x− z, 0, t− τ)U(x− z, 0, t− τ))

·(U(x, 0, t) + ΠU⊥ϕ(x, 0, t)− U(x− z, 0, t− τ)−ΠU⊥ϕ(x− z, 0, t− τ))

×e
− |z|

2

4τ

τ2
dzdτ

+
1

4π

∫ +∞

0

∫
R

(U(x, 0, t)− U(x− z, 0, t− τ))

·(ΠU⊥ϕ(x, 0, t)−ΠU⊥ϕ(x− z, 0, t− τ))
e−
|z|2
4τ

τ2
dzdτ

+
1

8π

∫ +∞

0

∫
R

(ΠU⊥ϕ(x, 0, t)−ΠU⊥ϕ(x− z, 0, t− τ))

·(ΠU⊥ϕ(x, 0, t)−ΠU⊥ϕ(x− z, 0, t− τ))
e−
|z|2
4τ

τ2
dzdτ

+
1

8π

∫ +∞

0

∫
R

(a(x, 0, t)U(x, 0, t)− a(x− z, 0, t− τ)U(x− z, 0, t− τ))

·(a(x, 0, t)U(x, 0, t)− a(x− z, 0, t− τ)U(x− z, 0, t− τ))
e−
|z|2
4τ

τ2
dzdτ

)
ΠU⊥ϕ
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and

b(ΠU⊥ϕ) =

(
1

8π

∫ +∞

0

∫
R
|(U + ΠU⊥ϕ+ a(ΠU⊥ϕ)U)(x, 0, t)

−(U + ΠU⊥ϕ+ a(ΠU⊥ϕ)U)(x− z, 0, t− τ)|2 e
− |z|

2

4τ

τ2
dydτ

)
(1 + a)

− 1

4π

∫ +∞

0

∫
R

(U(x, 0, t)− U(x− z, 0, t− τ))

· (ΠU⊥ϕ(x, 0, t)−ΠU⊥ϕ(x− z, 0, t− τ))
e−
|z|2
4τ

τ2
dydτ

− 1

8π

[∫ +∞

0

∫
R
|U(x, 0, t)− U(x− z, 0, t)|2 e

− |z|
2

4τ

τ2
dzdτ

]
.

By direct computations, we have

S1(U) = −Ut = −E0(x, y, t)− E1(x, y, t).

Here

E0(x, y, t) =

(
2(x−ξ)[(x−ξ)2+(y2−λ2)]

((x−ξ)2+(y+λ)2)2

−2y(y+λ)2−2(x−ξ)2(y+2λ)
((x−ξ)2+(y+λ)2)2

)
λ̇ ≈

(
2(x−ξ)

(x−ξ)2+y2+λ2

−2y
(x−ξ)2+y2+λ2

)
λ̇, (2.6)

E1(x, y, t) =

(
2λ(x+y+λ−ξ)(x−y−λ−ξ)

((x−ξ)2+(y+λ)2)2

−4λ(x−ξ)(y+λ)
((x−ξ)2+(y+λ)2)2

)
ξ̇.

Since E0(x, y, t) is not L2 integrable, we shall decompose the correction ϕ into
ϕ = Φ∗ + Φ and system (2.4), (2.5) transforms into the following

0 = S1(U + ϕ) = −Ut − ∂tΦ∗ + ∆Φ∗ − ∂tΦ + ∆Φ (2.7)

and

0 =
d

dy
Φ∗(x, 0, τ) + LU (ΠU⊥Φ∗)

+
d

dy
Φ(x, 0, τ) + LU (ΠU⊥Φ) +NU (ΠU⊥(Φ∗ + Φ)) + b̃(x, 0, t)U.

(2.8)

The correction Φ∗ will be chosen such that the term −E0 is canceled at main order
away from the blow up point (ξ, 0).

2.2. The definition of Φ∗. Let us consider the linear problem (2.7),

0 = −∂tΦ + ∆Φ + E∗1
where

E∗1 = −Ut − ∂tΦ∗ + ∆Φ∗.

Our aim is to construct a function Φ∗ such that E∗1 is smaller than the largest term
−E0 of the initial error −Ut given by (2.6) away from the blow-up point q.

As in [6], we decompose Φ∗ into the following form

Φ∗ := Φ0[λ, ξ] + Z∗(x, y, t)

where

Z∗(x, y, t) =

(
z∗1(x, y, t)
z∗2(x, y, t)

)
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is a solution of the heat equation
∂tZ

∗ = ∆Z∗ in R2
+ × (0, T ),

− d
dyZ

∗(x, 0, t) = 0 in ∂R2
+ × (0, T ),

Z∗(x, y, 0) = Z∗0 (x, y)

independent of the parameter functions. Further assumptions on Z∗0 will be given
in subsection 2.5. Φ0[λ, ξ] is an explicit function satisfying

− E0 − ∂tΦ∗ + ∆Φ∗ ≈ 0. (2.9)

Observe that if φ0 is a solution to

−φ0
t + ∆φ0 −

(
2(x−ξ)

(x−ξ)2+y2+λ2

−2y
(x−ξ)2+y2+λ2

)
λ̇ = 0,

then Φ0 = φ0 will satisfy (2.9). Set

p(t) = −2λ̇,

z(r) =
√

(x− ξ)2 + y2 + λ2,

φ0(x, y, t) =

(
x− ξ
−y

)
ψ(z(r), t).

Then ψ(z, t) satisfies

ψt = ψzz +
3ψz
z

+
p(t)

z2

which is the radially symmetric form of an inhomogeneous heat equation in R4.
Then Duhamel’s formula gives the following expression for a weak solution

ψ(z, t) =

∫ t

−T
p(s)k(z, t− s)ds, k(z, t) =

1− e− z
2

4t

z2
,

where p(t) is also defined for negative values of t by setting p(t) = −2λ̇(0) for
t ∈ [−T, 0). Now we define

Φ0 =

(
ϕ0

ϕ1

)
,

ϕ0 = (x− ξ)
∫ t

−T
p(s)k(z(r), t− s)ds

and

ϕ1 = −y
∫ t

−T
p(s)k(z(r), t− s)ds.

Now, we compute

−Φ0
t =


−(x− ξ)ψt + ξ̇

∫ t

−T
p(s)k(z(r), t− s)ds

+
x− ξ
z2

∫ t

−T
p(s)zkz(z(r), t− s)ds

[
(x− ξ)ξ̇ − λ̇λ

]
yψt − y

z2

∫ t
−T p(s)zkz(z(r), t− s)ds

[
(x− ξ)ξ̇ − λ̇λ

]

 ,
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∆Φ0 =


3(x− ξ)

∫ t

−T
p(s)kz

1

z
ds+ (x− ξ)

∫ t

−T
p(s)kzzds

+ (x− ξ)λ
2

z4

∫ t

−T
p(s)[kzz − kzzz2]ds

−3y
∫ t
−T p(s)kz

1
zds− y

∫ t
−T p(s)kzzds− y

λ2

z4

∫ t
−T p(s)[kzz − kzzz

2]ds

 .

Therefore, we have

−Φ0
t + ∆Φ0 = R̃0 + R̃1,

where

R̃0 =

(
−(x− ξ)p(t)z2 + (x−ξ)λ2

z4

∫ t
−T p(s)[zkz − z

2kzz]ds

y p(t)z2 −
yλ2

z4

∫ t
−T p(s)[zkz − z

2kzz]ds

)
,

R̃1 =

ξ̇ ∫ t−T p(s)kds+ (x−ξ)
z2

[
(x− ξ)ξ̇ − λ̇λ

] ∫ t
−T p(s)zkzds

− y
z2

[
(x− ξ)ξ̇ − λ̇λ

] ∫ t
−T p(s)zkzds

 .

2.3. Estimate of the inner error. Now we compute the inner error E∗1 := −Φ∗t +
∆Φ∗ − Ut as

E∗1 = −Φ∗t + ∆Φ∗ − Ut
= −[Φ0 + Z∗]t + ∆[Φ0 + Z∗]− Ut
= R̃0 + R̃1 − Ut

=

(
−(x− ξ)p(t)z2 + (x−ξ)λ2

z4

∫ t
−T p(s)[zkz − z

2kzz]ds

y p(t)z2 −
yλ2

z4

∫ t
−T p(s)[zkz − z

2kzz]ds

)

+

ξ̇ ∫ t−T p(s)kds+ (x−ξ)
z2

[
(x− ξ)ξ̇ − λ̇λ

] ∫ t
−T p(s)zkzds

− y
z2

[
(x− ξ)ξ̇ − λ̇λ

] ∫ t
−T p(s)zkzds


−

(
2(x−ξ)[(x−ξ)2+(y2−λ2)]

((x−ξ)2+(y+λ)2)2

−2y(y+λ)2−2(x−ξ)2(y+2λ)
((x−ξ)2+(y+λ)2)2

)
λ̇−

(
2λ(x+y+λ−ξ)(x−y−λ−ξ)

((x−ξ)2+(y+λ)2)2

−4λ(x−ξ)(y+λ)
((x−ξ)2+(y+λ)2)2

)
ξ̇

=

(
2(x− ξ) λ̇z2 + (x−ξ)λ2

z4

∫ t
−T p(s)[zkz − z

2kzz]ds

−2y λ̇z2 −
yλ2

z4

∫ t
−T p(s)[zkz − z

2kzz]ds

)

+

ξ̇ ∫ t−T p(s)kds+ (x−ξ)
z2

[
(x− ξ)ξ̇ − λ̇λ

] ∫ t
−T p(s)zkzds

− y
z2

[
(x− ξ)ξ̇ − λ̇λ

] ∫ t
−T p(s)zkzds


−

(
2(x−ξ)[(x−ξ)2+(y2−λ2)]

((x−ξ)2+(y+λ)2)2

−2y(y+λ)2−2(x−ξ)2(y+2λ)
((x−ξ)2+(y+λ)2)2

)
λ̇−

(
2λ(x+y+λ−ξ)(x−y−λ−ξ)

((x−ξ)2+(y+λ)2)2

−4λ(x−ξ)(y+λ)
((x−ξ)2+(y+λ)2)2

)
ξ̇,
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hence

E∗1 = λ̇

(
2(x−ξ)
z2 − 2(x−ξ)[(x−ξ)2+(y2−λ2)]

((x−ξ)2+(y+λ)2)2

−2y
z2 + 2y(y+λ)2+2(x−ξ)2(y+2λ)

((x−ξ)2+(y+λ)2)2

)
− ξ̇

(
2λ(x+y+λ−ξ)(x−y−λ−ξ)

((x−ξ)2+(y+λ)2)2

−4λ(x−ξ)(y+λ)
((x−ξ)2+(y+λ)2)2

)

+
λ2

z4

∫ t

−T
p(s)[zkz − z2kzz]ds

(
x− ξ
−y

)

+

[
(x− ξ)ξ̇ − λ̇λ

]
z2

∫ t

−T
p(s)zkzds

(
x− ξ
−y

)
+

∫ t

−T
p(s)kds

(
ξ̇
0

)

= λ̇

(
2(x−ξ)
z2 − 2(x−ξ)[(x−ξ)2+(y2−λ2)]

((x−ξ)2+(y+λ)2)2

−2y
z2 + 2y(y+λ)2+2(x−ξ)2(y+2λ)

((x−ξ)2+(y+λ)2)2

)
− ξ̇

(
2λ(x+y+λ−ξ)(x−y−λ−ξ)

((x−ξ)2+(y+λ)2)2

−4λ(x−ξ)(y+λ)
((x−ξ)2+(y+λ)2)2

)

+
ρ

λ(ρ2 + 1)2

∫ t

−T
p(s)[zkz − z2kzz]ds

(
x−ξ
r
−yr

)

+

[
(x− ξ)ξ̇ − λ̇λ

]
r

z2

∫ t

−T
p(s)zkzds

(
x−ξ
r
−yr

)
+

∫ t

−T
p(s)kds

(
ξ̇
0

)
.
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Here we have used the notations r =
√

(x− ξ)2 + y2, ρ = r/λ and rλ2/z4 =
ρ

λ(ρ2+1)2 . Furthermore, we have

E∗1 = λ̇

(
2(x−ξ)
z2 − 2(x−ξ)[(x−ξ)2+(y2−λ2)]

((x−ξ)2+(y+λ)2)2

−2y
z2 + 2y(y+λ)2+2(x−ξ)2(y+2λ)

((x−ξ)2+(y+λ)2)2

)
− ξ̇

(
2λ(x+y+λ−ξ)(x−y−λ−ξ)

((x−ξ)2+(y+λ)2)2

−4λ(x−ξ)(y+λ)
((x−ξ)2+(y+λ)2)2

)

+
ρ

λ(ρ2 + 1)2

∫ t

−T
p(s)[zkz − z2kzz]ds

(
x−ξ
r
−yr

)

+

[
(x− ξ)ξ̇ − λ̇λ

]
r

z2

∫ t

−T
p(s)zkzds

(
x−ξ
r
−yr

)
+

∫ t

−T
p(s)kds

(
ξ̇
0

)
= λ̇

(
2(x−ξ)
r

− 2y
r

)
r

[
1

(x− ξ)2 + y2 + λ2
− (x− ξ)2 + y2

[(x− ξ)2 + y2 + λ2]
2

]

+ λ̇

2(x− ξ) (x−ξ)2+y2

[(x−ξ)2+y2+λ2]2
− 2(x−ξ)[(x−ξ)2+(y2−λ2)]

((x−ξ)2+(y+λ)2)2

−2y (x−ξ)2+y2

[(x−ξ)2+y2+λ2]2
+ 2y(y+λ)2+2(x−ξ)2(y+2λ)

((x−ξ)2+(y+λ)2)2


− ξ̇

(
2λ(x+y+λ−ξ)(x−y−λ−ξ)

((x−ξ)2+(y+λ)2)2

−4λ(x−ξ)(y+λ)
((x−ξ)2+(y+λ)2)2

)

+
ρ

λ(ρ2 + 1)2

∫ t

−T
p(s)[zkz − z2kzz]ds

(
x−ξ
r
−yr

)

+

[
(x− ξ)ξ̇ − λ̇λ

]
r

z2

∫ t

−T
p(s)zkzds

(
x−ξ
r
−yr

)
+

∫ t

−T
p(s)kds

(
ξ̇
0

)
= λ̇

ρ

λ(ρ2 + 1)2

(
2(x−ξ)
r

− 2y
r

)

+ λ̇

2(x− ξ) (x−ξ)2+y2

[(x−ξ)2+y2+λ2]2
− 2(x−ξ)[(x−ξ)2+(y2−λ2)]

((x−ξ)2+(y+λ)2)2

−2y (x−ξ)2+y2

[(x−ξ)2+y2+λ2]2
+ 2y(y+λ)2+2(x−ξ)2(y+2λ)

((x−ξ)2+(y+λ)2)2


− ξ̇

(
2λ(x+y+λ−ξ)(x−y−λ−ξ)

((x−ξ)2+(y+λ)2)2

−4λ(x−ξ)(y+λ)
((x−ξ)2+(y+λ)2)2

)

+
ρ

λ(ρ2 + 1)2

∫ t

−T
p(s)[zkz − z2kzz]ds

(
x−ξ
r
−yr

)

+

[
(x− ξ)ξ̇ − λ̇λ

]
r

z2

∫ t

−T
p(s)zkzds

(
x−ξ
r
−yr

)
+

∫ t

−T
p(s)kds

(
ξ̇
0

)
.

2.4. Estimate of the boundary error. Equation (2.8) can be approximated by
the following linear problem

0 = E∗2 +
d

dy
Φ(x, 0, τ) + LU (ΠU⊥Φ) +NU (ΠU⊥(Φ∗ + Φ)) + b̃(x, 0, t)U,

where

E∗2 =
d

dy
Φ∗(x, 0, τ) + LU (ΠU⊥Φ∗).
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Now we compute the boundary error E∗2 with Φ∗ = Φ0 + Z∗. First, we have

d

dy

[
Φ0 + Z∗

]
=

d

dy
Φ0

=
d

dy

(
(x− ξ)

∫ t
−T p(s)k(z(r), t− s)ds

−y
∫ t
−T p(s)k(z(r), t− s)ds

)

=

(
0

−
∫ t
−T p(s)k(z(r), t− s)|y=0ds

)
=

(
0

−
∫ t
−T p(s)k(

√
(x− ξ)2 + λ2, t− s)ds

)
.

Then, when T > 0 is sufficiently small, there holds

E∗2 =
d

dy
Φ0(x, 0, t)

+
1

8π

[∫ +∞

0

∫
R
|U(x, 0, t)− U(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2
dzdτ

]
ΠU⊥ [Φ∗]

+
1

4π

∫ +∞

0

∫
R

(U(x, 0, t)− U(x− z, 0, t− τ))

· (ΠU⊥ [Φ∗](x, 0, t)−ΠU⊥ [Φ∗](x− z, 0, t− τ))
e−
|z|2
4τ

τ2
dzdτU (x, 0, t)

≈
(

0

−
∫ t
−T p(s)k(

√
(x− ξ)2 + λ2, t− s)ds

) ∣∣∣∣∣
y= x−ξ

λ

+
2

1 + y2

(
y
∫ t
−T p(s)k(

√
λ2y2 + λ2, t− s)ds

0

) ∣∣∣∣∣
y= x−ξ

λ

+
2

1 + y2

1

λ

(
z∗1(ξ + λy, 0, t)
z∗2(ξ + λy, 0, t)

) ∣∣∣∣∣
y= x−ξ

λ

+ b(x, 0, t)U(x, 0, t)

for some scalar function b(x, 0, t) which depends on ϕ(x, 0, t).

2.5. Improve error near the blow up point: choice of λ and ξ. System (2.7)
and (2.8) can be approximated by the following linear problem

0 = −∂tϕ+ ∆ϕ+ E∗1 (2.10)

and

0 =
d

dy
ϕ(x, 0, t) + LU (ϕ) + E∗2 + b(x, 0, t)U, ϕ(x, 0, t) · U(x, 0, t) = 0. (2.11)

A choice of the parameter functions is possible when suitable conditions Z∗0 (x, y)
are assumed. For a point (q, 0) ∈ ∂R2

+ and a smooth function

Z̃0(x, y) =

(
z̃01(x, y)
z̃02(x, y)

)
satisfying

Z̃0(q, 0) =

(
0
0

)
, ∂xz̃02(q, 0) < 0,
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we define

Z∗0 := δZ̃0(x, y) =

(
z∗01(x, y)
z∗02(x, y)

)
for a fixed but small number δ > 0.

If we write

ϕ(x, y, t) = φ(u, v, t), u =
x− ξ
λ

, v =
y

λ
,

then (2.10) and (2.11) becomes

0 = −λ2∂tφ+ ∆φ+ λ2E∗1
and

0 =
d

dv
φ(u, 0, t) + Lω(φ) + λE∗2 + b(u, 0, t)ω, φ · ω = 0.

Then an improvement of the approximation can be achieved if the following time-
independent problem

0 = ∆φ+ λ2E∗1 , (2.12)

0 =
d

dv
φ(u, 0) + Lω(φ) + λE∗2 , φ · ω = 0 (2.13)

and

lim
|(u,v)|→∞

φ(u, v) = 0 in R2
+ (2.14)

is satisfied approximately. Note that the decay condition (2.14) is needed to not
essentially modify the size of error far away from (q, 0).

2.5.1. Nondegeneracy of the half harmonic maps. It was proved in [22] that ω is
nondegenerate, which is a crucial ingredient in the singularity formation problem
of half-harmonic map flow ( [23]). Observe that ω is invariant under dilation,

translation and rotation, equivalently, for Q =

(
cosα − sinα
sinα cosα

)
∈ O(2), q ∈ R

and λ ∈ R+, the function

Qω

(
x− q
λ

)
=

(
cosα − sinα
sinα cosα

)
ω

(
x− q
λ

)
is still a solution of problem (1.4). Differentiating with α, q and λ respectively,
then we set α = 0, q = 0, λ = 1 and obtain that the following three functions

Z1(x) =

(
1−x2

x2+1
2x
x2+1

)
, Z2(x) =

(
2(x2−1)
(x2+1)2
−4x

(x2+1)2

)
, Z3(x) =

(
2x(x2−1)
(x2+1)2

−4x2

(x2+1)2 ,

)
which satisfy the linearized equation at ω of (1.4) defined by

(−∆)
1
2 v(x) =

(
1

2π

∫
R

|ω(x)− ω(y)|2

|x− y|2
dy

)
v(x)

+

(
1

π

∫
R

(ω(x)− ω(y)) · (v(x)− v(y))

|x− y|2
dy

)
ω(x) in R

for v : R → TUS1. Using this harmonic extension (see [3] for generalization), we
have the following extension form of ω and Z1(x), Z2(x), Z3(x),

ω(x) =

(
2x
x2+1
x2−1
x2+1

)
→ ω(x, y) =

(
2x

x2+(y+1)2

x2+y2−1
x2+(y+1)2

)
,
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Z1(x) =

(
1−x2

x2+1
2x
x2+1

)
→ Z1(x, y) =

(
1−x2−y2
x2+(y+1)2

2x
x2+(y+1)2

)
,

Z2(x) =

(
2(x2−1)
(x2+1)2
−4x

(x2+1)2

)
→ Z2(x, y) =

(
2x2−2(y+1)2

(x2+(y+1)2)2

−4x(y+1)
(x2+(y+1)2)2

)
,

Z3(x) =

(
2x(x2−1)
(x2+1)2

−4x2

(x2+1)2

)
→ Z3(x, y) =

(
2x(x2+y2−1)
(x2+(y+1)2)2

− 2(y(y+1)2+x2(2+y))
(x2+(y+1)2)2

)
.

2.5.2. Choice of λ. Testing (2.12) with Z3(x, y) and integrating by parts, by the
Stokes theorem and decay assumption (2.14), it holds that

λ

∫
R2

+

E∗1 · Z3dudv +

∫
R
E∗2 · Z3du = 0. (2.15)

From the computation of Section 2.3, we have

λ

∫
R2

+

E∗1 · Z3 ≈ πλ̇+ π

∫ t

−T
p(s)Γ

(
λ2

t− s

)
ds

t− s

where

Γ(τ) =

∫ ∞
0

2ρ2

(ρ2 + 1)2
[ζKζ − ζ2K2

ζ ]|ζ=τ(1+ρ2)dρ.

On the other hand, from Section 2.4, we have∫
R
E∗2 · Z3 =

∫
R

[
4x2

(x2 + 1)2

∫ t

−T
p(s)k(

√
λ2x2 + λ2, t− s)ds

]
dx+ 2πb2

=

∫ t

−T

[
p(s)

∫
R

4x2

(x2 + 1)2
k(
√
λ2x2 + λ2, t− s)dx

]
ds+ 2πb2

=

∫ t

−T
p(s)Γb

(
λ(t)2

t− s

)
ds

t− s
+ 2πb2

where

Γb(τ) =

∫ ∞
0

8ρ2

(ρ2 + 1)2

1− e−
ζ
4

ζ
|ζ=τ(1+ρ2)dρ

and b2 = ∂xz
∗
02|(q,0). Then (2.15) becomes

λ̇+

∫ t

−T
p(s)Γ

(
λ2

t− s

)
ds

t− s
+

1

π

∫ t

−T
p(s)Γb

(
λ(t)2

t− s

)
ds

t− s
+ 2b2 = 0.

Hence

λ̇+

∫ t

−T
p(s)Γ0

(
λ2

t− s

)
ds

t− s
+ 2b2 = 0,

where Γ0(τ) = Γ(τ) + 1
πΓb(τ). This function satisfies

Γ0(0) = c 6= 0, Γ0(τ) = O(
1

τ
) as τ → +∞.

Denote

A[λ, ξ] = λ̇+

∫ t

−T
p(s)Γ0

(
λ2

t− s

)
ds

t− s
+ 2b2.
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Now we claim that by the simple ansatz

λ̇(t) = − κ| log T |
log2(T − t)

for some constant κ > 0, then

A(λ)(t) = o(1) (2.16)

will be achieved, here o(1) vanishes at t = T and is uniformly small with T . Denote

B[λ, ξ](t) :=

∫ t

−T
λ̇(s)Γ0

(
λ2

t− s

)
ds

t− s
.

Similar arguments as [6] show that

|B[λ, ξ](t)− cκ| . κ log(| log T |)
| log T |

.

Therefore

A[λ, ξ] = cκ(1 + o(1)) + 2b2.

Then we assume that d
dxz
∗
02(q, 0) < 0, (2.16) is satisfied by choosing

κ0 = −2

c

d

dx
z∗02(q, 0).

Define

λ̇0(t) = − κ0| log T |
log2(T − t)

. (2.17)

2.5.3. Choice of ξ. Similarly, testing (2.12) with Z2(x, y) we get

λ

∫
R2

+

E∗1 · Z2dy =

∫
R
E∗2 · Z2dy. (2.18)

By direct computations, we have

λ

∫
R2

+

E∗1 · Z2 ≈ −ξ̇
∫
R2

+

Z2(u, v) · Z2(u, v)dudv = −πξ̇

and ∫
R
E∗2 · Z2 = 0.

Therefore (2.18) becomes

−πξ̇ ≈ 0.

This can be achieved by simply choosing

ξ0(t) = (q, 0). (2.19)
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2.6. The final ansatz. Fix λ0(t) defined in (2.17) and ξ0(t) in (2.19). We write

λ(t) = λ0(t) + λ1(t), ξ(t) = ξ0(t) + ξ1(t).

We are looking for a small solution ϕ of

0 = E∗1 − ∂tϕ+ ∆ϕ (2.20)

and

0 = E∗2 +
d

dy
ϕ(x, 0, t) + LU (ΠU⊥ϕ) +NU (ΠU⊥(Φ∗ + ϕ)) + b(x, 0, t)U. (2.21)

where

Φ∗ = Φ[λ, ξ] + Z∗.

In terms of problem (1.3), we let

u = U + Φ∗ + ϕ

solves the problem

ut = ∆u in R2
+ × (0, T ),

u(x, 0, t) ∈ S1 for all (x, 0, t) ∈ ∂R2
+ × (0, T ),

−dudy (x, 0, t) = 1
8π

[∫ +∞
0

∫
R |u(x, 0, t)− u(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2 dzdτ

]
u(x, 0, t)

for all (x, 0, t) ∈ ∂R2
+ × (0, T ),

u(x, y, t) = u0(x, y) for all (x, y, t) ∈ R2
+ × (−∞, 0].

3. The outer-inner gluing scheme

By possibly modifying b(x, 0, t), system (2.20)-(2.21) can be rewritten as

0 = E∗1 − ∂tϕ+ ∆ϕ in R2
+ × (0, T ), (3.1)

and

0 = E∗2 +
d

dy
ϕ(x, 0, t)

+
2

1 + |(u, v)|2
ΠU⊥ϕ

+
1

π

[∫
R

(U(x, 0, t)− U(x− z, 0, t)) · (ΠU⊥ϕ(x, 0, t)−ΠU⊥ϕ(x− z, 0, t))
|z|2

dz

]
U(x, 0, t)

+

[
1

8π

∫ +∞

0

∫
R
|U(x, 0, t)− U(x− z, 0, t− τ)|2 e

− |z|
2

4τ

τ2
dzdτ − 2

1 + |(u, v)|2

]
ΠU⊥ϕ

+NU (ΠU⊥(Φ∗ + ϕ)) + b(x, 0, t)U in ∂R2
+ × (0, T ).

(3.2)

Here and in the rest of this paper, we use the notation u = x−ξ(t)
λ(t) and v = y

λ(t) .

Let η0(s) be a smooth cut-off function with η0(s) = 1 for s < 1 and = 0 for s > 3
2 .

Consider an increasing function R(t) satisfying

R(t) > 0, R(t)→∞ as t↗ T
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and define

η(x, t) := η0

(
x− ξ(t)
R(t)λ(t)

)
, τλ(t) = τ0 +

∫ t

0

ds

λ2(s)

such that

τλ ∼ τ0 +
1

λ0

log2(T − t)
log T

.

We decompose the function ϕ(x, y, t) into the following form

ϕ(x, y, t) = ηφ

(
x− ξ(t)
λ(t)

,
y

λ(t)
, τλ(t)

)
+ ψ(x, y, t) (3.3)

with φ(u, v, τ) = 0 for τ ∈ (−∞, τ0] and φ(u, 0, τ) ·ω(u, 0) ≡ 0 for all τ ∈ (τ0,+∞).
Then ϕ(x, y, t) given by (3.3) solves (3.1)-(3.2) if the pair (φ, ψ) satisfies the follow-
ing system of evolution equations

∂τφ = ∆φ+ χD2R
λ2E∗1 in R2

+ × (τ0,+∞),

− d
dvφ(u, 0, τ) = 2

1+|u|2φ

+ 1
π

[∫
R

(ω(u,0)−ω(u−z,0))·(φ(u,0,τ)−φ(u−z,0,τ))
|z|2 dz

]
ω(u, 0)

+χD2R∩(∂R2
+×(τ0,+∞))

(
λΠω⊥E∗2 + 2

1+|u|2 Πω⊥ψ
)

+χD2R∩(∂R2
+×(τ0,+∞))

×
(

1
π

∫
R

(ω(u,0)−ω(u−z,0))·(Π
ω⊥ψ(u,0,τ)−Π

ω⊥ψ(u−z,0,τ))
|z|2 dz

)
ω(u, 0)

in ∂R2
+ × (τ0,+∞),

φ = 0 in R2
+ × (−∞, τ0]

(3.4)

and

∂tψ = ∆ψ − λ̇
λ (u, v) · ∇(u,v)φ− ξ̇

λ
dφ
du

+[∆ηφ+ 2
λ∇η∇φ− ∂tηφ] + (1− η)E∗1 in R2

+ × (0, T ),
− d
dyψ(x, 0, t)

= (1− η) 2λ
λ2+|x−ξ(t)|2ψ + (1− η)ΠU⊥E∗2

+
(
d
dyη
)

(x, 0, t)φ+NU (ΠU⊥(Φ∗ + ϕ)) in ∂R2
+ × (0, T ),

ψ = ψ0 in R2
+ × (−∞, 0].

(3.5)

Here ψ0 is a small function which will be determined later, χA is the characteristic
function of the set A, i.e., χ(z) = 1 if z ∈ A, χ(z) = 0 if z 6∈ A, ψ∞ is defined by

ψ∞[λ, ξ] = (u∞ − U)−ΠU⊥ [ϕ∗] + ã(u∞ − U,ΠU⊥ [ϕ∗]),

u∞(x, y) =
Z∗0 (x, y) + ~e

|Z∗0 (x, y) + ~e|
, ~e =

(
0
1

)
.

Here ã(·, ·) is determined by the following nonlinear equation

ΠU⊥ [ϕ] = (u∞ − U)−ΠU⊥ [ϕ∗] + a(ΠU⊥ [ϕ∗] + ΠU⊥ [ϕ])U.

Here we also define the set DγR = {(u, v, τ)|τ ∈ (τ0,+∞), (u, v) ∈ R2
+, |(u, v)| ≤

γR} for γ > 0.
(3.4) is the so-called inner problem and (3.5) is the outer problem. This is a

highly nonlinear system, we will apply Schauder’s fixed point theorem to solve it.
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To this aim, we need a linear theory of the following equation

∂τφ = ∆φ+ χD2R
λ2E∗1 in R2

+ × (τ0,+∞),

− d
dvφ(u, 0, τ) = 2

1+|u|2φ

+ 1
π

[∫
R

(ω(u,0)−ω(u−z,0))·(φ(u,0,τ)−φ(u−z,0,τ))
|z|2 dz

]
ω(u, 0)

+G[λ, ξ, ψ](u, 0, τ) in ∂R2
+ × (τ0,+∞),

φ = 0 in R2
+ × (−∞, τ0]

where

G[λ, ξ, ψ]

= χD2R∩(∂R2
+×(τ0,+∞))

(
λΠω⊥E∗2 +

2

1 + |u|2
Πω⊥ψ

)
+ χD2R∩(∂R2

+×(τ0,+∞))×(
1

π

∫
R

(ω(u, 0)− ω(u− z, 0)) · (Πω⊥ψ(u, 0, τ)−Πω⊥ψ(u− z, 0, τ))

|z|2
dz

)
ω(u, 0).

In Section 4, we will construct a solution φ of the following equation
∂τφ = ∆φ+ g(u, v, τ) in R2

+ × (τ0,+∞),

− d
dvφ(u, 0, τ) = 2

1+|u|2φ+A[φ] + h(u, τ) in ∂R2
+ × (τ0,+∞),

φ = 0 in R2
+ × (−∞, τ0],

(3.6)

which defines a bounded linear operator of the functions g (with compact support
in D2R) and h (with compact support in D2R ∩

(
∂R2

+ × (τ0,+∞)
)
) satisfying good

L∞-weight estimates when certain further orthogonality conditions hold. Here and
in the following, we use the notation

A[φ] :=
1

π

[∫
R

(ω(u, 0)− ω(u− z, 0)) · (φ(u, 0, τ)− φ(u− z, 0, τ))

|z|2
dz

]
ω(u, 0).

In Section 5, we use Schauder’s fixed point theorem to prove the existence of solution
for (3.4) and (3.5). This provides a solution to (1.3) and Theorem 1 is concluded.

4. Linear theory for the inner problem

In this section, we consider (3.6). Our aim is to construct a solution for (3.6)
which defines a bounded linear operator of g, h and satisfies good bounds in suitable
weighted norms. We divide the discussion into two cases.

• Case 1. The first component of the vector-valued function φ(u, v, τ) is
odd in the variable u, the second component of the vector-valued function
φ(u, v, τ) is even in the variable u. Correspondingly, we assume the first
components of the vector-valued functions g(u, v, τ) and h(u, τ) are odd
in the variable u, the second components of the vector-valued functions
g(u, v, τ) and h(u, τ) are even in the variable u.
• Case 2. The first component of the vector-valued function φ(u, v, τ) is

even in the variable u, the second component of the vector-valued function
φ(u, v, τ) is odd in the variable u. Correspondingly, we assume the first
components of the vector-valued functions g(u, v, τ) and h(u, τ) are even
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in the variable u, the second components of the vector-valued functions
g(u, v, τ) and h(u, τ) are odd in the variable u.

4.1. Case 1. This subsection is devoted to construct a solution to the initial value
problem

∂τφ = ∆φ+ g(u, v, τ) in B+
2R(τ) × (τ0,+∞),

− d
dvφ = Lω[φ] + h(u, τ) in

(
B+

2R(τ) × (τ0,+∞)
)
∩
(
∂R2

+ × (τ0,+∞)
)
,

φ(u, v, τ) = 0 in B+
2R(τ) × (−∞, τ0],

φ · ω = 0 in
(
B+

2R(τ) × (τ0,+∞)
)
∩
(
∂R2

+ × (τ0,+∞)
)
.

(4.1)

for any given functions g, h with ‖g‖a,ν < +∞, ‖h‖a,ν < +∞, the first components
of g and h are even in the u variable, we use the idea from [5] and [6].

Proposition 4.1. Let 1 < a < 2 and ν > 0 be given positive numbers. Then, for
any g, h with ‖g‖a,ν < +∞, ‖h‖a,ν < +∞, the first components of g and h are odd
in the u variable, the second components of g and h are even in the u variable, and
satisfying∫

B+
2R

g(u, v, τ)·Z3(u, v)dudv+

∫ 2R

−2R

h(u, τ)·Z3(u)du = 0 for all τ ∈ (τ0,∞) (4.2)

there exist φ = φ[g, h] solving (4.1) which defines a bounded linear operator of g, h.
Furthermore, the following estimate holds

|φ[g, h]| . τ−νR2 log2R

(
‖h‖a,ν

1 + |u|a
+
R2−a‖g‖a,ν
1 + |(u, v)|2

)
.

Proof of Proposition 4.1. We divide the proof into two steps. First, we con-
struct a solution to (4.1) with zero boundary condition on R2

+ \ B+
2R(τ) and for g,

h not necessarily satisfying condition (4.2). Then, we use of this construction to
solve (4.1).

Step 1. We claim that for any G, H satisfying ‖G‖b,ν < +∞, ‖H‖c,ν < +∞,
b ∈ (−1, 2), c ∈ (−1, 1), there exists φ = φ(u, v, τ) solving

∂τφ = ∆φ+G(u, v, τ) in B+
2R(τ) × (τ0,+∞),

− d
dvφ = Lω[φ] +H(u, τ) in

(
B+

2R(τ) × (τ0,+∞)
)
∩
(
∂R2

+ × (τ0,+∞)
)
,

φ = 0 on
(
R2

+ \B+
2R(τ)(0)

)
× (τ0,+∞),

φ(u, v, τ) = 0 in B+
2R(τ) × (−∞, τ0]

(4.3)
and satisfying

(1 + |(u, v)|)|∇φ(u, v, τ)|+ |φ(u, v, τ)|

. τ−νR2 log2R(R2−b‖G‖b,ν +R1−c‖H‖c,ν).

Let η(s) be a smooth cut-off function, for a fixed but large number ` independent
from R, we define η`(u, v) = η(|(u, v)| − `). From standard parabolic theory, there
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exists a unique solution φ∗[G,H] of
∂τφ = ∆φ+G(u, v, τ) in B+

2R(τ) × (τ0,+∞),

− d
dvφ = Lω[(1− η`)φ] +H(u, τ) in

(
B+

2R(τ) × (τ0,+∞)
)
∩
(
∂R2

+ × (τ0,+∞)
)
,

φ = 0 on
(
R2

+ \B+
2R(τ)(0)

)
× (τ0,+∞),

φ(u, v, τ) = 0 in B+
2R(τ) × (−∞, τ0].

The first component of φ∗[G,H] is even in the u variable and satisfies

|φ∗[G,H]| . τ−ν(R2−b‖G‖b,ν +R1−c‖H‖c,ν).

Setting φ = φ∗[G,H] + φ̃, then (4.3) is reduced to the following problem
∂τ φ̃ = ∆φ̃+G(u, v, τ) in B+

2R(τ) × (τ0,+∞),

− d
dv φ̃ = Lω[φ̃] + H̃0(u, τ) in

(
B+

2R(τ) × (τ0,+∞)
)
∩
(
∂R2

+ × (τ0,+∞)
)
,

φ̃ = 0 on
(
R2

+ \B+
2R(τ)(0)

)
× (τ0,+∞),

φ̃(u, v, τ) = 0 in B+
2R(τ) × (−∞, τ0],

(4.4)

where H̃0 = 2
1+|u|2 η`φ∗[G,H]. Notice that the first component of H̃0 is even in u

variable and it is compactly supported with size controlled by G and H. Hence, for
any m > 0, we have

|H̃0(u, v, τ)| . τ−ν

1 + |(u, v)|m

[
sup
τ>τ0

τν |φ∗[G,H](·, τ)|
]

.
τ−ν

1 + |(u, v)|m
(R2−b‖G‖b,ν +R1−c‖H‖c,ν).

(4.5)

Testing (4.4) against φ̃ and integrating, we obtain

∂τ

∫
B+

2R

φ̃2 +Q(φ̃, φ̃) =

∫
B2R

Gφ̃+

∫ 2R

−2R

H̃0φ̃,

here Q is the quadratic form defined by

Q(φ, φ) :=

∫
B+

2R

|∇φ|2dudv −
∫ 2R

−2R

2

1 + |u|2
|φ|2du.

It is easy to check that there exists a constant β > 0 such that, for any φ with∫
B+

2R
φ · Z3dudv = 0 and φ = 0 on R2

+ \B+
2R, we have

Q(φ, φ) ≥ β

R2 logR

∫
B+

2R

φ2dudv.

Thus for some β′ > 0, thereholds

∂τ

∫
B+

2R

φ̃2 +
β′

R2 logR

∫
B+

2R

φ̃2 . R2 logR

(∫
B+

2R

G2 +

∫ 2R

−2R

H̃2
0

)
. (4.6)

Set

K :=

[
sup
τ>τ0

τν‖φ∗[G,H](·, τ)‖L∞
]
.
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On the other hand, using estimate (4.5) for a large m, we obtain(∫
B+

2R

G2 +

∫ 2R

−2R

H̃2
0

)
. τ−2νK2.

By the fact that φ̃(·, τ0) = 0 and Gronwall’s inequality, we obtain from (4.6) that

‖φ̃(·, τ)‖L2(B+
2R) . τ

−νKR2 logR,

for all τ > τ0. From standard parabolic estimates, we get

‖φ̃(·, τ)‖L∞(BM ) . τ
−νKR2 logR for all τ > τ0.

Therefore,

(1 + |(u, v)|)|∇φ̃(u, v, τ)|+ |φ̃(u, v, τ)|

. τ−νR2 log2R

[
sup
τ>τ0

τν |φ∗[G,H](·, τ)|
]
.

From this estimate and (4.5), the function φ0[G,H] := φ̃ + φ∗[G,H] solves (4.3)
and satisfies

(1 + |(u, v)|)|∇φ0(u, v, τ)|+ |φ0(u, v, τ)|

. τ−νR2 log2R(R2−b‖G‖b,ν +R1−c‖H‖c,ν).

Step 2. For bounded functions g = g(u, v), h = h(u) in B+
2R whose first com-

ponents are even in the u variable and
∫
B+

2R
g(u, v, τ) ·Z3(u, v)dudv+

∫ 2R

−2R
h(u, τ) ·

Z3(u)du = 0. Let us extent h as zero outside B+
2R and still denote the extended

function as h. From standard elliptic estimate, the equation
∆φ = g(u, v, τ) in R2

+,
− d
dvφ = Lω[φ] + h(u, τ) in ∂R2

+,
lim|(u,v)|→+∞ φ(u, v) = 0.

has a solution H =: L−1
0 [g, h] satisfying

|H(u, v, τ)| . τ−ν
(

1

(1 + |(u, v)|)a−1
‖h‖a,ν +

1

(1 + |(u, v)|)a−2
‖g‖a,ν

)
.

Let Φ0 be the unique solution in B+
3R of the problem

∂τφ = ∆φ+H(u, v, τ) in B+
3R(τ) × (τ0,+∞),

− d
dvφ = Lω[φ] +H(u, 0, τ) in

(
B+

3R(τ) × (τ0,+∞)
)
∩
(
∂R2

+ × (τ0,+∞)
)
,

φ = 0 on
(
R2

+ \B+
3R(τ)(0)

)
× (τ0,+∞),

φ(u, v, τ) = 0 in B+
3R(τ) × (−∞, τ0].

From Step 1, Φ0[H] defines a bounded linear operator ofH and satisfies the estimate

|Φ0(u, v, τ)| . τ−νR2 log2R
(
R4−a‖H(u, v, τ)‖a−2,ν +R2−a‖H(u, 0, τ)‖a−1,ν

)
.

Now let us fix a vector e with |e| = 1, a large number ρ > 0 with ρ ≤ 2R and
τ1 ≥ τ0. Consider the following change of variables

Φρ(z, t) := Φ0(ρe+ ρz, τ1 + ρ2t),

Gρ(z, t) := ρ2H(ρe+ ρz, τ1 + ρ2t),

Hρ(z, t) := ρH(ρe+ ρz, 0, τ1 + ρ2t).
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Then Φρ(z, t) satisfies{
∂τΦρ = ∆zΦρ +Bρ(z, t)Φρ +Gρ(z, t), (z, t) ∈ B+

1 (0)× (0, 2),
− d
dz2

φ = Cρ(z, t)Φρ +Hρ(z, t), (z, t) ∈ (−1, 1)× {0} × (0, 2)

with Bρ = O(ρ−2), Cρ = O(ρ−2) uniformly in B+
1 (0) × (0,∞). From standard

parabolic estimates, we have

‖∇zΦρ‖L∞(B+
1
2

(0)×(1,2)) . ‖Φρ‖L∞(B+
1 (0)×(0,2))

+ ‖Gρ‖L∞(B+
1 (0)×(0,2)) + ‖Hρ‖L∞((−1,1)×{0}×(0,2)).

Furthermore, there holds

‖Gρ‖L∞(B+
1 (0)×(0,2)) . ρ

1−aτ−ν1 ‖H‖a,ν ,

‖Hρ‖L∞((−1,1)×{0}×(0,2)) . ρ
1−aτ−ν1 ‖H‖a,ν , ‖Φρ‖L∞(B+

1 (0)×(0,2)) . τ
−ν
1 K(ρ)

with
K(ρ) = R2 log2R

(
R2−a‖h‖a,ν +R4−a‖g‖a,ν

)
. (4.7)

Hence
ρ|∇Φ0(ρe, τ1 + ρ2)| . τ−ν1 K(ρ).

Choose τ0 ≥ R2, then we have

(1 + |(u, v)|)|∇Φ0(u, v, τ)| . τ−νK(|(u, v)|)
for any τ > 2τ0 and |(u, v)| ≤ 3R.

Since H is of class C1 and ‖∇H‖a−1,ν ≤ ‖h‖a,ν + ‖g‖a,ν , we obtain

(1 + |(u, v)|2)|D2Φ0(u, v, τ)| . τ−νK(|(u, v)|)
for all τ > τ0, |(u, v)| ≤ 2R with K being defined in (4.7). Thus we have

(1 + |(u, v)|2)|D2Φ0(u, v, τ)|+ (1 + |(u, v)|)|∇Φ0(u, v, τ)|+ |Φ0(u, v, τ)|

. τ−νR2 log2R
(
R2−a‖h‖a,ν +R4−a‖g‖a,ν

)
.

Therefore

|L0[Φ0](·, τ)| . τ−νR2 log2R

(
R2−a‖h‖a,ν
1 + |(u, v)|

+
R4−a‖g‖a,ν
1 + |(u, v)|2

)
.

Define
φ0[g, h] := L0[Φ0].

Then φ0[g, h] satisfies (4.1) and the proof is completed. �

4.2. Case 2. The following proposition is valid.

Proposition 4.2. Let 1 < a < 2, ν > 0 be given positive numbers. Then, for
R > 0 sufficiently large and any g = g(u, v, τ), h = h(u, τ) with ‖g‖a,ν < +∞,
‖h‖a,ν < +∞, the first components of g(u, v, τ) and h(u, τ) are even in the u
variable for all τ , the second components of g(u, v, τ) and h(u, τ) are odd in the u
variable for all τ , and satisfying∫
B+

2R(τ)

g(u, v, τ) ·Z2(u, v)dudv+

∫ 2R

−2R

h(u, τ) ·Z2(u, 0)du = 0 for all τ ∈ (τ0,∞),

there exists φ = φ[g, h] solving (3.6), which defines a linear operator of g and h
satisfying

|φ(u, v, τ)| . τ−ν(1 + |(u, v)|)−σ
(
R2+σ−a‖g‖a,ν +R1+σ−a‖h‖a,ν

)
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for some σ ∈ (0, 1).

To prove this proposition, first we consider the following problem in the whole
half space

∂τφ = ∆φ+ g(u, v, τ) in R2
+ × (τ0,+∞),

− d
dvφ = 2

1+|u|2φ+A[φ̃] + h(u, τ) in
(
R2

+ × (τ0,+∞)
)
∩
(
∂R2

+ × (τ0,+∞)
)
,

φ(u, v, τ) = 0 in R2
+ × (−∞, τ0],

φ · ω = 0 in
(
R2

+ × (τ0,+∞)
)
∩
(
∂R2

+ × (τ0,+∞)
)
.

(4.8)
Then we have

Lemma 4.1. Let 0 < σ < 1, ν > 0 be given positive numbers. Then, for
R > 0 sufficiently large and any g = g(u, v, τ), h = h(u, τ) with ‖g‖2+σ,ν < +∞,
‖h‖1+σ,ν < +∞, the first components of g(u, v, τ) and h(u, τ) are even in the u
variable for all τ , the second components of g(u, v, τ) and h(u, τ) are odd in the u
variable for all τ , and satisfying∫

R2
+

g(u, v, τ) · Z2(u, v)dudv +

∫
R
h(u, τ) · Z2(u, 0)du = 0 for all τ ∈ (τ0,∞).

Then for sufficiently large τ1 > τ0, the solution of (4.8) satisfies

‖φ(u, v, τ)‖σ,τ1 . ‖g‖2+σ,τ1 + ‖h‖1+σ,τ1 . (4.9)

Here, ‖g‖b,τ1 := supτ∈(τ0,τ1) τ
ν‖(1 + |(u, v)|b)g‖L∞(R2

+).

Proof. First, we claim that ‖φ‖σ,τ1 < +∞ holds for any given τ1 > τ0. Given R > 0
there exists a K = K(R, τ1) > 0 such that

|φ(u, v, τ)| ≤ K in BR(0)× (τ0, τ1].

Fix R > 0 and K1 > 0 sufficiently large, K1ρ
−σ (ρ = |(u, v)|) is a super-solution for

(4.8). Therefore |φ| ≤ 2K1ρ
−σ and ‖φ‖σ,τ1 < +∞ for any τ1 > 0. We claim that∫

R2
+

φ(u, v, τ) · Z2(u, v)dudv = 0 for all τ ∈ (τ0, τ1). (4.10)

Indeed, test the equation against

Z2η, η(u, v) = η0(
ρ

R
)

with η0 being a smooth cut-off function satisfying η0(r) = 1 for r < 1 and r = 0
for r > 2, R is a large constant. We obtain∫
R2

+

φ(·, τ) · Z2η =

∫ τ

0

ds

(∫
R2

+

φ ·∆(ηZ2)dudv +

∫
R2

+

g · ηZ2dudv

)

+

∫ τ

0

ds

(∫
R
φ ·
(
d

dv
(ηZ2) +

1

1 + |u|2
ηZ2

)
du+

∫
R
h · ηZ2du

)
.

On the other hand, we have∫
R2

+

φ ·∆(ηZ2)dudv +

∫
R2

+

g · ηZ2dudv

+

∫
R
φ ·
(
d

dv
(ηZ2) +

1

1 + |u|2
ηZ2

)
du+

∫
R
h · ηZ2du = O(R−σ)
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uniformly on τ ∈ (0, τ1). Letting R→ +∞, we then have (4.10).
Now we claim that for τ1 > τ0 large enough, any solution φ of (4.8) with ‖φ‖σ,τ1 <

+∞ and (4.10) satisfies the estimate

‖φ‖σ,τ1 . ‖h‖1+σ,τ1 + ‖g‖2+σ,τ1 . (4.11)

Therefore (4.9) is valid.
To prove (4.11), by contradiction, we assume that there exist sequences τk1 →

+∞ and φk, gk, hk satisfying

∂τφk = ∆φk + gk in R2
+ × (τ0,+∞),

− d

dv
φk =

2

1 + |u|2
φk +A[φk] + hk in

(
R2

+ × (τ0,+∞)
)
∩
(
∂R2

+ × (τ0,+∞)
)
,∫

R2
+

φk(u, v, τ) · Z2(u, v)dudv = 0 for all τ ∈ (τ0, τ
k
1 ),

φk(u, v, τ) = 0 for (u, v, τ) ∈ R2
+ × (−∞, τ0].

and

‖φk‖σ,τk1 = 1, ‖gk‖2+σ,τk1
→ 0, ‖hk‖1+σ,τk1

→ 0. (4.12)

First we claim that

sup
τ0<τ<τk1

τν |φk(u, v, τ)| → 0 (4.13)

holds uniformly on compact subsets of R2
+. If not, for some |(uk, vk)| ≤ M and

τ0 < τk2 < τk1 , there holds

(τk2 )ν(1 + |(uk, vk)|σ)|φ(uk, vk, τ
k
2 )| ≥ 1

2
.

Clearly, τk2 → +∞. Define

φ̃n(u, v, τ) = (τk2 )νφn(u, v, τk2 + τ).

Then we have

∂τ φ̃k = ∆φ̃k + g̃k in R2
+ × (τ0 − τk2 , 0]

− d

dv
φ̃k =

2

1 + |u|2
φ̃k +A[φ̃k] + h̃k in

(
R2

+ × (τ0 − τk2 , 0]
)
∩
(
∂R2

+ × (τ0 − τk2 , 0]
)

where h̃k → 0 uniformly on compact subsets of R× (−∞, 0] and

|φ̃k(u, v, τ)| ≤ 1

1 + |(u, v)|σ
in R2

+ × (τ0 − τk2 , 0].

By parabolic estimates and passing to a subsequence, φ̃k → φ̃ uniformly on compact
subsets of R2

+ × (−∞, 0], φ̃ 6= 0 and

∂τ φ̃ = ∆φ̃ in R2
+ × (−∞, 0],

− d

dv
φ̃ =

2

1 + |u|2
φ̃+A[φ̃] in R× (−∞, 0],∫

R2
+

φ̃(u, v, τ) · Z2(u, v)dudv = 0 for all τ ∈ (−∞, 0],

|φ̃(u, v, τ)| ≤ 1

1 + |(u, v)|σ
in R2

+ × (−∞, 0].
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We prove that φ̃ = 0 from which we get a contradiction. From standard parabolic
regularity theory, φ̃(u, v, τ) is smooth. Testing the first equation above with φ̃ we
have

1

2
∂τ

∫
R2

+

|φ̃τ |2 +B(φ̃τ , φ̃τ ) = 0

where

B(φ̃, φ̃) =

∫
R2

+

|∇φ̃|2dudv −
∫
R

2

1 + |u|2
φ̃2(u, 0)du.

Clearly, B(φ̃, φ̃) ≥ 0 and there holds∫
R2

+

|φ̃τ |2 = −1

2
∂τB(φ̃, φ̃) = 0.

Therefore

∂τ

∫
R2

+

|φ̃τ |2 ≤ 0,

∫ 0

−∞
dτ

∫
R2

+

|φ̃|2 < +∞

and hence φ̃τ = 0. Thus φ̃ is independent of τ and

∆φ̃ = 0 in R2
+ × (−∞, 0],

− d

dv
φ̃ =

2

1 + |u|2
φ̃+A[φ̃] in ∂R2

+ × (−∞, 0].

Since φ̃ is bounded, the nondegeneracy result in [22] implies that φ̃ = cZ2 for some

constant c. Since
∫
R2

+
φ̃ · Z2dudv = 0, φ̃ = 0, which is a contradiction. Thus (4.13)

holds. From (4.12), for a certain (un, vn) with |(un, vn)| → +∞ there holds

(τk2 )ν |(uk, vk)|σ|φk(uk, vk, τ
k
2 )| ≥ 1

2
.

Define

φ̃n(z, τ) := (τk2 )ν |(uk, vk)|σφk((uk, vk) + |(uk, vk)|z, |(uk, vk)|τ + τk2 ),

we have

∂τ φ̃k = ∆φ̃k + g̃k(z, τ),

− d

dv
φ̃k = akφ̃k + h̃k(z, τ)

with

h̃k(z, τ) = (τk2 )ν |(uk, vk)|1+σhk((uk, vk) + |(uk, vk)|z, |(uk, vk)|τ + τk2 ).

By the assumption on hk, we obtain

|h̃k(z, τ)| . o(1)|(ûk, v̂k) + z|−1−σ((τk2 )−1|(uk, vk)|τ + 1)−ν

with

(ûk, v̂k) =
(uk, vk)

|(uk, vk)|
→ −ê

and |ê| = 1. Thus h̃k(z, τ)→ 0 on compact subsets of R \ {ê}× (−∞, 0] uniformly.

The same property holds for an. Moreover, |φ̃k| ≥ 1
2 and

|φ̃k(z, τ)| . |(uk, vk) + z|−σ((τk2 )−1|(uk, vk)|τ + 1)−ν .



26 Y. SIRE, J. WEI, AND Y. ZHENG

Therefore, φ̃k → φ̃ 6= 0 uniformly over compact subsets of R \ {ê} × (−∞, 0] and

∂τ φ̃ = ∆φ̃ in R2
+ × (−∞, 0], (4.14)

− d

dv
φ̃ = 0 in R \ {ê} × (−∞, 0], (4.15)

|φ̃(z, τ)| ≤ |z − ê|−σ in R2
+ \ {ê} × (−∞, 0]. (4.16)

Note that φ̃ is of form φ̃ =

(
φ̃1

φ̃2

)
=

(
φ̃1

0

)
and φ̃1 is odd in the u variable. By

Lemma 4.2, functions φ̃ satisfying (4.14)-(4.16) is zero, which is a contradiction.
This completes the proof. �

Lemma 4.2. Let φ = φ(u, v, τ) be a scalar solution of
∂τφ = ∆φ in R2

+ × (−∞, 0],
− d
dvφ = 0 in ∂R2

+ \ {(0, 0)} × (−∞, 0],
|φ(u, v, τ)| ≤ |(u, v)|−σ in R2

+ \ {(0, 0)} × (−∞, 0],
(4.17)

for 0 < σ < 1 small enough, φ(u, v, τ) is odd in the variable u for all v and τ , then
φ ≡ 0 on R2

+ × (−∞, 0].

Proof. Inspired by the proof of Lemma 4.2 in [19], we set

Φ(u, v, τ) =
vγ

(u2 + v2 + τ)β
+

εv

u2 + v2
, γ ∈ (0, 1), 2β − γ = σ.

Then
− Φτ + ∆Φ

= vγ−2
(
τ + u2 + v2

)−β−2 (−γ (τ + u2 + v2
) (
τ + u2 + (4β + 1)v2

))
+ vγ−2

(
τ + u2 + v2

)−β−2
(
βv2

(
(4β + 1)

(
u2 + v2

)
− 3τ

)
+ γ2

(
τ + u2 + v2

)2)
< β(4β − 4γ2 + 1)vγ

(
τ + u2 + v2

)−β−1

= β(2σ + 2γ − 4γ2 + 1)vγ
(
τ + u2 + v2

)−β−1
< 0.

if we choose σ sufficiently small and γ ∈ (0, 1) sufficiently close to 1. Then the
function Φ(u, v, τ + M) is a positive super-solution of equation (4.17) in R2

+ ×
[−M, 0]. Hence |φ(u, v, τ)| ≤ Φ(u, v, τ +M). Letting M → +∞ we have

|φ(u, v, τ)| ≤ εv

u2 + v2
.

Since ε is arbitrary, φ ≡ 0. �

Proof of Proposition 4.2. Let φ be the unique solution of (4.8), from Lemma 4.1,
for any τ1 > 0, we have

|φ(u, v, τ)| ≤ Cτ−ν(1 + |(u, v)|)−σ (‖g‖2+σ,τ1 + ‖h‖1+σ,τ1) .

Since ‖g‖a,v < +∞, we get

|g(u, v, τ)| ≤ Cτ−ν(1 + |(u, v)|)−a‖g‖a,ν
and

‖g‖2+σ,τ1 ≤ R2+σ−a‖g‖a,ν .
Similarly, we have

‖h‖1+σ,τ1 ≤ R1+σ−a‖h‖a,ν .
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Therefore

|φ(u, v, τ)| ≤ Cτ−ν(1 + |(u, v)|)−σ
(
R2+σ−a‖g‖a,ν +R1+σ−a‖h‖a,ν

)
.

�

4.3. The whole linear theory. Combine Propositions 4.1 and 4.2, we obtain the
main result of this section.

Proposition 4.3. Let 1 < a < 2, ν > 0 be given positive numbers. Then, for any
g, h with ‖g‖a,ν < +∞, ‖h‖a,ν < +∞ and satisfying∫

B+
2R

g(u, v, τ) · Z2(u, v)dudv +

∫ 2R

−2R

h(u, τ) · Z2(u)du = 0 for all τ ∈ (τ0,∞)

(4.18)∫
B+

2R

g(u, v, τ) · Z3(u, v)dudv +

∫ 2R

−2R

h(u, τ) · Z3(u)du = 0 for all τ ∈ (τ0,∞)

(4.19)
there exist φ = φ[g, h] solving (3.6) which defines a bounded linear operators of g
and h. Furthermore, for some σ ∈ (0, 1), we have the following estimate

|φ[g, h]| .

τ−νR2 log2R

(
R2−a‖h0‖a,ν
1 + |(u, v)|

+
R4−a‖g0‖a,ν
(1 + |(u, v)|)2

)
+ τ−ν

(
R1+σ−a‖h1‖a,ν

(1 + |u|)σ
+
R2+σ−a‖g1‖a,ν
(1 + |(u, v)|)σ

)
.

Here g = g0 + g1, the first component of g0 and the second component of g1 are
odd in the u variable, the second component of g0 and the first component of g1 are
even in the u variable. We decompose h = h0 + h1 similarly.

Remark 4.1. If conditions (4.18) and (4.19) are not satisfied, by the same argu-
ment of Step 1 in Proposition 4.1, we find a solution φ of (3.6) satisfying

(1 + |(u, v)|)|∇φ(u, v, τ)|+ |φ(u, v, τ)|

. τ−νR2 log2R(R2−a‖g‖a,ν + (1 + |u|)1−a‖h‖a,ν).

We will use this fact in Section 5.

5. Solving the inner-outer gluing system

We separate the proof of Theorem 1 into the following steps.
Step 1. We formulate the inner-outer system (3.4)-(3.5) into a fixed point

problem in a suitable space.
• The inner problem. Define

G1[λ, ξ, ψ](u, v, τ) = χD2R
λ2E∗1 in R2

+ × (τ0,+∞),

G2[λ, ξ, ψ](u, 0, τ)

= χD2R∩(∂R2
+×(τ0,+∞))

(
λΠω⊥E∗2 +

2

1 + |u|2
Πω⊥ψ

)
+ χD2R∩(∂R2

+×(τ0,+∞))×(
1

π

∫
R

(ω(u, 0)− ω(u− z, 0)) · (Πω⊥ψ(u, 0, τ)−Πω⊥ψ(u− z, 0, τ))

|z|2
dz

)
ω(u, 0),
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c[λ, ξ, ψ](τ) =
1∫

B+
2R
χZ2

2 +
∫ 2R

−2R
χZ2

2

×

(∫
B+

2R

G1[λ, ξ, ψ] · Z2dudv +

∫ 2R

−2R

G2[λ, ξ, ψ] · Z2du

)
,

d[λ, ξ, ψ](τ) =
1∫

B+
2R
χZ2

3 +
∫ 2R

−2R
χZ2

3

×

(∫
B+

2R

G1[λ, ξ, ψ] · Z3dudv +

∫ 2R

−2R

G2[λ, ξ, ψ] · Z3du

)
,

G1[λ, ξ, ψ](u, v, τ) = c(τ)χZ2(u, v) + d(τ)χZ3(u, v),

G2[λ, ξ, ψ](u, τ) = c(τ)χZ2(u) + d(τ)χZ3(u).

Here χ(u, v) = 1
1+|(u,v)| . Then φ solves equation (3.4) if φ1 and φ2 solve

∂τφ1 = ∆φ1 + (G1 −G1)[λ, ξ, ψ](u, v, τ) in R2
+ × (τ0,+∞),

− d
dvφ1(u, 0, τ) = 2

1+|u|2φ1

+ 1
π

[∫
R

(ω(u,0)−ω(u−z,0))·(φ1(u,0,τ)−φ1(u−z,0,τ))
|z|2 dz

]
ω(u, 0)

+(G2 −G2)[λ, ξ, ψ](u, 0, τ) in ∂R2
+ × (τ0,+∞),

φ1 = 0 in R2
+ × (−∞, τ0]

and 

∂τφ2 = ∆φ2 +G1[λ, ξ, ψ](u, v, τ) in R2
+ × (τ0,+∞),

− d
dvφ2(u, 0, τ) = 2

1+|u|2φ2

+ 1
π

[∫
R

(ω(u,0)−ω(u−z,0))·(φ2(u,0,τ)−φ2(u−z,0,τ))
|z|2 dz

]
ω(u, 0)

+G2[λ, ξ, ψ](u, 0, τ) in ∂R2
+ × (τ0,+∞),

φ2 = 0 in R2
+ × (−∞, τ0],

respectively. Let φ =: T [g, h] be the bounded linear operator constructed in Propo-
sition 4.3, then (3.4) is equivalent to the following fixed point problem{

φ1 = T [(G1 −G1)(λ, ξ, ψ), (G2 −G2)(λ, ξ, ψ)],

φ2 = T [G1(λ, ξ, ψ), G2(λ, ξ, ψ)].

• The outer problem. Rewrite equation (3.5) as{
∂tψ = ∆ψ +H1[ψ, φ, λ, ξ](x, 0, t) in R2

+ × (0, T ),
− d
dyψ(x, 0, t) = H2[ψ, φ, λ, ξ](x, 0, t) in ∂R2

+ × (0, T ),
(5.1)

where

H1[ψ, φ, λ, ξ](x, 0, t) = − λ̇
λ
η(u, v) · ∇(u,v)φ− η

ξ̇

λ

dφ

du

+ [∆ηφ+
2

λ
∇η∇φ− ∂tηφ] + (1− η)E∗1 ,

H2[ψ, φ, λ, ξ](x, 0, t) = (1− η)
2λ

λ2 + |x− ξ(t)|2
ψ + (1− η)ΠU⊥E∗2

+

(
d

dy
η

)
(x, 0, t)φ+NU (ΠU⊥(Φ∗ + ϕ)).
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To solve (5.1), we first consider the corresponding linear problem
ψt = ∆ψ + f(x, y, t) in R2

+ × (0, T ),
− d
dyψ = g(x, t), x ∈ R× (0, T ),

ψ(q, 0, T ) = 0,
ψ(x, y, 0) = (c1e1 + c2e2)η1 in R2

+.

(5.2)

for suitable constants c1, c2, where

e1 =

(
1
0

)
, e2 =

(
0
1

)
,

and η1 is a smooth cut off function with compact support and η1 ≡ 1 in a neigh-
borhood of (q, 0). For a function f(x, y, t), define the L∞-weighted norm as follows

‖f‖∗∗ := sup
R2

+×(0,T )

(
1 +

3∑
i=1

%i(x, y, t)
)−1

|f(x, y, t)|.

Here %1 := λΘ−2
0 R−aχ{r<2Rλ0}, %2 := T−σ0(1− η) λ0

r2+λ2
0
, %3 := 1, σ0 and Θ > 0 are

small. Also, for γ ∈ (0, 1
2 ), we define

‖ψ‖a,Θ,γ =
1

λ0(0)ΘR(0)2−a| log T |
sup

R2
+×(0,T )

|ψ(x, y, t)|

+ sup
R2

+×(0,T )

1

λ0(t)ΘR(t)2−a| log(T − t)|
|ψ(x, y, t)− ψ(x, y, T )|

+ sup
R2

+×(0,T )

1

λ0(t)Θ−1R(0)1−a |∇ψ(x, y, t)|

+ sup
R2

+×(0,T )

1

λ0(t)Θ−1R(t)1−a |∇ψ(x, y, t)−∇ψ(x, y, T )|

+ sup
R2

+×(0,T )

1

λ0(t)Θ−1−2γR(t)1−a−2γ

|∇ψ(x, y, t)−∇ψ(x′, y′, t)|
|(x, y)− (x′, y′)|2γ

+ sup
1

λ0(t)Θ−1−2γR(t)1−a−2γ

|∇ψ(x, y, t2)−∇ψ(x, y, t1)|
(t2 − t1)γ

,

(5.3)

where the last supremum is taken over (x, y) ∈ R2
+, 0 ≤ t1 < t2 ≤ T and t2 − t1 ≤

1
10 (T − t2). Then by minor modifications of [6], we have

Proposition 5.1. For T , ε > 0, there exists a linear operator mapping functions
f : R2

+ × (0, T )→ R2, g : ∂R2
+ × (0, T )→ R2 with ‖f‖∗∗ <∞, ‖g‖∗∗ <∞ into ψ,

c1, c2 so that (5.2) is satisfied and the following estimate holds

‖ψ‖a,Θ,γ ≤ C (‖f‖∗∗ + ‖g‖∗∗) .

Let ψ = S[f, g] be the operator defined in Proposition 5.1, then (5.1) is equivalent
to

ψ = S[H1, H2, ψ∞](φ, ψ, λ, ξ).

• The choice of λ. To make d(τ) as small as possible, we solve the following equation
approximately, ∫

B+
2R

G1 · Z3dudv +

∫ 2R

−2R

G2 · Z3du = 0. (5.4)
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This is the case α = 0 of λ-α system in [6], hence (5.4) is equivalent to the fixed
point problem

λ = A1(ψ, λ, ξ).

We refer the readers to [6] for details.
• The choice of ξ. To make c(τ) as small as possible, we solve the following equation∫

B+
2R

G1 · Z2dudv +

∫ 2R

−2R

G2 · Z2du = 0 (5.5)

which is equivalent to a nonlinear ODE for form

ξ̇ =
1∫

B+
2R
Z2 · Z2dudv

(∫
B+

2R

(
G1 + ξ̇Z2

)
· Z2dudv +

∫ 2R

−2R

G2 · Z2du

)
.

This can be rewritten as a fixed point problem

ξ = A2(ψ, λ, ξ).

Combine the above arguments, the inner-outer system (3.4)-(3.5) is equivalent
to the following fixed point problem

ψ = S[H1, H2, ψ∞](ψ, φ, λ, ξ), (5.6)

φ1 = T [(G1 −G1)(λ, ξ, ψ), (G2 −G2)(λ, ξ, ψ)], (5.7)

φ2 = T [G1(λ, ξ, ψ), G2(λ, ξ, ψ)], (5.8)

λ = A1(ψ, λ, ξ), (5.9)

ξ = A2(ψ, λ, ξ). (5.10)

Step 2. To set up the fixed point problem (5.6)-(5.10), we give a description of
the relevant functional space . First, set

R(t) = λ0(t)−β , β =
1

4
+ σ

and
a = 2− σ,

for a small but fixed number σ > 0. Take φ in the following space

X(a, ν) = {φ ∈ C(D2R) : ∇φ ∈ C(D2R), ‖φ‖X(a,ν) <∞},
where

‖φ‖X(a,ν) = sup
(u,v,τ)∈D2R

1

λν0
R6−a log2 R
1+|(u,v)|2

[(1 + |(u, v)|) |∇φ(u, v, τ)|+ |φ(u, v, τ)|] ,

a ∈ (1, 2) is close to 2 and ν ∈ (0, 1) is close to 1. Also we take ψ in the space

Y (a′,Θ, γ′) = {ψ ∈ C(R2
+ × [0, T )) : ∇ψ ∈ C(R2

+ × [0, T )), ‖ψ‖a′,Θ,γ′ <∞}
for parameters a′ < a and γ′ < γ. Note that the norm ‖ · ‖a′,Θ,γ′ is weaker than
‖ · ‖a,Θ,γ , and the inclusion Y (a, ν, γ) ↪→ Y (a′, ν, γ′) is compact.

We assume that the parameter λ is in the space of C1[−T, T ] functions satisfying
λ(T ) = 0 with norm

‖g‖µ = sup
t∈[−T,T ]

(T − t)−µ|g(t)|

for µ ∈ (0, 1) small, while ξ is in the space C1([0, T ]) satisfying ξ(T ) = q with norm

‖ξ‖σ = sup
t∈[0,T ]

(T − t)−σ|ξ̇(t)|,
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for some σ > 0 fixed.
For R1 > 0 small but fixed, let us define the set

A = {(ψ,φ1, φ2, λ, ξ) ∈ Y (a′,Θ, γ′)×X(a, ν)×X(a, ν)× C1[−T, T ]× C1[0, T ]
∣∣∣

‖φ1‖X(a,ν) + ‖φ2‖X(a,ν) + ‖ψ‖Y (a′,Θ,γ′) + ‖λ‖µ + ‖ξ‖σ ≤ Tσ0 +R1}.

Let (ψ, φ, λ, ξ) 7→ F(ψ, φ, λ, ξ) be the map defined by (5.6)-(5.10).
Step 3. We show that F maps the set A into itself and it is a compact operator.

To this aim, we should estimate (5.6)-(5.10) respectively.
Estimations for (5.6). We claim if R1 > 0 is fixed and small, there holds

‖H1(ψ, φ, λ, ξ)‖∗∗ ≤ C(Tσ0 +R1). (5.11)

First we consider the term (1− η) 2λ
λ2+|x−ξ(t)|2ψ. Since ψ(q, 0, T ) = 0 and from the

definition of ‖ ‖a′,Θ,γ′ , we have

|ψ(x, 0, t)| ≤ (|ψ(x, 0, t)− ψ(x, 0, T )|+ |ψ(x, 0, T )− ψ(q, 0, T )|

≤ (r + λΘ
0 (t)R(t)2−a′ | log(T − t)|)‖ψ‖a′,Θ,γ′ .

Hence

|(1− η)
2λ

λ2 + |x− ξ(t)|2
ψ|

≤ (1− η)
2λ0

(r + λ0)2
(|ψ(x, 0, t)− ψ(x, 0, T )|+ |ψ(x, 0, T )− ψ(q, 0, T )|)

≤ C(1− η)
λ0

(r + λ0)2
(r + λΘ

0 (t)R(t)2−a′ | log(T − t)|)‖ψ‖a′,Θ,γ′

≤ C(%2 + %3)‖ψ‖a′,Θ,γ′

and

‖(1− η)
2λ

λ2 + |x− ξ(t)|2
ψ‖∗∗ ≤ C‖ψ‖Y (a′,ν,γ′).

Next we consider ∆ηφ. From the definition of ‖ · ‖X(a,ν), when R ≤ |(u, v)| ≤ 2R,
we have

|φ(u, v, τ)|+ (1 + |(u, v)|)|∇φ(u, v, τ)| ≤ ‖φ‖X(a,ν)λ
ν
0R

4−a log2R.

Hence

|∆ηφ| ≤ 1

λ2R2
χ{|(x,y)−(ξ,0)|≤2λR}|φ(y, τ)|

≤ Cλν−2
0 R2−a log2Rχ{|(x,y)−(q,0)|≤Cλ0R}‖φ‖X(a,ν)

≤ CλΘ−2
0 R−a

′
χ{|(x,y)−(q,0)|≤Cλ0R}‖φ‖X(a,ν)

≤ C%1‖φ‖X(a,ν)

and

‖∆ηφ‖∗∗ ≤ C‖φ‖X(a,ν).

Similarly, we have

‖
(
d

dy
η

)
(x, 0, t)φ‖∗∗ + ‖(∂tη)φ‖∗∗ + ‖λ−1∇η∇φ‖∗∗ ≤ C‖φ‖X(a,ν).
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For the term − λ̇λη(u, v) · ∇(u,v)φ− ξ̇
λη

dφ
du , since |λ̇| ≤ C, we have∣∣∣∣∣ λ̇λη(u, v) · ∇(u,v)φ

∣∣∣∣∣ ≤ Cλν−1
0 R6−a log2Rχ{|x−q|≤2λ0(t)R(t)}‖φ‖X(a,ν).

Similarly, ∣∣∣∣∣ ξ̇λη dφdu
∣∣∣∣∣ ≤ Cλν−1

0 R6−a log2Rχ{|x−q|≤2λ0(t)R(t)}‖φ‖X(a,ν).

Therefore,

‖ − λ̇

λ
η(u, v) · ∇(u,v)φ−

ξ̇

λ
η
dφ

du
‖∗∗ ≤ C‖φ‖X(a,ν).

For (1− η)ΠU⊥E∗2 , we have

|(1− η)ΠU⊥E∗2 | ≤ (1− η)
λ0

r2 + λ2
0

,

hence
‖(1− η)ΠU⊥E∗2 ‖∗∗ ≤ CTσ0 .

Similarly,
‖(1− η)E∗1 ‖∗∗ ≤ CTσ0 .

The proof of the estimate

‖N(ϕ∗ + ψ + ηQαφ)‖∗∗ ≤ C(‖ψ‖a′,Θ,γ′ + ‖φ‖X(a,ν))

is analogous as the previous terms, so we omit the details. From the above esti-
mates, we obtain (5.11). By (5.11) and Proposition (5.1), there holds

‖S[H1, H2, ψ∞](φ, ψ, λ, ξ)‖a′,Θ,γ′ ≤ CR1. (5.12)

Estimations for (5.7). Now we consider (5.7). By Lemma 3.2 in [23], there holds

|L̃w[ψ]| ≤ C λ0

1 + ρ2
‖∇ψ‖L∞ ≤ C

λ0

1 + ρ2
TΘ‖ψ‖Y (a′,ν,γ′).

Fix a1 ∈ (a, 2) and ν1 ∈ (ν, 1), which implies

‖G1(λ, ξ, ψ)‖a1,ν1 ≤ CT 1−ν1 + CTΘR1

and
‖G2(λ, ξ, ψ)‖a1,ν1 ≤ CT 1−ν1 + CTΘR1.

Therefore

‖T [G1(λ, ξ, ψ), G2(λ, ξ, ψ)]‖X(a1,ν1) ≤ CT 1−ν1 + CT ν−1+β(a′−1)R1. (5.13)

Estimations for (5.8). From the choice of ξ, c(τ) = 0 and from the result of [6],

|d(τ)| ≤ Cλ0(T − t)σ2R(t)1−a′(‖a(·)− a(T )‖µ,l−1 + ‖a(·)− a(T )‖γ′,m,l−1)

and
‖a(·)− a(T )‖µ,l−1 + ‖a(·)− a(T )‖γ′,m,l−1 ≤ C‖ψ‖a′,Θ,γ′ ≤ CR1.

Hence we have

‖φ̃2‖X(a1,ν1) = T [clj(Θ(λ, α, ξ, ψ), ψ))χZlj ] ≤ CR1, (5.14)

which holds since the decay of χZ3 is 1
1+ρ2 and ν1 is close to ν depending on σ.

Estimations for (5.9). From Proposition 6.1 in [6], we obtain

‖λ‖µ ≤ C |log T |β(a′−1)
(5.15)
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for µ = β(a− 1).
Estimations for (5.10). The definition of ‖ψ‖a′,Θ,γ′ implies that

‖ξ‖µ1 ≤ CR1 (5.16)

for µ1 = ν − 1 + β(a− 1).
From the estimates (5.12), (5.13), (5.14), (5.15), (5.16) and standard parabolic

estimates, F is compact from the set A into itself. The existence of a solution
follows then from Schauder’s fixed point theorem, which completes the proof of
Theorem 1.

Acknowledgements

J. Wei is partially supported by NSERC of Canada. Y. Zheng is partially sup-
ported by NSF of China (11301374). Y.S. is partially supported by the Simons
foundation.

References

[1] Alfred Baldes, Harmonic mappings with partially free boundary, Manuscripta Math., 40(2-
3):255–275, 1982.

[2] A. Banerjee and N. Garofalo, Monotonicity of generalized frequencies and the strong unique

continuation property for fractional parabolic equations, Adv. Math., 336:149–241, 2018.
[3] Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian,

Comm. Partial Differential Equations, 32(7-9):1245–1260, 2007.

[4] Yunmei Chen and Fang Hua Lin, Evolution equations with a free boundary condition, J.
Geom. Anal., 8(2):179–197, 1998.

[5] Carmen Cortazar, Manuel del Pino and Monica Musso, Green’s function and infinite-time
bubbling in the critical nonlinear heat equation, Journal of the European Mathematical So-

ciety, to appear.

[6] Juan Davila, Manuel del Pino and Juncheng Wei, Singularity formation for the two-
dimensional harmonic map flow into S2, arXiv:1702.05801, 2017.

[7] Manuel del Pino, Panagiota Daskalopoulos and Natasa Sesum, Type II ancient compact

solutions to the yamabe flow, J. Reine Angew Math., 738:1–71, 2018.
[8] Manuel del Pino, Michal Kowalczyk and Jun-Cheng Wei, Concentration on curves for non-

linear Schrödinger equations, Comm. Pure Appl. Math., 60(1):113–146, 2007.

[9] Manuel del Pino, Michal Kowalczyk and Juncheng Wei, On De Giorgi’s conjecture in dimen-
sion N ≥ 9, Ann. of Math. (2), 174(3):1485–1569, 2011.

[10] Manuel del Pino, Michal Kowalczyk and Juncheng Wei, Entire solutions of the Allen-Cahn

equation and complete embedded minimal surfaces of finite total curvature in R3, J. Differ-
ential Geom., 93(1):67–131, 2013.

[11] Manuel del Pino, Monica Musso and Juncheng Wei, Infinite time blow-up for the 3-
dimensional energy critical heat equation, Analysis and PDE, to appear.

[12] Frank Duzaar and Klaus Steffen, An optimal estimate for the singular set of a harmonic map

in the free boundary, J. Reine Angew. Math., 401:157–187, 1989.
[13] Frank Duzaar and Klaus Steffen, A partial regularity theorem for harmonic maps at a free

boundary, Asymptotic Anal., 2(4):299–343, 1989.

[14] Robert Gulliver and Jürgen Jost, Harmonic maps which solve a free-boundary problem, J.
Reine Angew. Math., 381:61–89, 1987.

[15] Richard S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Mathe-

matics, Vol. 471, Springer-Verlag, Berlin-New York, 1975.
[16] Robert Hardt and Fang-Hua Lin, Partially constrained boundary conditions with energy

minimizing mappings, Comm. Pure Appl. Math., 42(3):309–334, 1989.

[17] Jürgen Jost, Lei Liu and Miaomiao Zhu, The qualitative behavior at the free boundary for
approximate harmonic maps from surfaces, Math. Ann., https://doi.org/10.1007/s00208-018-

1759-8.

[18] Ma Li, Harmonic map heat flow with free boundary, Comment. Math. Helv., 66(2):279–301,
1991.



34 Y. SIRE, J. WEI, AND Y. ZHENG

[19] Fanghua Lin and Juncheng Wei, Traveling wave solutions of the Schrödinger map equation,

Comm. Pure Appl. Math., 63(12):1585–1621, 2010.

[20] Vincent Millot and Yannick Sire, On a fractional Ginzburg-Landau equation and 1/2-
harmonic maps into spheres, Arch. Ration. Mech. Anal., 215(1):125–210, 2015.

[21] P. Raphael and R. Schweyer, Stable blowup dynamics for the 1-corotational energy critical

harmonic heat flow. Comm. Pure Appl. Math. 66 (2013), no. 3, 414C480.
[22] Yannick Sire, Juncheng Wei and Youquan Zheng, Nondegeneracy of half-harmonic maps from

R into S1, Proc. Amer. Math. Soc., 146(12):5263-5268, 2018.

[23] Yannick Sire, Juncheng Wei and Youquan Zheng, Infinite time blow-up for half-harmonic
map flow from R into S1 preprint.
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