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Abstract. We give a qualitative analysis of sequences of station-
ary solutions to the supercritical problem

−∆u = |u|p−1u in Ω, p >
n + 2
n− 2

.

A consequence of the analysis is the existence of positive singular
weak solutions on a convex domain when p ∈ (n+2

n−2 , n+1
n−3 ), with

only isolated singularities.

1. Introduction and main results

Of concern is the local qualitative behavior of sequences of stationary
weak solutions to

−∆u = |u|p−1u in B2 (1.1)

where p > n+2
n−2

and B2 denotes the open ball in Rn with radius 2.
Throughout this paper Br(x) always denotes the open ball of radius r
with center at x, and Br is a ball centered at the origin.

For a weak solution u ∈ H1(B2) ∩ Lp+1(B2), we say that it is sta-
tionary if for any smooth vector field Y with compact support,

∫ (
1

2
|∇u|2 − 1

p + 1
|u|p+1

)
divY −DY (∇u,∇u) = 0. (1.2)

For smooth solutions this condition follows from variations of the en-
ergy functional

E(u) =

∫
1

2
|∇u|2 − |u|p+1

p + 1

with respect to perturbations of the parametrization of the domain,
that is,

d

dt
E(u(x + tY (x))

∣∣∣
t=0

= 0. (1.3)

Key words and phrases. supercritical problems, blow-up locus, stationary
solutions.
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Formula (1.2) can also be obtained by multiplying (1.1) by Y · ∇u and
integrating by parts, granted that this solution has enough regularity.
Such condition is classical in many works dealing with partial regularity.
In this problem it was first used by Pacard in [14, 15].

Since p is assumed to be supercritical, solutions to (1.1) may not be
smooth. Thus we need to define

Definition 1.1. For a solution u of (1.1), its singular set S(u) consists
of those points, such that in any neighborhood of this point u is not
bounded.

Roughly speaking S(u) = {u = ∞}. By definition it is a closed set.
Pacard’s partial regularity result ([14]) says that for a stationary weak
solution u, S(u) is a closed set satisfying

Hn−2 p+1
p−1 (S(u)) = 0.

In particular, dim(S(u)) ≤ n− 2p+1
p−1

.

Let ui ∈ H1(B2)∩Lp+1(B2) be a sequence of stationary solutions to
(1.1), with the energy bound

sup
i

∫

B2

|∇ui|2 + |ui|1+p := M < +∞. (1.4)

By this assumption, we can assume that ui converges weakly to u in
H1(B2) ∩ Lp+1(B2). By the compact Sobolev embedding theorem, ui

converges strongly to u in Lq(B2) for any q < p + 1. In particular up
i

converges to up in L1(B2), and u is a weak solution to (1.1).

Denote the measure

µi =

(
p− 1

2
|∇ui|2 +

p− 1

p + 1
|ui|p+1

)
dx.

There exists a positive Radon measure ν such that,

µi ⇀

(
p− 1

2
|∇u|2 +

p− 1

p + 1
|u|p+1

)
dx + ν := µ weakly as measures.

Note that ui converges strongly to u in H1(B1)∩ Lp+1(B1) if and only
if ν = 0 in B1. Let

Σ := S(u) ∪ spt(ν),

which we call the blow up locus of this sequence (ui).

The purpose of this paper is to give a qualitative characterization of
the blow-up locus set. Denote n−m to be the integer part of n−2p+1

p−1
.

It is obvious that m ≥ 3. With these notations we have
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Theorem 1.2. • For any k, ui converges to u in Ck
loc(B1 \ Σ).

• If n− 2p+1
p−1

is not an integer, Σ∩B1 = S(u) and ν = 0. Hence

ui → u strongly in H1(B1) ∩ Lp+1(B1), and u satisfies the sta-
tionary condition.

• If n − 2p+1
p−1

is an integer n − m, i.e., p = m+2
m−2

, Σ ∩ B1 is

(n−m)-countable rectifiable with Hn−m(Σ ∩B1) < +∞.
• If n − 2p+1

p−1
is an integer n −m and Hn−m(Σ ∩ B1) > 0, after

extracting a subsequence, a rescaled subsequence of ui converges
to a nontrivial smooth solution v̄ to the low-dimensional Yamabe
problem

−∆v̄ = |v̄| 4
m−2 v̄ in Rm,

∫

Rm

(|∇v̄|2 + |v̄|p+1) ≤ C(M). (1.5)

Several remarks are in order: first, the above theorem implies that
the only possible singularity formulation is through low-dimensional
bubble (1.5). On the other hand, there are indeed sequences of bub-
bling solutions when p is close to m+2

m−2
(del Pino-Musso-Pacard [4]). We

conjecture that when p = m+2
m−2

, the blow-up locus Σ must be a minimal
submanifold. (The problem is to show that the limit function u is also
stationary. This may not be true in general by examples of Ding-Li-Li
[5] in harmonic map theory.) Second, Theorem 1.2 is reminiscent of
similar results for harmonic maps by Lin [9]. Indeed our proof is moti-
vated by ideas of [9]. See also Lin-Riviere [11], Li-Tian [12] and Riviere
[17], Tian [21]. Finally, Theorem 1.2 also covers the sign-changing case.

As an application we can improve Pacard’s result when n − 2p+1
p−1

is

not an integer, that is

Theorem 1.3. Let u be a stationary solution to (1.1), then the Haus-
dorff dimension of S(u) is no more than n−m. Moreover, if p < n+1

n−3
,

S(u) is a discrete set.

As another application, we consider a problem studied by Dancer
[3]. Given a smooth bounded domain Ω ⊂ Rn, consider the problem




−∆u = λ(1 + u)p in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(1.6)

where p > n+2
n−2

, λ > 0.

In [3], Dancer proved the existence of a family of positive solutions
(λ(s), u(s)) such that ‖u(s)‖L∞(Ω) → +∞ while λ(s) bounded (from
below and above). If Ω is star-shaped, u(s) are uniformly bounded in
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H1(Ω) and λ(s) is uniformly bounded from below and also above. Fur-
thermore Dancer showed that under the assumptions that Ω is convex
and possesses n-axis of symmetries and that n+2

n−2
< p < n+1

n−3
, then the

sequence (λ(s), u(s)) converges to (λ∗, u∗) in R×Ck
loc(Ω\{0}) where u∗

is a weak solution of (1.6) with only singularity at the origin.

In the following we remove the symmetry assumption of Dancer.

Theorem 1.4. If n+2
n−2

< p < n+1
n−3

and Ω is convex, then given any
sequence (λi, ui) in this family,

• There exists a subsequence such that λi → λ∗, ui → u∗ strongly
in H1(Ω);

• u∗ is a stationary H1 weak solution of (1.6), and it is smooth
outside finitely many points xi ∈ Ω, 1 ≤ i ≤ K;

• For any k, ui converges to u∗ in Ck
loc(Ω \ ∪K

i=1{xi}).
The convexity is used to guarantee that ui are smooth near ∂Ω (uni-

formly in i). This can be proved by the moving plane method. By this
near boundary regularity we see the blow up locus can only appear in
the interior of Ω, thus we can apply Theorem 1.2 and Theorem 1.3.

The organization of the paper is as follows: In Section 2, we col-
lect some basic estimates including the monotonicity formula and ε-
regularity. In Section 3 we give the basic Hausdorff measure estimate.
Then in Section 4 we consider the case where 2p+1

p−1
is not an integer

and carry out the important dimension reduction technique to prove
Theorem 1.3. The remaining part is devoted to the analysis of the
case when 2p+1

p−1
is an integer. We construct the bubbling sequence in

Section 5. In Section 6 we give a quantization of the density function.
Finally we discuss the stationary property of the blow-up locus.

Acknowledgment. The second author thanks Professors Juan Davila,
Manuel del Pino and Fanghua Lin for stimulating discussions. The re-
search of Wei is partially supported by a GRF from RGC of Hong Kong
and an NSERC of Canada.

2. Preliminary Analysis

We collect some preliminary analysis in this section. The basic tool
used in this paper is the following monotonicity formula.

Theorem 2.1. For any BR(x) ⊂ B1 and r ∈ (0, R),

E(r; x, u) :=
r−n+2 p+1

p−1

p + 3

∫

Br(x)

(
p− 1

2
|∇u|2 +

p− 1

p + 1
up+1

)
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+
1

p + 3

d

dr

[
r−n+2 p+1

p−1

∫

∂Br(x)

u2

]

is nondecreasing in r. Moreover, if E(r; x, u) ≡ const. in (0, R), then
u is homogeneous with respect to x

u(x + λy) = λ−
2

p−1 u(x + y), y ∈ BR(x), λ ∈ (0, 1).

Proof. This follows directly from Pacard [14]. In fact, by the proof in
[14], we have

d

dr
E(r; x, u) = c(n, p)r2 p+1

p−1
−n

∫

∂Br(x)

(
∂u

∂r
+

2

p− 1
r−1u

)2

≥ 0. (2.1)

This also gives the homogeneity of u when E ≡ const.. ¤

An equivalent form is

E(r; x, u) = r−n+2 p+1
p−1

∫

Br(x)

( |∇u|2
2

− |u|p+1

p + 1

)
+r−n+2 p+1

p−1
−1

∫

∂Br(x)

u2

p− 1
.

Next we recall the ε−regularity theorem, which was proved in [15].
(See Proposition 2 there. Although the result was only stated for pos-
itive solutions, its proof also holds for sign-changing solutions after
suitable modifications.)

Theorem 2.2. There exist two constants ε0, C > 0, depending only on
p and n, such that if u is a stationary weak solution of (1.1) in B2R,
satisfying

R2 p+1
p−1

−n

∫

BR

p− 1

2
|∇u|2 +

p− 1

p + 1
|u|p+1 ≤ ε0,

then

sup
BR/2

(
R2|∇2u|+ R|∇u|+ |u|) ≤ CR− 2

p−1 .

In the proof if we tract the dependence of C on ε carefully, we can
show that as ε0 → 0, C(ε0) → 0 .

The following is a technical result, which will be used in the latter
part of this paper to treat the boundary term in the monotonicity
formula E(r; x, u).

Lemma 2.3. If u ∈ H1(B1), then for any s ∈ [0, n− 1), the set

E := {x : lim sup
r→0

r−s

∫

∂Br(x)

u2 > 0}

has zero Hs+1 measure.
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Proof. Note that by the trace theorem for H1 space,
∫

∂Br(x)
u2 is well

defined for every ∂Br(x) ⊂ B1.
We claim that E belongs to the set

{x : lim sup
r→0

r−s−1

∫

Br(x)

u2 + |∇u|2 > 0}.

Indeed, if

lim sup
r→0

r−s−1

∫

Br(x)

u2 + |∇u|2 = 0,

then for any r, there exists t0 ∈ (r/2, r) such that
∫

∂Bt0 (x)

u2 = o(rs).

Next by direct differentiating in r, we see

r1−n

∫

∂Br(x)

u2

≤ t1−n
0

∫

∂Bt0 (x)

u2 + 2

∫

Br(x)\Bt0(x)

|y − x|1−nu
(y − x) · ∇u

|y − x|

≤ t1−n
0

∫

∂Bt0 (x)

u2 + 2nr1−n

(∫

Br(x)\Bt0 (x)

u2

) 1
2
(∫

Br(x)\Bt0 (x)

|∇u|2
) 1

2

= o(rs+1−n).

That is, for r → 0, ∫

∂Br(x)

u2 = o(rs).

This proves the claim, and then by [10, Lemma 2.1.1] we get the mea-
sure estimate. ¤

The next result is Lemma 4 in [14].

Lemma 2.4. There exists a constant C > 0 depending only on p and
n, such that for a stationary solution u in B1, for any x ∈ B1/4 and
r ∈ (0, 1/4),

r2 p+1
p−1

−n

∫

Br(x)

p− 1

2
|∇u|2 +

p− 1

p + 1
|u|p+1 ≤ CE(2r; x, u).

By the monotonicity formula we have
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Corollary 2.5. There exists a constant C > 0 depending only on p
and n, such that for any stationary solution u in B1, for any x ∈ B1/2

and r ∈ (0, 1/8),

r2 p+1
p−1

−n

∫

Br(x)

|∇u|2+|u|p+1 ≤ C

(∫

B1

|∇u|2 + |u|p+1 +

(∫

B1

|u|p+1

) 2
p+1

)
.

(2.2)

Proof. For any x ∈ B1/2,

E(
1

4
; x, u) ≤ 4

∫ 1
2

1
4

E(ρ; x, u)dρ

≤ C(n, p)

(∫

B1

|∇u|2 + |u|p+1 +

∫

B1

u2

)

≤ C(n, p)

(∫

B1

|∇u|2 + |u|p+1 +

(∫

B1

|u|p+1

) 2
p+1

)
.

Then we can apply the previous lemma to get the claim. ¤

Define

µ1,i =
1

2
|∇ui|2dx ⇀ µ1 =

1

2
|∇u|2dx + ν1,

µ2,i =
1

p + 1
|ui|p+1dx ⇀ µ2 =

1

p + 1
|u|p+1dx + ν2.

Hence we have µi = (p − 1)(µ1,i + µ2,i), µ = (p − 1)(µ1 + µ2) and
ν = (p− 1)(ν1 + ν2).

We have the following energy partition between ν1 and ν2.

Lemma 2.6. 2ν1 = (p + 1)ν2.

Proof. Because ui ∈ H1(B2) ∩ Lp+1(B2), by testing the equation (1.1)
with uiη

2, where η ∈ C∞
0 (B2), we get

∫

B2

|∇ui|2η2 − |ui|p+1η2 =

∫

B2

u2
i ∆

η2

2
.

By taking i → +∞, and noting that ui converges to u strongly in
L2(B2), we get

∫

B2

(|∇u|2η2 − |u|p+1η2
)

+

∫

B2

2η2dν1 − (p + 1)η2dν2 =

∫

B2

u2∆
η2

2
.

(2.3)
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On the other hand, since u ∈ H1(B2)∩Lp+1(B2) is an L1 weak solution
to (1.1), by choosing test functions in the form uMη2, where uM =
max{min{u,M},−M}, and then letting M → +∞, we also have∫

B2

|∇u|2η2 − |u|p+1η2 =

∫

B2

u2∆
η2

2
.

Substituting these into (2.3), we see∫

B2

2η2dν1 − (p + 1)η2dν2 = 0.

Since η can be chosen arbitrarily, this gives the claim. ¤

3. Analysis of the blow up locus

In this section we use notations as in Theorem 1.2. Define

Σ̃ = ∩0<r<1{x ∈ B1 : lim sup
i→∞

r−n+2 p+1
p−1 µi(Br(x)) ≥ ε0

2
}.

Below we will show that this coincides with Σ defined in the intro-
duction.

Lemma 3.1. Σ̃ is a closed set. For any domain Ω ⊂⊂ B1 \ Σ̃ and
k > 0, ui converges to u in Ck(Ω).

Proof. By definition, if x0 does not belong to Σ̃, there exists an r0 > 0
such that, for all i large,

r
2 p+1

p−1
−n

0 µi(Br0(x)) ≤ ε0.

By Theorem 2.2,

sup
Br0/2(x0)

|ui| ≤ Cr
− 2

p−1

0 .

Then standard elliptic estimates show that ui are uniformly bounded in
Ck+1(Br0/4(x0)) for any k. This then implies that for any r ∈ (0, r0/4),

µi(Br(x0)) ≤ Cr2 p+1
p−1 .

Then we get an r1 > 0, which is independent of i, such that Br1(x0) ∩
Σ̃ = ∅. So Σ̃ is relatively closed.

Since ui converges to u in L2(Br1(x0)), ui also converges to u in
Ck(Br1(x0)). ¤

From this proof we see

Corollary 3.2. u is smooth outside Σ̃. That is, S(u) ⊂ Σ̃.

Lemma 3.1 also shows that ui converges strongly to u in H1
loc ∩Lp+1

loc

outside Σ̃. Hence by the definition of ν we obtain
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Corollary 3.3. spt(ν) ⊂ Σ̃.

Since we will encounter many times the weak convergence of positive
Radon measures. The following facts may be helpful to keep in mind.

(1) For a positive Radon measure µ defined in B1, except a count-
able set of r ∈ (0, 1),

µ(∂Br) := lim
h→0

µ(Br+h \Br−h) = 0.

(2) Assume that a sequence of positive Radon measures µi con-
verges weakly to µ. Then for any open bounded set Ω,

lim inf
i→+∞

µi(Ω) ≥ µ(Ω),

lim sup
i→+∞

µi(Ω) ≤ µ(Ω).

(3) Combining the previous two points, we see for a.a. r > 0,

lim
i→+∞

µi(Br) = µ(Br).

Lemma 3.4. Hn−2 p+1
p−1 (Σ̃ ∩B1) < +∞.

Proof. For any x ∈ Σ̃ and r ∈ (0, 1), if µ(∂Br(x)) = 0, then

µ(Br) = lim
i→+∞

µi(Br).

So by the definition of Σ̃, we have

r−n+2 p+1
p−1 µ(Br(x)) ≥ cε0. (3.1)

If µ(∂Br(x)) 6= 0, we can take an increasing sequence ri → r with
µ(∂Bri

(x)) = 0, so that (3.1) holds for ri. Then by letting i → +∞,
we see (3.1) also holds for such r, and hence for any r > 0.

The measure estimate can be proved by the Vitali covering theorem,
see [8, Theorem 3.2]. ¤

Remark 3.5. In fact the proof shows that, for any x ∈ Σ̃ ∩ B1 and
r ∈ (0, 1/2),

Hn−2 p+1
p−1 (Br ∩ Σ̃) ≤ C(M)rn−2 p+1

p−1 .

Concerning the upper bound, we have

Lemma 3.6. For any x ∈ Σ̃ and r ∈ (0, 1),

µ(Br(x)) ≤ C(M)rn−2 p+1
p−1 . (3.2)



10 K. WANG AND J. WEI

Proof. By (2.2), for any i > 0, x ∈ B1 and r ∈ (0, 1),

r−n+2 p+1
p−1 µi(Br(x)) ≤ C

(∫

B2

|∇ui|2 + |ui|p+1 +

(∫

B1

|ui|p+1

) 2
p+1

)
.

Then (3.2) follows frow the weak convergence of µi to µ. ¤

In particular, µbΣ is absolutely continuous with respect to Hn−2 p+1
p−1 bΣ̃.

However we can show

Lemma 3.7. µbΣ̃= ν.

Proof. Because u ∈ H1(B1) ∩ Lp+1(B1), by [10, Lemma 2.1.1], the set

{x ∈ B1 : lim sup
r→0

r−n+2 p+1
p−1

∫

Br(x)

|∇u|2 + |u|p+1 > 0}

has zero n − 2(p + 1)/(p − 1) Hausdorff dimensional measure. This

means, for Hn−2(p+1)/(p−1)−a.a. x ∈ Σ̃,

lim sup
r→0

r−n+2 p+1
p−1

∫

Br(x)

|∇u|2 + |u|p+1 = 0. (3.3)

Because Hn−2 p+1
p−1 (Σ̃) < +∞, the measure (|∇u|2 + |u|p+1)dx restricted

to Σ̃ is zero. So µbΣ̃= ν. ¤

This result, combined with (3.1) and (3.2), implies that ν and Hn−2 p+1
p−1 bΣ̃

are mutually continuous with respect to each other. Together with
Lemma 3.1 and (3.1), this lemma also implies that, when ν 6= 0, the

support of ν is exactly Σ̃. Since we always have S(u) ⊂ Σ̃, we see in

this case Σ = Σ̃.
If ν = 0, the proof of Lemma 3.7 implies that for Hn−2 p+1

p−1 -a.a. x ∈ Σ,

lim sup
r→0

r2 p+1
p−1

−nµ(Br(x)) = 0.

Combining this with Lemma 3.4, we see

Hn−2 p+1
p−1 (Σ̃) = 0.

In this case, we still have

Lemma 3.8. If ν = 0, Σ̃ = S(u) = Σ.

Proof. The assumption that ν = 0 implies the strong convergence of ui

in H1
loc ∩Lp+1

loc . If x0 does not belong to S(u), by definition u is smooth
in an open ball Br0(x0). Then there exists another r1 < r0 so that

r
2 p+1

p−1
−n

1

∫

Br1 (x0)

p− 1

2
|∇u|2 +

p− 1

p + 1
|u|p+1 ≤ ε0

4
.
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By the strong convergence of ui in H1
loc ∩ Lp+1

loc , for all i large,

r
2 p+1

p−1
−n

1

∫

Br1 (x0)

p− 1

2
|∇ui|2 +

p− 1

p + 1
|ui|p+1 <

ε0

2
.

Thus we can argue as in the proof of Lemma 3.1 to show that x0 does

not belong to Σ̃. This gives Σ̃ ⊂ S(u), and the other direction has
already been given in Corollary 3.2. ¤

This finishes the proof of the first claim in Theorem 1.2. Next we
study the structure of Σ.

Lemma 3.9. For Hn−2 p+1
p−1−a.a. x ∈ Σ,

Θ(x) := lim
r→0

r−n+2 p+1
p−1 ν(Br(x)) ∈ (

ε0

2
, C(M)),

exists.

Proof. Fix a point in Σ, and without loss of generality, assume it is 0.
By (2.1), for any 0 < r1 < r2 < 1,

E(r2; 0, ui) ≥ E(r1; 0, ui).

Here we use the second formulation of E(r; x, u).
By the weak convergence of ui in H1

loc and the trace theorem, for any
ball Br(x),

lim
i→+∞

∫

∂Br(x)

u2
i =

∫

∂Br(x)

u2.

For a.a. r ∈ (0, 1), µ(∂Br(x)) = 0. For such r, we have

µ(Br(x)) = lim
i→∞

µi(Br(x)).

The same claims also hold for ν, ν1 and ν2. If r1, r2 satisfy these condi-
tions, then passing to the limit in the monotonicity formula for ui we
obtain

E(r2; 0, u)+r
2 p+1

p−1
−n

2 (ν1 − ν2) (Br2) ≥ E(r1; 0, u)+r
2 p+1

p−1
−n

1 (ν1 − ν2) (Br2).
(3.4)

Note that by Lemma 2.6, ν1 − ν2 = p−1
2

ν2 = 1
p+3

ν.

If µ(∂Br1) 6= 0 or µ(∂Br2) 6= 0, we can take r̄1 > r1, r̄2 < r2, with
r̄1 < r̄2 and µ(∂Br̄1) = µ(∂Br̄2) = 0, so that

E(r̄2; 0, u)+r̄
2 p+1

p−1
−n

2 (ν1 − ν2) (Br̄2) ≥ E(r̄1; 0, u)+r̄
2 p+1

p−1
−n

1 (ν1 − ν2) (Br̄1).

For any ε > 0, we can choose r̄2 close to r2 so that

(ν1 − ν2) (Br̄2) ≥ (ν1 − ν2) (Br2)− ε.
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Then by noting that E(r; 0, u) is continuous in r, and (ν1 − ν2) (Br̄1) ≥
(ν1 − ν2) (Br1), we can let r̄1 → r1, r̄2 → r2 to get (3.4).Thus (3.4)
holds for any 0 < r1 < r2 < 1.

By Lemma 3.6, we directly get a lower bound for

Ē(r) := E(r; 0, u) +
1

p + 3
r2 p+1

p−1
−nν(Br) ≥ −C(M).

By the monotonicity of Ē(r), we can use the same method as in the
proof of Corollary 2.5 to obtain an upper bound for Ē(r).

Then once again by the monotonicity, the limit

lim
r→0

(
E(r; 0, u) +

1

p + 3
r2 p+1

p−1
−nν(Br)

)

exists.
Now we assume that (3.3) holds at 0, which is true Hn−2 p+1

p−1 a.e. in
Σ. By Lemma 2.3, we can also assume that at this point

lim
r→0

r2 p+1
p−1

−n−1

∫

∂Br(x)

u2 = 0. (3.5)

With this choice, at this point

lim
r→0

E(r; 0, u) = 0.

Thus the limit
Θ(0) = lim

r→0
r2 p+1

p−1
−nν(Br)

exists.
Finally, the upper bound of Θ is a direct consequence of (3.2). Con-

cerning the lower bound, we can use (3.3) and (3.5) again to see that,
as r → 0,

Θ(0) = r2 p+1
p−1

−nν(Br) + o(1)

= r2 p+1
p−1

−nµ(Br) + o(1)

≥ ε0

2
+ o(1).

Here o(1) goes to 0 as r → 0. ¤
By the Radon-Nikodym theorem, we get

Corollary 3.10. ν = Θ(x)Hn−mbΣ.

From the proof we also get

Corollary 3.11. For any x ∈ B1 and r ∈ (0, 1/2),

Ē(r; x) := E(r; x, u) +
1

p + 3
r2 p+1

p−1
−nν(Br(x))
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is non-decreasing in r.

By Marstrand theorem ([10, Theorem 1.3.12] and [13]), if n − 2p+1
p−1

is not an integer, we must have ν = 0. This then implies that(
p− 1

2
|∇ui|2 +

p− 1

p + 1
|ui|p+1

)
dx ⇀

(
p− 1

2
|∇ui|2 +

p− 1

p + 1
|ui|p+1

)
dx.

Because ui ⇀ u weakly in H1
loc ∩ Lp+1

loc , ui → u strongly in H1
loc ∩ Lp+1

loc .
Then the stationary condition for ui can be passed to the limit, so u
also satisfies the stationary condition. This finishes the proof of the
second claim of Theorem 1.2.

4. The dimension reduction

In this section we consider the partial regularity for a stationary
solution u to (1.1), where n − 2p+1

p−1
is not an integer. A crucial point

is the fact we have just established: weak convergent solutions of (1.1)
also converges strongly in H1

loc ∩ Lp+1
loc .

Pacard’s partial regularity result ([14]) says that the singular set of
u, S(u) is a closed set satisfying

Hn−2 p+1
p−1 (S(u)) = 0.

In particular, dim(S(u)) ≤ n− 2p+1
p−1

. We will use Federer’s dimension

reduction principle to reduce this dimension to n−m, the integer part
of n− 2p+1

p−1
.

By the monotonicity of E(r; x, u), we can define the density function

Θ(x, u) = lim
r→0+

E(r; x, u).

By [14, Lemma 2 and Lemma 3], we have

Lemma 4.1. Θ(x, u) ≥ 0 is an upper-continuous function.

Next we have the following characterization of singular points.

Proposition 4.2. There exists a constant ε1 depending only on n and
p, such that for any stationary weak solution u of (1.1), x ∈ S(u) if
and only if Θ(x, u) ≥ ε1.

Proof. If x is in the regular set of u, there exists an r0 > 0 such that
u is smooth in Br0(x). Then there exists a constant C such that for
every r < r0,∫

Br(x)

|∇u|2 + |u|p+1 ≤ Crn,

∫

∂Br(x)

u2 ≤ Crn−1.
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Substituting this into the second formulation of E(r; x, u) we get

E(r; x, u) ≤ Cr2 p+1
p−1 .

Thus Θ(x, u) = 0.
On the other hand, for x ∈ S(u), by Theorem 2.2 and Lemma 2.4,

there exists a universal constant ε1 > 0 such that for any r > 0,

E(r; x, u) ≥ ε1.

By definition, we get Θ(x; u) ≥ ε1. ¤
Assume 0 ∈ S(u). For λ → 0, define the blow up sequence

uλ(x) = λ
2

p−1 u(λx).

By rescaling Lemma 2.4, for any x ∈ Bλ−1/2 and r ∈ (0, λ−1/2),∫

Br(x)

|∇uλ|2 + |uλ|p+1 ≤ C(M)rn−2 p+1
p−1 .

Here C(M) is a constant independent of λ → 0.
By Theorem 1.2, we can subtract a subsequence λi → 0 such that

ui := uλi converges strongly to a stationary solution u∞ in H1
loc(Rn) ∩

Lp+1
loc (Rn).
By the weak convergence of ui in H1

loc(Rn) and the trace theorem,
for any r > 0 and x ∈ Rn,∫

∂Br(x)

u2
∞ = lim

i→+∞

∫

∂Br(x)

u2
i .

Then we get
E(r; 0, u∞) = lim

i→+∞
E(r; 0, ui).

On the other hand, a direct scaling shows

E(r; 0, ui) = E(λir; 0, u).

By the monotonicity of E(r; 0, u), we obtain

E(r; 0, u∞) ≡ lim
r→0

E(r; 0, u) = Θ(0, u), ∀r > 0.

By Theorem 2.1, u∞ is homogeneous, that is, for any λ > 0,

u∞(λx) = λ−
2

p−1 u∞(x) a.e. in Rn.

In particular, the singular set S(u∞) is a cone, that is,

λS(u∞) = S(u∞), ∀λ > 0.

By Theorem 1.2 we have

Lemma 4.3. For any ε > 0, if i large, S(ui)∩B1 lies in an ε−neighborhood
of S(u∞) ∩B1.



BLOW UP LOCUS 15

Proof. Because n−2p+1
p−1

is not an integer, the blow up locus Σ = S(u∞).

Since ui converges to u∞ in any Ck topology away from Σ, for all i
large, ui is smooth outside the ε−neighborhood of S(u∞), and by this
the claim can be seen. ¤

The following result is the key step to apply Federer’s dimension
reduction principle. The proof can be found in [22] (cf. Lemma 3.2
therein. The proof only uses the validation of the monotonicity formula,
Theorem 2.1).

Lemma 4.4. Given a stationary weak solution u of (1.1) on Rn, as-
sume that u is homogeneous, that is, ∀λ > 0,

u(λx) = λ−
2

p−1 u(x).

Then ∀x ∈ Rn, Θ(x, u) ≤ Θ(0, u). Moreover, if Θ(x, u) = Θ(0, u),
then u is invariant in the direction of x, i.e. ∀t ∈ R,

u(y + tx) = u(y), a.e. y ∈ Rn.

The last claim means u can viewed as a solution of (1.1) in Rn−1.
The following result shows that the stationary condition is preserved
under this operation.

Lemma 4.5. Let u = u(x1, · · · , xn−1) ∈ H1
loc(Rn−1) ∩ Lp+1

loc (Rn−1) be a
weak solution of (1.1) in Rn−1. Take ū to be the trivial extension of u
to Rn,

ū(x1, · · · , xn) = u(x1, · · · , xn−1).

Then u is stationary if and only if ū is stationary.

Proof. First assume ū is stationary but u is not stationary. By defini-
tion there exists a vector field Y ∈ C∞

0 (Rn−1,Rn−1), such that∫

Rn−1

(
1

2
|∇u|2 − 1

p + 1
|u|p+1

)
divY −DY (∇u,∇u) = δ > 0.

For any T , take a function ηT ∈ C∞
0 ((−T − 1, T + 1)) such that η ≡ 1

in (−T, T ), |η′| ≤ 2. Then

Ȳ (x1, · · · , xn−1, xn) = Y (x1, · · · , xn−1)η(xn)

is a smooth vector field in Rn with compact support. So∫

Rn

(
1

2
|∇ū|2 − 1

p + 1
|ū|p+1

)
divȲ −DȲ (∇ū,∇ū) = 0.

However, direct calculation shows that this also equals∫

Rn−1×{−T<xn<T}

(
1

2
|∇u|2 − 1

p + 1
|u|p+1

)
divY −DY (∇u,∇u)
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+

∫

Rn−1×{T<|xn|<T+1}

(
1

2
|∇ū|2 − 1

p + 1
|ū|p+1

)
divȲ −DȲ (∇ū,∇ū)

= 2Tδ + O(1).

Hence if we choose T large we get a contradiction. This proves the
stationary condition for u.

Now assume u is stationary. For any vector field Ȳ ∈ C∞
0 (Rn,Rn),

by noting that ∂ū
∂xn

= 0 a.e., we have
∫

Rn

(
1

2
|∇ū|2 − 1

p + 1
|ū|p+1

)
divȲ −DȲ (∇ū,∇ū)

=

∫ +∞

−∞

∫

Rn−1

(
1

2
|∇u|2 − 1

p + 1
|u|p+1

) ∑
1≤i≤n−1

∂Ȳi

∂xi

−
∑

1≤i,j≤n−1

∂Ȳi

∂xj

∂ū

∂xi

∂ū

∂xj

+

∫

Rn−1

(
1

2
|∇u|2 − 1

p + 1
|u|p+1

)
×

∫ +∞

−∞

∂Ȳn

∂xn

= 0.

This proves the stationary condition for ū. ¤

When the blow up limit u∞ has a singular point x1 6= 0, the next step
in Federer’s dimension reduction argument is to blow up u∞ once again
at x1, thus obtaining another homogeneous solution u∞,1. By Lemma
4.1 and Lemma 4.4, we can show that u∞,1 is translation invariant
along the direction x1. Hence we can view it as a solution defined on
Rn−1, which is also stationary by Lemma 4.5. Note that this operation
also decreases the Hausdorff dimension of its singular set by 1. We
can repeat this step until we get a homogeneous solution defined on
Rk, which is singular only at the origin 0. Since by our assumption
p ∈ (m+2

m−2
, m+1

m−3
) (in particular, p is subcritical in dimension m − 1), it

can be directly verified that k ≥ m. Roughly speaking, after at most
n−m steps, we get a solution with singular set of dimension 0. Recall
that at each step of reduction we decrease the dimension of singular
sets by 1, thus the dimension of S(u) is at most n −m. This proves
Theorem 1.3. For a precise treatment of this argument and also the
case when p ∈ (n+2

n−2
, n+1

n−3
), we refer to [18, Appendix A] and [10, Section

2.3].

5. The bubble construction

In this section and the following parts of this paper we consider the
case where n − 2p+1

p−1
is an integer. Denote m = 2p+1

p−1
, that is, p is the

critical Sobolev exponent in Rm.
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We first explore the local properties of Σ near an arbitrary point,
say 0 ∈ Σ. For any λ > 0, define µλ := Lλ,0

] µ, i.e.

µλ(A) := λ2 p+1
p−1

−nµ(λA) for any Borel set A.

By (3.2), for any ball Br,

µλ(Br) = λ2 p+1
p−1

−nµ(Bλr) ≤ C(M)rn−2 p+1
p−1 .

Hence we can subtract a subsequence λj → 0, so that µλj converges
weakly to a positive Radon measure µ0 on Rn. Note that for a.a. r > 0,
we have µ0(∂Br) = 0. Then for such r, by (3.1),

µ0(Br) = lim
j→+∞

µλj
(Br) ≥ cε0r

n−2 p+1
p−1 .

A posterior this holds for all r > 0 by continuity, not only those r with
µ0(∂Br) = 0. In particular this implies that µ0 6= 0 is nontrivial.

By a rescaling using Remark 3.5, we see for any λ, r > 0,

Hn−m(Br ∩ Σλ) ≤ C(M)rn−m.

where Σλ := λ−1Σ. By the Blaschke Selection Theorem (cf. [10, Theo-
rem 2.1.5]), after further subtracting a subsequence of λj → 0, we can
assume that Σλj converges to a closed set Σ0.

By Lemma 3.9 and Preiss theorem ([16], see also [10] for a direct
proof without using Preiss theorem), Σ is countably (n−m)-rectifiable.
In particular, for Hn−m-a.a. x ∈ Σ, there exists a tangent plane T to
Σ. (This can also be proved directly, see [9, Section 2].) Thus for any
ε > 0, as λ → 0,

λ−1 (Σ− {x}) ∩B1 belongs to an ε neighborhood of T.

Recall that

Θ(x) = lim
r→0

rm−nν(Br(x)), Hn−m − a.e. in Σ,

is Borel measurable. We have (for a direct proof see for example [21,
Lemma 3.2.2])

Lemma 5.1. Θ(x) is Hn−m approximate continuous at Hn−m−a.a.
x ∈ Σ. Here Θ(x) is Hn−m approximate continuous at x0 if for any
ε > 0,

lim
r→0

Hn−m({x ∈ Σ ∩Br(x0) : |Θ(x)−Θ(x0)| > ε})
Hn−m(Br(x0) ∩ Σ)

= 0.

If 0 is an approximate continuous point of Θ, then by the same proof
of [9, Lemma 2.1], there exists a tangent plane T of Σ at 0. Without
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loss of generality, assume T = Rn−m × {0} ⊂ Rn. We can also assume
that (3.3) holds at 0, i.e.

lim
r→0

rm−n

∫

Br

(|∇u|2 + |u|p+1
)

= 0.

In this case Σ0 = T and µ0 = Θ(0)Hn−mbT .
In the following we will always assume that such a base point has

been chosen. Denote x = (x′, x′′) ∈ Rn−m × Rm, and open balls in
Rn−m (or Rm) by B′

r(x
′) (respectively, B′′

r (x′′)).

For each λ, the sequence uλ
i (x) := λ

2
p−1 ui(λx) converges to uλ(x) :=

λ
2

p−1 u(λx) weakly in H1(B2λ−1) ∩ Lp+1(B2λ−1). As i → +∞, the mea-
sures

µλ
i = Lλ,0

] µi ⇀

(
p− 1

2
|∇uλ|2 +

p− 1

p + 1
|uλ|p+1

)
dx + νλ = µλ.

For each j, we can choose an i(j) and Rj large so that the Levi

distance between µ
λj

i(j)bBRj
and νλjbBRj

is smaller than 1/j. Then by

a diagonal argument, we find a sequence of stationary solutions vj to
(1.1), satisfying
∫

Br(x)

|∇vj|2+|vj|p+1 ≤ C(M)rn−2 p+1
p−1 , for all x ∈ BRj/2, r ∈ (0, Rj/2),

and

µj :=

(
p− 1

2
|∇vj|2 +

p− 1

p + 1
|vj|p+1

)
dx ⇀ µ0 = Θ(0)Hn−mbT . (5.1)

First we note

Lemma 5.2. In L1
loc(Rn),

n−m∑

k=1

∣∣∣ ∂vj

∂xk

∣∣∣
2

dx → 0.

Proof. Because

µj :=

(
p− 1

2
|∇vj|2 +

p− 1

p + 1
|vj|p+1

)
dx ⇀ 0 outside T,

and T is a subspace of Rn with codimension m ≥ 3, vj must converge

weakly to 0 in H1
loc(Rn)∩Lp+1

loc (Rn). By the compact Sobolev embedding
theorem, vj converges to 0 in L2

loc(Rn).
For a.a. r > 0, µ0(∂Br(0)) = 0. By the strong convergence of vj in

L2
loc(Rn), after passing to a subsequence of j again, we also have for
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a.a. r > 0, ∫

∂Br(0)

v2
j → 0.

For such r, we have

µ0(Br(0)) = (p + 3)(ν1(Br(0))− ν2(Br(0)))

= lim
j→+∞

(p + 3)

∫

Br(0)

|∇vj|2
2

− |vj|p+1

p + 1
.

Since µ0(Br(0)) ≡ Crn−2 p+1
p−1 for some constant C, for any generic 0 <

σ < R < +∞ (avoiding a countable set),

lim
j→+∞

E(R; 0, vj)− E(σ; 0, vj) = 0.

By the monotonicity formula for vj, we see

lim
j→+∞

∫

BR(0)\Bσ(0)

( y
|y|∇vj + 2

p−1
|y|−1vj)

2

|y|n−m
= 0. (5.2)

Because vj converges to 0 in L2
loc(Rn), after an expansion we obtain

lim
j→+∞

∫

BR(0)\Bσ(0)

|y · ∇vj|2 = 0.

Take the standard basis ξk of Rn−m, 1 ≤ k ≤ n−m. If we choose R
and σ suitably, the same argument above still works if we replace the
center of ball by ξk, which gives

lim
j→+∞

∫

BR(ξk)\Bσ(ξk)

|(y − ξk) · ∇vj|2 = 0.

If R is large and σ is small, in D = ∩k (BR(ξk) \Bσ(ξk))∩(BR(0) \Bσ(0)),

lim
j→+∞

∫

D

|ξk · ∇vj|2

= lim
j→+∞

∫

D

|(y − ξk) · ∇vj|2 − |y · ∇vj|2 + 2(y · ∇vj)(ξk · ∇vj)

≤ lim
j→+∞

∫

D

|(y − ξk) · ∇vj|2 + 10|y · ∇vj|2 +
1

2
(ξk · ∇vj)

2.

So

lim
j→+∞

∫

D

|ξk · ∇vj|2 = 0.

Then a suitable covering using translations of D gives the result. ¤
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In the proof we have used the following fact. For any ε > 0, there
exists a constant C such that, for all j large,

sup
{|x′′|>ε}

|vj| ≤ C. (5.3)

In particular, vj are smooth outside the ε−neighborhood of T .
By Pacard’s partial regularity result [15] for stationary solutions,

Hn−m(S(vj)) = 0. Since the projection π from Rn to T is a 1−Lipschitz
map, direct calculation using the definition of Hausdorff measures gives

Hn−m(πS(vj)) = 0.

In other words, for Hn−m−a.a. x′ ∈ T , ({x′} × Rm)∩S(vj) = ∅. Thus
for all j large, vj(x

′, ·) are smooth functions in Rm for Hn−m−a.a.
x′ ∈ T , and these points form an open set. (Note that the regular set
of vj is open.)

Let

fj(x
′) :=

∫

B′′1

n−m∑

k=1

∣∣∣ ∂vj

∂xk

(x′, x′′)
∣∣∣
2

dx′′.

Lemma 5.2 says fj converges to 0 in L1
loc(Rn−m). By the weak−L1

estimate for the Hardy-Littlewood maximal function, for Hn−m−a.a.
x′ ∈ T ,

Mfj(x
′) := sup

0<r≤1/2

rm−n

∫

B′r(x′)
fj(y

′)dy′ → 0, as j → +∞. (5.4)

For any δ > 0, we can take an open set Ej ⊂ B′
1 with

Hn−m(Ej) ≥ (1− δ)Hn−m(B′
1), (5.5)

such that for any x′ ∈ Ej, (5.4) holds and vj is smooth in a neighbor-
hood of {x′} × B′′

1/2.

Take an arbitrary sequence x′j ∈ Ej. Then for all x′′ ∈ B′′
1/2,

lim
δ→0

δm−n

∫

Bδ(x′j ,x′′)

p− 1

2
|∇vj|2 +

p− 1

p + 1
|vj|p+1 = 0. (5.6)

On the other hand, by the definition of the blow up locus, there exists
a δj > 0, which goes to 0 as j → +∞, such that

δm−n
j

∫

Bδj
(x′j ,0)

p− 1

2
|∇vj|2 +

p− 1

p + 1
|vj|p+1 ≥ ε0

2
. (5.7)

These two imply the existence of an rj ∈ (0, δj), such that

max
x′′∈B′′

1/2

rm−n
j

∫

Brj (x′j ,x′′)

p− 1

2
|∇vj|2 +

p− 1

p + 1
|vj|p+1 = c1ε0, (5.8)
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where we have chosen a fixed constant c1 ∈ (0, 1/2).
Assume this maxima is attained at x′′j , and denote xj = (x′j, x

′′
j ).

Define

v̄j(x) = r
2

p−1

j vj(xj + rjx).

By Lemma 2.4, for any r ∈ (0, r−1
j /2),

∫

Br(0)

p− 1

2
|∇v̄j|2 +

p− 1

p + 1
|v̄j|p+1 ≤ C(M)rn−2 p+1

p−1 . (5.9)

Without loss of generality, assume that v̄j converges weakly to v̄ in

H1
loc(Rn)∩Lp+1

loc (Rn). By the compact Sobolev embedding, v̄j converges
to v̄ in Lq

loc(Rn)) for any q < p + 1. In particular, v̄ is an H1 weak
solution of (1.1) in Rn.

By (5.4) and Fatou lemma, for all 0 < r ≤ r−1
j /2,

rm−n

∫

Br(0)

n−m∑

k=1

∣∣∣ ∂v̄

∂xk

(x′, x′′)
∣∣∣
2

≤ lim inf
j→+∞

rm−n

∫

Br(0)

n−m∑

k=1

∣∣ ∂v̄j

∂xk

(x′, x′′)
∣∣2 (5.10)

= lim inf
j→+∞

(rrj)
m−n

∫

Brrj (xj)

n−m∑

k=1

∣∣ ∂vj

∂xk

(x′, x′′)
∣∣2 = 0.

Hence v̄(x′, x′′) = v̄(x′′). In (5.9), we can replace Br by the cylinder
B′

r/2 × B′′
r/2, which then gives (noting that m = 2p+1

p−1
and r can be

arbitrarily large)
∫

Rm

|∇′′v̄(x′′)|2 + |v(x′′)|p+1dx′′ ≤ C(M).

Because v̄ is a solution to (1.1), with p the critical exponent in Rm, by
[19, Lemma B.3] it is a smooth solution.

We can assume the measures

(|∇v̄j|2 + |v̄j|p+1)dx ⇀ (|∇v̄|2 + |v̄|p+1)dx + τ.

Here τ is a positive Radon measure.

Lemma 5.3. τ is translation invariant under x′ direction.

Proof. For any ϕ ∈ C∞
0 (Rn), define

Fj(a) =

∫

Rn

(
1

2
|∇v̄j|2 − 1

p + 1
|v̄j|p+1

)
(x + a)ϕ(x)dx.
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Fj(a) are smooth functions of a. Then for k = 1, · · · , n−m,

∂Fj

∂ak

=

∫

Rn

∂

∂xk

(
1

2
|∇v̄j|2 − 1

p + 1
|v̄j|p+1

)
(x + a)ϕ(x)dx.

Define Y = ϕ(x) ∂
∂xk

, then divY = ∂ϕ
∂xk

. By the stationary condition,

∂Fj

∂ak

= −
n∑

l=1

∫

Rn

∂v̄j

∂xk

(x + a)
∂v̄j

∂xl

(x + a)
∂ϕ

∂xl

(x)dx.

By (5.10), this goes to 0 uniformly on any compact set of Rn. Since
the measures(

1

2
|∇v̄j|2 − 1

p + 1
|v̄j|p+1

)
dx ⇀

(
1

2
|∇v̄|2 − 1

p + 1
|v̄|p+1

)
dx+

p− 1

4(p + 1)
τ,

and
(

1
2
|∇v̄|2 − 1

p+1
|v̄|p+1

)
dx is translation invariant in xk directions,

1 ≤ k ≤ n−m, τ is also translation invariant in xk directions. ¤
By the choice of xj (see (5.8)), we have

c1ε0 =

∫

B1

|∇v̄j|2 + |v̄j|p+1 = max
x′′∈B′′

r−1
j

/2

∫

B1(0,x′′)
|∇vj|2 + |vj|p+1. (5.11)

Take two nonnegative functions ϕ ∈ C∞
0 (B′

2), ψ ∈ C∞
0 (B′′

2 ), such that
ϕ ≡ 1 in B′

1, ψ ≡ 1 in B′′
1 . For a ∈ B′

1 ×B′′
1 , define

Fj(a) =

∫
(|∇v̄j|2 + |v̄j|p+1)(x + a)ϕ(x′)ψ(x′′)dx.

Similar to the above discussion, Fj are uniformly bounded in C1(B′
1 ×

B′′
1 ), and it converges uniformly to∫ (|∇v̄|2 + |v̄|p+1

)
ϕ(x′ − a′)ψ(x′′ − a′′) +

∫
ϕ(x′ − a′)ψ(x′′ − a′′)dτ

=

∫ (|∇v̄|2 + |v̄|p+1
)
ϕ(x′)ψ(x′′ − a′′) +

∫
ϕ(x′)ψ(x′′ − a′′)dτ,

which is independent of a′. Thus for any R > 0 fixed, if j is large
enough,

max
x′∈B′2,x′′∈B′′R

∫

B1(x′,x′′)
|∇vj|2 + |vj|p+1 ≤ 2c1ε0 < ε0.

By Theorem 2.2 and standard elliptic estimates, for any k, v̄j are
uniformly bounded in Ck

loc(B
′
3/2(0)×B′′

R−1(0)). Then we can take limit

in (5.11) to get

c1ε0 =

∫

B1

|∇v̄|2 + |v̄|p+1. (5.12)
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In particular, v̄ is nontrivial.
In conclusion, after two rescalings from ui, we construct a nontrivial

smooth solution v̄ to the equation

−∆v̄ = |v̄| 4
m−2 v̄ in Rm.

Moreover, v̄ satisfies
∫

Rm

|∇′′v̄|2 + |v̄| 2m
m−2 ≤ C(M). (5.13)

This proves the last part of Theorem 1.2.
Note that positive solutions (to (1.1) in Rm) have the least energy.

By [2], up to a translation and scaling, for every 1 ≤ i ≤ N , the positive
solution has the form

[m(m− 2)]
m−2

4
(
1 + |y′′|2)−

m−2
2 .

Since translations and scalings in Rm do not change the energy, there
exists a constant c(m) depending only on m, such that for any positive
solution v̄ of (1.1) on Rm,

∫

Rm

p− 1

2
|∇v̄|2 +

p− 1

p + 1
|v̄|p+1 = c(m).

For any R > 0, by a rescaling and using the smooth convergence of
v̄j in BR, we have

∫

B′′1

(
p− 1

2
|∇vj(x

′
j, x

′′)|2 +
p− 1

p + 1
|vj(x

′
j, x

′′)|p+1

)
dx′′

≥
∫

B′′Rrj
(x′′j )

(
p− 1

2
|∇vj(x

′
j, x

′′)|2 +
p− 1

p + 1
|vj(x

′
j, x

′′)|p+1

)
dx′′

=

∫

B′′R

(
p− 1

2
|∇v̄j(0, x

′′)|2 +
p− 1

p + 1
|v̄j(0, x

′′)|p+1

)
dx′′ (5.14)

→
∫

B′′R

(
p− 1

2
|∇v̄(x′′)|2 +

p− 1

p + 1
|v̄j(x

′′)|p+1

)
dx′′

≥ c(m)− σ(R).

Here σ(R) is defined by the following lemma.

Lemma 5.4. There exists a positive, continuous non-increasing func-
tion σ(R) defined on [0, +∞) with

lim
R→+∞

σ(R) = 0,
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such that for any solution v of (1.1) on Rm, satisfying (5.12),
∫

B′′R

p− 1

2
|∇′′v|2 +

p− 1

p + 1
|v| 2m

m−2 ≥ c(m)− σ(R).

Proof. Arguing by contradiction, we can assume that there exist a con-
stant σ > 0, a sequence of solutions vj satisfying all of the assumptions,
and Rj → +∞ such that

∫

B′′Rj

p− 1

2
|∇′′vj|2 +

p− 1

p + 1
|vj|

2m
m−2 < c(m)− σ. (5.15)

With the above uniform bound we can assume that vj converges

weakly to v in H1
loc(Rm) ∩ L

2m/(m+2)
loc (Rm). If v is nonzero, by Fatou

lemma we get
∫

Rm

p− 1

2
|∇′′v|2 +

p− 1

p + 1
|v| 2m

m−2 ≤ c(m)− σ.

This is a contradiction since the lowest energy is exactly c(m).
If v = 0, by (5.12) and Struwe’s global compactness theorem [19,

Theorem 3.1], there must exists an blow up point x0 ∈ B′′
2 such that

(at least) one bubble concentrates at x0. More precisely, there exists
x′′j → x0 and rj → 0 such that

r
m−2

2
j vj(x

′′
j + rjx

′′)

converges to a nontrivial solution of (1.1) weakly in H1
loc(Rm)∩L

2m/(m+2)
loc (Rm).

This bubble carries energy at least c(m), which is concentrated in a
small ball around x0. Thus we get a contradiction once again. ¤

Since (5.14) holds for any x′ ∈ Ej, by noting (5.5), we get

lim inf
j→+∞

∫

B′1

∫

B′′1

(
p− 1

2
|∇vj(x

′, x′′)|2 +
p− 1

p + 1
|vj(x

′, x′′)|p+1

)
dx′′dx′

≥ lim inf
j→+∞

∫

Ej

∫

B′′1

(
p− 1

2
|∇vj(x

′, x′′)|2 +
p− 1

p + 1
|vj(x

′, x′′)|p+1

)
dx′′dx′

≥ (c(m)− σ(R)) (1− δ) Hn−m(B′
1).

After letting R → +∞ and δ → 0, and noting (5.1), we obtain

Corollary 5.5. For Hn−m−a.a. x ∈ Σ, Θ(x) ≥ c(m).
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6. Quantization of Density Function

In the previous section we have constructed a sequence of vj such
that (here we use the same notations as in the previous section)(

p− 1

2
|∇vj|2 +

p− 1

p + 1
|vj|p+1

)
dx ⇀ Θ(0)Hn−mbRn−m . (6.1)

In this section we prove the quantization of Θ(0), under the following
assumption

∆′vj → 0, in L
p+1

p

loc (Rn). (6.2)

Note that since vj are uniformly bounded in Lp+1
loc (Rn), by standard

interior W 2, p+1
p estimates, D2vj are uniformly bounded in L

p+1
p

loc (Rn).
In view of Lemma 5.2, it is natural to conjecture that (6.2) holds.

Theorem 6.1. There exists at most N solutions of (1.1) in Rm, wi,
1 ≤ i ≤ N , with∫

Rm

p− 1

2
|∇wi|2 +

p− 1

p + 1
|wi|p+1 < +∞,

such that

Θ(0) =
N∑

i=1

∫

Rm

p− 1

2
|∇wi|2 +

p− 1

p + 1
|wi|p+1.

Here

N ≤ C(M)

c(m)
.

Before proving this theorem, we first show that the problem can be
reduced to a slice.

Lemma 6.2. For a.a. x′ ∈ B′
1, on B′′

1 ,(
p− 1

2
|∇vj(x

′, x′′)|2 +
p− 1

p + 1
|vj(x

′, x′′)|p+1

)
dx′′ ⇀ Θ(0)δ0, (6.3)

where δ0 is the Dirac measure supported at the origin 0 ∈ Rm.

Proof. Fix a ϕ ∈ C∞
0 (B′′

1 ) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B′′
1/2. For

any smooth vector field X ∈ C∞
0 (B′

1,Rn−m), substitute ϕX into the
stationary condition (1.2). This leads to

0 =

∫

B′1

∫

B′′1

(
1

2
|∇vj|2 − 1

p + 1
|vj|p+1

)
ϕdivXdx′′dx′ (6.4)

−
∫

B′1

∫

B′′1

[ϕDX(∇′vj,∇′vj) + (∇′′ϕ · ∇′′vj) (X · ∇′vj)] dx′′dx′.
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By using the equation (1.1) and integrating by parts, we have
∫

B′1

∫

B′′1

|vj|p+1ϕdivXdx′′dx′

= −
∫

B′1

∫

B′′1

∆vjvjϕdivXdx′′dx′ (6.5)

=

∫

B′1

∫

B′′1

|∇vj|2ϕdivXdx′′dx′

+

∫

B′1

∫

B′′1

[vj (∇′vj · ∇′divX) ϕ + vj (∇′′vj · ∇′′ϕ) divX] dx′′dx′.

Integrating by parts once again,
∫

B′1

∫

B′′1

vj (∇′vj · ∇′divX) ϕdx′′dx′

= −
∫

B′1

∫

B′′1

(|∇′vj|2 + ∆′vjvj

)
divXϕdx′′dx′.

By Lemma 5.2, (6.2) and the uniform Lp+1(B′
1 ×B′′

1 ) bound on vj,

lim
j→∞

∫

B′1

∫

B′′1

(|∇′vj|2 + |∆′vjvj|
)
dx′′dx′ = 0, (6.6)

lim
j→∞

∫

B′1

∫

B′′1

n−m∑

k,l=1

∣∣∣ ∂vj

∂xk

∣∣∣
∣∣∣∂vj

∂xl

∣∣∣dx′′dx′ = 0. (6.7)

By Lemma 5.2 and the uniform L2(B′
1×B′′

1 ) bound on∇′′vj and Cauchy
inequality,

lim
j→∞

∫

B′1

∫

B′′1

∣∣∣ (∇′′ϕ · ∇′′vj)∇′vj

∣∣∣dx′′dx′ = 0. (6.8)

Because vj → 0 in L2(B′
1 × B′′

1 ) (note that vj converges uniformly to
0 on any compact set in B′

1 × (B′′
1 \ {0})), combining this with the

uniform L2(B′
1 ×B′′

1 ) bound on ∇′′vj and Cauchy inequality, we get

lim
j→∞

∫

B′1

∫

B′′1

∣∣∣vj (∇′′vj · ∇′′ϕ)
∣∣∣dx′′dx′ = 0. (6.9)

Substituting (6.5)-(6.9) into (6.4), we obtain

∫

B′1

[∫

B′′1

(
1

2
− 1

p + 1

)
|∇vj|2ϕdx′′

]
divXdx′ =

∫

B′1

fj ·X +Aj ·DXdx′,
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where fj ∈ L1(B′
1,Rn−m) and Aj ∈ L1(B′

1,Rn−m ⊗ Rn−m) (i.e. Aj are
matrix valued), satisfying

lim
j→∞

∫

B1

|fj|+ |Aj|dx′ = 0.

By (6.1) and Lemma 2.6,
[∫

B′′1

(
1

2
− 1

p + 1

)
|∇vj|2ϕdx′′

]
→ Θ(0)

p + 3
, weakly in L1(B′

1).

Then we can apply Allard’s strong constancy lemma (cf. [1, Section
1]) to conclude that

∫

B′′1

(
1

2
− 1

p + 1

)
|∇vj|2ϕdx′′ → Θ(0)

p + 3
, in L1(B′

1).

We can also substitute (6.5) into (6.4) to eliminate |∇vj|2. This leads
to the strong convergence of

∫

B′′1

(
1

2
− 1

p + 1

)
|vj|p+1ϕdx′′,

in L1(B′
1).

Now we have proved that
∫

B′′1

(
p− 1

2
|∇vj|2 +

p− 1

p + 1
|vj|p+1

)
ϕdx′′ → Θ(0)

in L1(B′
1). Since vj converges to 0 in C1(B′

1×
(
B′′

1 \B′′
1/3

)
and 1−ϕ ≡ 0

in B′′
1/2,

lim
j→0

∫

B′1

∫

B′′1

(
p− 1

2
|∇vj|2 +

p− 1

p + 1
|vj|p+1

)
(1− ϕ) dx′′dx′ = 0.

Thus∫

B′′1

(
p− 1

2
|∇vj(x

′, x′′)|2 +
p− 1

p + 1
|vj(x

′, x′′)|p+1

)
dx′′ → Θ(0)

in L1(B′
1).

After passing to a subsequence of j, we can assume that for a.a.
x′ ∈ B′

1,∫

B′′1

(
p− 1

2
|∇vj(x

′, x′′)|2 +
p− 1

p + 1
|vj(x

′, x′′)|p+1

)
dx′′ → Θ(0).
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Then by noting that
(

p− 1

2
|∇vj(x

′, x′′)|2 +
p− 1

p + 1
|vj(x

′, x′′)|p+1

)
→ 0,

uniformly on any compact set of B′′
1 \ {0}, we must have

(
p− 1

2
|∇vj(x

′, x′′)|2 +
p− 1

p + 1
|vj(x

′, x′′)|p+1

)
dx′′ ⇀ Θ(0)δ0,

weakly as measures. ¤

Proof of Theorem 6.1. By (6.2) and the previous lemma, for each j,
there exists a closed set Ej ⊂ B′

1 with limj→+∞ Hn−m(Ej) = 0, such
that for any x′j ∈ B′

1 \ Ej, (6.3) holds and

lim
j→∞

∫

B′′1

|∆′′vj(x
′
j, x

′′)| 2m
m+2 dx′′ = 0. (6.10)

Moreover, as in the previous section, we can also restrict Ej further so
that vj is smooth in a neighborhood of Ej ×B′′

1 .
Let x′j ∈ B′

1 \ Ej be an arbitrary sequence, and

ṽj(x
′) = vj(x

′
j, x

′′).

Thanks to (6.3), ṽj are uniformly bounded in H1(B′′
1 ) ∩ L

2m
m−2 (B′′

1 ).
Since vj is smooth in a neighborhood of {x′j} ×B′′

1 ,

∆′′ṽj + |ṽj|p−1ṽj = −∆′ṽj.

Thus by (6.10) and the Sobolev embedding theorem in dimension m,
for any ϕ ∈ H1(B

′′
1 ),

∫

B′′1

(
∆′′ṽj + |ṽj|p−1ṽj

)
ϕ =

∫

B′′1

−∆′ṽjϕ

≤
(∫

B′′1

|∆′′vj(x
′
j, x

′′)| 2m
m+2

)m+2
2m

(∫

B′′1

|ϕ| 2m
m−2

)m−2
2m

= oj(‖ϕ‖H1(B1)).

Hence ṽj is a Palais-Smale sequence.
Then by [19, Theorem 3.1] (see also [6, Section 3.1]), we get N

functions wi(x
′′), 1 ≤ i ≤ N , with

−∆′′wi = |wi|
4

m−2 wi,

∫

Rm

|∇′′wi|2 + |wi|
2m

m−2 < +∞,
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and N points xi,j and radius Ri,j > 0, 1 ≤ i ≤ N , such that

‖ṽj −
N∑

i=1

R
m−2

2
i,j wi(Ri,j(x− xi,j))‖H1(B′′1 ) → 0. (6.11)

Their L
2m

m−2 (B′′
1 ) norm also converge to 0.

By Lemma 3.9 and (6.3),

lim
j→+∞

∫

B′′1

p− 1

2
|∇ṽj|2 +

p− 1

p + 1
|ṽj|p+1 = Θ(0) ≤ C(M). (6.12)

There also exists a constant c1(m) depending only on m such that (see
Lemma 5.4)

∫

Rm

p− 1

2
|∇wi|2 +

p− 1

p + 1
|wi|p+1 ≥ c(m). (6.13)

Note that this energy is invariant under scaling and translations in Rm.
Combining (6.11)-(6.13) we get the upper bound for N . ¤

If the sequence of solutions are positive, then wi ≥ 0 for every 1 ≤
i ≤ N (for a proof see [6, Section 3.2]). By [2], up to a translation and
scaling, for every 1 ≤ i ≤ N ,

wi(y
′′) = [m(m− 2)]

m−2
4

(
1 + |y′′|2)−

m−2
2 .

Note that the translation and scaling do not change the energy of wi,
so ∫

Rm

p− 1

2
|∇wi|2 +

p− 1

p + 1
|wi|p+1

= 4α(m)(m− 1)[m(m− 2)]
m−2

2

∫ ∞

0

(1 + r2)−mrm−1dr

= c(m).

Together with (6.4) and (6.11), this gives

Corollary 6.3. In the case of positive solutions, there exists a constant
c(m) depending only on m such that, for Hn−m−a.a. x ∈ Σ, Θ(x)/c(m)
is an integer.

7. Stationary Property of Blow up Locus

In this section we prove that the stationary property of the limit
function u is equivalent to that of the blow-up locus.
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For any smooth vector field Y with compact support, the stationary
condition for ui says

∫ (
1

2
|∇ui|2 − 1

p + 1
|ui|p+1

)
divY −DY (∇ui,∇ui) = 0.

Let the Radon measure

γ :=
m(m− 2)

4(m− 1)
ν.

Then we have the weak convergence

|∇ui|2dx ⇀ |∇u|2dx + γ.

Let

τ i
αβ := |∇ui|−2 ∂ui

∂xα

∂ui

∂xβ

if |∇ui| 6= 0 (if |∇ui| = 0, we simply take [τ i
αβ] = 0). We can assume

the matrix-valued measures

τ i
αβ|∇ui|2dx ⇀

∂u

∂xα

∂u

∂xβ

dx + ταβdν.

Here [ταβ] is symmetric, non-negative definite, measurable with respect
to γ, and

∑n
α=1 ταα = 1 γ−a.e.. By passing to the limit in the station-

ary condition for ui, we get

0 =

∫ (
1

2
|∇u|2 − 1

p + 1
|u|p+1

)
divY −DY (∇u,∇u) (7.1)

+2

∫ (
1

m
divY −

n∑

α,β=1

DαY βταβ

)
dγ.

For any 1 ≤ α, β ≤ n, ταβ is approximate continuous in the following
sense: given an ε > 0, for γ−a.a. x0,

lim
r→0

γ({|ταβ(x)− ταβ(x0)| > ε} ∩Br(x0))

γ(Br(x0))
= 0.

Assume that 0 ∈ Σ = spt(γ) satisfies this condition for all 1 ≤ α, β ≤ n,
and µ0 = Θ(0)Hn−mbRn−m is defined as in Section 5. Then as λj → 0,

lim
j→+∞

L
λj

] [ταβ(x)dγ] =
m(m− 2)

4(m− 1)
ταβ(0)dµ0

=
m(m− 2)

4(m− 1)
Θ(0)ταβ(0)Hn−mbRn−m .
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For the sequence vj constructed in Section 5, similar to the discussion
above,

∂vj

∂xα

∂vj

∂xβ

dx ⇀
m(m− 2)

4(m− 1)
ταβ(0)dµ0.

The stationary condition for vj can be written as
∫ (

1

2
|∇vj|2 − 1

p + 1
|vj|p+1

)
divY −

n∑

α,β=1

DαY β ∂vj

∂xα

∂vj

∂xβ

= 0.

Passing to the limit, by Lemma 2.6, we get
∫ (

1

2
− m− 2

2m

)
divY dµ0 −

n∑

α,β=1

DαY βταβ(0)dµ0 = 0.

Since µ0 = Θ(0)Hn−mbRn−m , this can be written as
∫

Rn−m

n∑

α,β=1

(
1

m
δαβ − ταβ(0)

)
DαY βdHn−m = 0.

Here δαβ is the Kronecker symbol.
First, for any n − m + 1 ≤ k ≤ n and η ∈ C∞

0 (Rn), by choosing
Y β = ηδkβ, we see

ταβ(0) =
1

m
δαβ, if α or β ≥ n−m + 1.

Let [Aαβ] = [ταβ(0)]1≤α,β≤n−m. It is symmetric, nonnegative definite,
with

n−m∑
α=1

Aαα =
n∑

α=1

ταα(0)−
n∑

α=n−m+1

ταα(0) = 0.

Thus A = 0. This implies

[ταβ] =
1

m
(Id− S) ,

where Id is the identity operator on Rn and S is the projection op-
erator onto Rn−m, i.e. the tangent plane of Σ at 0. (Note that this
tangent plane exists uniquely Hn−m−a.e. on Σ, because Σ is (n−m)−
rectifiable.)

Substituting this into (7.1), we get

0 =

∫ (
1

2
|∇u|2 − 1

p + 1
|u|p+1

)
divY −DY (∇u,∇u) (7.2)

+
2

m

∫
DY · Sdγ.
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Let Gn−m be the (n−m)-dimensional Grassmanian space of Rn, i.e.
the space of (unoriented) (n−m)−dimensional subspace in Rn. Define
the varifold VΣ associated to Σ as

< VΣ, Φ >=

∫

Σ

Φ(x, S(x))dγ(x),

for any Φ ∈ C0
0(B1×Gn−m). Here S(x) is the weak tangent plane of Σ

at x, which exists uniquely Hn−m−a.e. in Σ. We say VΣ is stationary
if for any smooth vector field Y with compact support (see [10, Section
6.2] for more discussions),∫

Σ

DY · S(x)dγ(x) = 0.

By (7.2) we get

Theorem 7.1. u is a stationary solution if and only if VΣ is stationary.
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