ANALYSIS OF BLOW-UP LOCUS AND EXISTENCE
OF WEAK SOLUTIONS FOR NONLINEAR
SUPERCRITICAL PROBLEMS

KELEI WANG AND JUNCHENG WEI

ABSTRACT. We give a qualitative analysis of sequences of station-
ary solutions to the supercritical problem

. n—+2
~Au=[uff"tu inQ, p> .
n—2
A consequence of the analysis is the existence of positive singular

weak solutions on a convex domain when p € (Z—f%, 2—3)7 with

only isolated singularities.

1. INTRODUCTION AND MAIN RESULTS

Of concern is the local qualitative behavior of sequences of stationary
weak solutions to

—Au = |[ufP v in B, (1.1)

where p > Z—fg and Bs; denotes the open ball in R™ with radius 2.

Throughout this paper B,.(z) always denotes the open ball of radius r

with center at x, and B, is a ball centered at the origin.

For a weak solution u € H'(By) N LPT!(By), we say that it is sta-
tionary if for any smooth vector field Y with compact support,

/ (%|VU|2 - %\UV’H) divY — DY (Vu, Vu) = 0. (1.2)
p

For smooth solutions this condition follows from variations of the en-

ergy functional
|U |P+1

1

with respect to perturbations of the parametrization of the domain,
that is,

iE(u(m +tY (z))

o = 0. (1.3)

t=0

Key words and phrases. supercritical problems, blow-up locus, stationary
solutions.
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Formula (1.2) can also be obtained by multiplying (1.1) by Y - Vu and
integrating by parts, granted that this solution has enough regularity.
Such condition is classical in many works dealing with partial regularity.
In this problem it was first used by Pacard in [14, 15].

Since p is assumed to be supercritical, solutions to (1.1) may not be
smooth. Thus we need to define

Definition 1.1. For a solution u of (1.1), its singular set S(u) consists
of those points, such that in any neighborhood of this point u is not
bounded.

Roughly speaking S(u) = {u = oco}. By definition it is a closed set.
Pacard’s partial regularity result ([14]) says that for a stationary weak
solution u, S(u) is a closed set satisfying

H"™ 257 (S(w)) = 0.
In particular, dim(S(u)) < n — 2%.

Let u; € HY(By) N LPT(By) be a sequence of stationary solutions to
(1.1), with the energy bound

(2

sup/ [V |? + |ug)'TP = M < 4o0. (1.4)
-

By this assumption, we can assume that u; converges weakly to u in
H'(By) N LPT1(By). By the compact Sobolev embedding theorem, w;
converges strongly to u in L9(Bs) for any ¢ < p + 1. In particular u}
converges to u? in L'(By), and u is a weak solution to (1.1).

Denote the measure
Pl e Pzl o
i = | —|Vu|* + ——|w|? dz.
= (B vl + gl
There exists a positive Radon measure v such that,

-1 -1
i — (p—]Vu]Q + p—\u!”“) dx + v := u weakly as measures.

2 p+1

Note that u; converges strongly to w in H'(By) N LP™(By) if and only
if v =01in B;. Let

Y= S(u) Uspt(v),
which we call the blow up locus of this sequence (u;).

The purpose of this paper is to give a qualitative characterization of
the blow-up locus set. Denote n —m to be the integer part of n — 2%.
It is obvious that m > 3. With these notations we have
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Theorem 1.2. e For any k, u; converges to u in CF (B \ X).

o Ifn— ’i} is not an integer, XN By = S(u) and v = 0. Hence

u; — u strongly in H'(By) N LP™(By), and u satisfies the sta-
tionary condition.

o Ifn — 2% 1S an integer n — m, t.e., p = T’Z—Jj;, >N By 1s
(n — m)-countable rectifiable with H™ ™ (¥ N By) < +00.

o Ifn— ’i is an integer n —m and H"™(X N By) > 0, after
extmctmg a subsequence, a rescaled subsequence of u; converges
to a nontrivial smooth solution v to the low-dimensional Yamabe

problem

—AD = |o|7 20 inR™, / (|Vo|* + |o[Ptt) < C(M). (1.5)

Several remarks are in order: first, the above theorem implies that
the only possible singularity formulation is through low-dimensional
bubble (1.5). On the other hand, there are indeed sequences of bub-
bling solutions when p is close to m+2 5 (del Pino-Musso-Pacard [4]). We
conjecture that when p = m+2 the blow up locus ¥ must be a minimal
submanifold. (The problem 1s to show that the limit function w is also
stationary. This may not be true in general by examples of Ding-Li-Li
[5] in harmonic map theory.) Second, Theorem 1.2 is reminiscent of
similar results for harmonic maps by Lin [9]. Indeed our proof is moti-
vated by ideas of [9]. See also Lin-Riviere [11], Li-Tian [12] and Riviere
[17], Tian [21]. Finally, Theorem 1.2 also covers the sign-changing case.

As an application we can improve Pacard’s result when n — 21il is

not an integer, that is

Theorem 1.3. Let u be a stationary solution to (1.1), then the Haus-
dorff dimension of S(u) is no more than n —m. Moreover, if p < "+§,
S(u) is a discrete set.

As another application, we consider a problem studied by Dancer
[3]. Given a smooth bounded domain € C R™, consider the problem

—Au=A14u)? in
u>0 in Q2 (1.6)
u=0 on 0f),

where p > 22\ > 0.

In [3], Dancer proved the existence of a family of positive solutions
(A(s),u(s)) such that |lu(s)||re@) — +oo while A(s) bounded (from
below and above). If € is star-shaped, u(s) are uniformly bounded in
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H'(Q) and A(s) is uniformly bounded from below and also above. Fur-
thermore Dancer showed that under the assumptions that €2 is convex
and possesses n-axis of symmetries and that ”+2 <p< ”“ , then the
sequence (A(s),u(s)) converges to (A, u,) in ]R X C’lOC(Q\{O}) where u*
is a weak solution of (1.6) with only singularity at the origin.

In the following we remove the symmetry assumption of Dancer.

Theorem 1.4. If Z—fg <p< Z—Jj; and () is convex, then given any
sequence (N\;,w;) in this family,
o There exists a subsequence such that \; — A, u; — u, strongly
in HY(Q);
e u, is a stationary H' weak solution of (1.6), and it is smooth
outside finitely many points x; € Q, 1 < i < K;
e For any k, u; converges to u, in loc(Q \UE {x:}).

The convexity is used to guarantee that u; are smooth near 02 (uni-
formly in 7). This can be proved by the moving plane method. By this
near boundary regularity we see the blow up locus can only appear in
the interior of €2, thus we can apply Theorem 1.2 and Theorem 1.3.

The organization of the paper is as follows: In Section 2, we col-
lect some basic estimates including the monotonicity formula and e-
regularity. In Section 3 we give the basic Hausdorff measure estimate.
Then in Section 4 we consider the case where 2% is not an integer
and carry out the important dimension reduction technique to prove
Theorem 1.3. The remaining part is devoted to the analysis of the
case when 2% is an integer. We construct the bubbling sequence in
Section 5. In Section 6 we give a quantization of the density function.

Finally we discuss the stationary property of the blow-up locus.

Acknowledgment. The second author thanks Professors Juan Davila,
Manuel del Pino and Fanghua Lin for stimulating discussions. The re-
search of Wei is partially supported by a GRF from RGC of Hong Kong
and an NSERC of Canada.

2. PRELIMINARY ANALYSIS

We collect some preliminary analysis in this section. The basic tool
used in this paper is the following monotonicity formula.

Theorem 2.1. For any Br(z) C By and r € (0, R),

fn+2p+1
E(riz,u) i= —— —V 24 u? 1)
rn= e [ (BT
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+—1 4 [F"HE / u2]
p+ 3dr OB, (x)

is nondecreasing in r. Moreover, if E(r;z,u) = const. in (0, R), then
u 1s homogeneous with respect to x

u(z+Ay) = X7 Tu(z +y), y € Ba(x), A€ (0,1).

Proof. This follows directly from Pacard [14]. In fact, by the proof in
[14], we have

d ( ) (n.p) 2p+}n/ ou 2 2 o )
—FE(r;xz,u) = c(n,p)rir- - + rou . ‘
dr 77 P 0B, \Or  p—1 -

This also gives the homogeneity of © when F = const.. 0

An equivalent form is

. 2 1 2
E(T; z, ’LL) — Tn+2p+1/ (’vu’ . |u’ )+Tn+2§+11/ U '
By(z) \ 2 p+1 0B, () P — 1

Next we recall the e—regularity theorem, which was proved in [15].
(See Proposition 2 there. Although the result was only stated for pos-
itive solutions, its proof also holds for sign-changing solutions after
suitable modifications.)

Theorem 2.2. There exist two constants g, C' > 0, depending only on
p and n, such that if u is a stationary weak solution of (1.1) in Bag,
satisfying

—1 —1
R [ P gy Pt < o,
Bp 2 p+1

then ,
sup (R*|V?u| 4+ R|Vu| + |u]) < CR™#1.

Bpr/2

In the proof if we tract the dependence of C' on ¢ carefully, we can
show that as g9 — 0, C(g9) — 0.

The following is a technical result, which will be used in the latter
part of this paper to treat the boundary term in the monotonicity
formula E(r;x,u).

Lemma 2.3. Ifu € H'(By), then for any s € [0,n — 1), the set

E:={z: limsupr_s/ u? >0}
OB, (z)

r—0

has zero H' measure.
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Proof. Note that by the trace theorem for H' space, |, 9B, () u? is well
defined for every 0B, (x) C Bj.
We claim that E belongs to the set
{z : limsup 7“_5_1/ u? + |Vul? > 0}.
By (x)

r—0

Indeed, if

r—0

lim sup 7‘_5_1/ u? + |Vul? =0,
Br(x)

then for any r, there exists ¢y € (r/2,7) such that

/ u? = o(r®).
OBt (x)

Next by direct differentiating in r, we see

Tln/ u2
0B (x)
x)-Vu

té”/ u? + 2/ ly — x|1’"u—(y _
9By, () Br(z)\By (x) ly — x|

1
2
té"/ u? 4+ 2t (/ u? (/ |Vu|2
OBy () By (x)\ Bt () By (x)\ Bt ()

s+1—n)'

IN

IA

= or

That is, for r — 0,

/ u® = o(r®).
OBy (x)

This proves the claim, and then by [10, Lemma 2.1.1] we get the mea-
sure estimate. U

The next result is Lemma 4 in [14].

Lemma 2.4. There exists a constant C' > 0 depending only on p and
n, such that for a stationary solution u in By, for any v € B4 and
re (0,1/4),

optl

1 1
. p_l—n/ P\ wup + Lt < CE@r 2, 0).

By the monotonicity formula we have

N|=
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Corollary 2.5. There exists a constant C' > 0 depending only on p
and n, such that for any stationary solution u in By, for any x € By
and r € (0,1/8),

2
)
r%’?i-n/ Vul+Huf* < C /|vu|2+|u|P+1+(/ |u|p+1)p |
By (x) B B

(2.2)

Proof. For any x € By s,

1

E(—;l’,U) S 4

4
< coup) ([ [wur e [ )
Bl Bl
o
S C’(n,p) ( |vu|2+ |u|p+1+ (/ |u|p+1> ) )
B1 Bl

E(p; z,u)dp

—_
M»—‘\
[N

Then we can apply the previous lemma to get the claim. U
Define
1 5 1 )
Hii = §|VU1| de — p = §|VU| dx + vy,
1 +1 +1
o = |w; [P dr — pg = |ulP™ dx 4 vs.

T op+1 +1

Hence we have p; = (p — 1)(p1i + pai), oo = (p — 1)(pa + p2) and
v=(p—1)(n+ o).
We have the following energy partition between vy and vs.

Lemma 2.6. 2v; = (p+ 1)us.

Proof. Because u; € H'(By) N LPT(By), by testing the equation (1.1)
with u;n?, where n € C§°(Bs), we get

2
Vi |*0? = | [PH :/ u?An_-
B 2

Bg

By taking ¢ — 400, and noting that w; converges to w strongly in
L*(By), we get

2
/ (IVul>n® = |[ufP*'n?) —|—/ 2n°dvy — (p+ 1)ndvy = / AL
B2 Bs

Bs 2

(2.3)
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On the other hand, since u € H'(By) N LPT(By) is an L' weak solution

o (1.1), by choosing test functions in the form u*n?, where v =

max{min{u, M}, =M}, and then letting M — +oo, we also have

2
[ 19 =ttt = [ sl
BQ BQ 2

Substituting these into (2.3), we see

/ 2n°dvy — (p+ 1)ndvy = 0.
Ba
Since 1 can be chosen arbitrarily, this gives the claim. 0

3. ANALYSIS OF THE BLOW UP LOCUS

In this section we use notations as in Theorem 1.2. Define
~ . _ p+1 &
S = Moerer{z € By : limsupr "5 (B, (z)) > 50}
1—00
Below we will show that this coincides with > defined in the intro-
duction.

Lemma 3.1. % is a closed set. For any domain Q@ CC By \ S and
k>0, u; converges to u in C*().

Proof. By definition, if zy does not belong to f], there exists an ry > 0
such that, for all i large,

opt+l
p—1

" i Buo(2)) < 0.
By Theorem 2.2,
_2
sup |u;| < Cry Pt
B, /2(0)

Then standard elliptic estimates show that u; are uniformly bounded in
C* (B, /4(o)) for any k. This then implies that for any r € (0,79/4),

1i(By () < Cr?51.
Then we get an 7 > 0, which is independent of 4, such that B,,(x¢) N

3 =0. So ¥ is relatively closed.
Since u; converges to u in L*(B,,(x¢)), w; also converges to u in

Ck(B,,(x)). O
From this proof we see
Corollary 3.2. u is smooth outside . That is, S(u) C 3.

Lemma 3.1 also shows that u; converges strongly to u in HL_ N L

outside 3. Hence by the definition of v we obtain
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Corollary 3.3. spt(v) C .

Since we will encounter many times the weak convergence of positive
Radon measures. The following facts may be helpful to keep in mind.

(1) For a positive Radon measure p defined in By, except a count-
able set of r € (0, 1),

W(0B,) = }llli% 1(Brin \ Br—p) = 0.

(2) Assume that a sequence of positive Radon measures f; con-
verges weakly to u. Then for any open bounded set €2,

lim inf ;(€2) 2 u(2),
limsup 11;(Q) < u(Q).
i——400

(3) Combining the previous two points, we see for a.a. r > 0,

i—+

p+
P

Lemma 3.4. H"_2Ti(§ N B;) < +o0.
Proof. For any z € ¥ and r € (0,1), if u(0B,(z)) = 0, then

w(B,) = ZE_IEIOO 1i(B).

So by the definition of i, we have
r_"H%,u(Br(x)) > cey. (3.1)

If u(0B,(z)) # 0, we can take an increasing sequence r; — 7 with
(0B, (x)) = 0, so that (3.1) holds for ;. Then by letting i — o0,
we see (3.1) also holds for such r, and hence for any r > 0.

The measure estimate can be proved by the Vitali covering theorem,
see [8, Theorem 3.2]. O

Remark 3.5. In fact the proof shows that, for any x € >N By and
r e (0,1/2),

H" 7 1(B,N3) < O(M)r™ 2,
Concerning the upper bound, we have

Lemma 3.6. For any x € % and r € (0,1),

u(B,(x)) < COM)" 255, (3.2)
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Proof. By (2.2), for any i > 0, z € By and r € (0,1),

_2
+1
T_n—"_Q%/M(BT(LC)) S C ( |VU1’2 + ‘Ui|p+1 + (/ |Ui‘p+1) ! ) .
B2 B

Then (3.2) follows frow the weak convergence of p; to p. O

+1
In particular, u|x is absolutely continuous with respect to H n=20 |5
However we can show

Lemma 3.7. u|5=v.

Proof. Because u € H*(B;y) N LP*(By), by [10, Lemma 2.1.1], the set
{z € By : limsup r‘”“ﬂ/ Vul? + |[u/t > 0}
r—0 Br(x)

has zero n — 2(p + 1)/(p — 1) Hausdorff dimensional measure. This
means, for H» 20t/ -D_ga. z € ¥,

lim sup A / |Vul|? + [uf = 0. (3.3)

r—0 By ()
Because H"72%(§]) < 400, the measure (|Vul? + |u|P™)dz restricted
to ¥ is zero. So p|s=v. O
ptl

This result, combined with (3.1) and (3.2), implies that v and H" »=1 &
are mutually continuous with respect to each other. Together with
Lemma 3.1 and (3.1), this lemma also implies that, when v # 0, the

support of v is exactly ¥. Since we always have S(u) C X, we see in

this case ¥ = X. -
If v = 0, the proof of Lemma 3.7 implies that for H" *r1-a.a. z € 2,

lim sup TQ%_HM(BT(JJ’)) = 0.

7T—

Combining this with Lemma 3.4, we see
n—22tl =
H" "»=1(X) =0.
In this case, we still have
Lemma 3.8. [fv =0, ¥ = S(u) = .

Proof. The assumption that ¥ = 0 implies the strong convergence of u;
in H. N L' If 24 does not belong to S(u), by definition u is smooth

loc loc
in an open ball B,,(z¢). Then there exists another r < 7 so that

gptl_p -1 —1
F [ v s
Brl(x()) 2 P + 1 4
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By the strong convergence of u; in H., N LY jcl, for all ¢ large,

optl _, -1 —1 9
rt / £ ’v“i’2+p_‘ui|p+1 2.
By, (x0) 2 p+1 2
Thus we can argue as in the proof of Lemma 3.1 to show that z¢ does
not belong to X. This gives ¥ C S(u), and the other direction has

already been given in Corollary 3.2. O

This finishes the proof of the first claim in Theorem 1.2. Next we
study the structure of X.

Lemma 3.9. For H" %1 —q.qa. = € Y,
O(z) == ;ii%f””%y(&(m)) € (5.C(M)),

exists.

Proof. Fix a point in 3, and without loss of generality, assume it is 0.
By (2.1), for any 0 < 7 <19 < 1,

E(ry;0,u;) > E(r1;0,u;).

Here we use the second formulation of E(r;z,u).
By the weak convergence of u; in H,. . and the trace theorem, for any
ball B,(x),

Jlim ui = / u?,
=10 J 9B, (x) OBy (x)

For a.a. r € (0,1), u(0B,(z)) = 0. For such r, we have
u(B, (@) = lim (B, ().

The same claims also hold for v, v; and vy. If rq, o satisfy these condi-
tions, then passing to the limit in the monotonicity formula for u; we

obtain
p+1 ptl

E(ra;0,u)4ry" " (1 = 1) (Br) 2 E(ri;0,u)+r," " (11— 1) (By,):

Note that by Lemma 2.6, vy — vy = 1%11/2 = Iﬁu.
If w(0B,,) # 0 or u(0B,,) # 0, we can take 7y > 1y, To < ro, with
7 < Ty and pu(0Br,) = pu(0Br,) = 0, so that
pt+l ptl

28— —n 288=—n
E(r2;0,u)+7,""" (11 — v2) (Br,) > E(71;0,u)+7 """ (11 — 15) (Br,).
For any € > 0, we can choose 75 close to r, so that

(11 —12) (Bry) = (11 — 12) (By,) — €.
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Then by noting that E(r;0,u) is continuous in r, and (v; — ») (Br,) >
(v — o) (By,), we can let 7 — 11, T9 — 12 to get (3.4).Thus (3.4)
holds for any 0 < r; < ry < 1.

By Lemma 3.6, we directly get a lower bound for

1 QLH_R

E(r) = E(r;0,u) + e UL v(B,) > —C(M).

By the monotonicity of E(r), we can use the same method as in the
proof of Corollary 2.5 to obtain an upper bound for E(r).
Then once again by the monotonicity, the limit

1 Hen1

lim (E(r; 0,u) + 3" Pl_"u(Br)>

r—0 p

exists.
Now we assume that (3.3) holds at 0, which is true H" %7 ae. in
Y. By Lemma 2.3, we can also assume that at this point
lim r%’?ﬂ—”—l/ u? =0, (3.5)
8B, (z)

r—0
With this choice, at this point
lir% E(r;0,u) = 0.
Thus the limit

©(0) = lir% 7’2%_"1/(37")
exists.
Finally, the upper bound of © is a direct consequence of (3.2). Con-
cerning the lower bound, we can use (3.3) and (3.5) again to see that,

asr — 0,

00) = r»1"v(B,) +o(1)
= PE(B,) + o(1)
> % +o(1)
Here o(1) goes to 0 as r — 0. O

By the Radon-Nikodym theorem, we get
Corollary 3.10. v = O(x)H" ™| x.
From the proof we also get

Corollary 3.11. For any x € By and r € (0,1/2),

— ]. 2P+1

E(riz) = E(r;z,u) + oy 3" =1 "y(B,(z))
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s non-decreasing in r.

By Marstrand theorem ([10, Theorem 1.3.12] and [13]), if n — 2%
is not an integer, we must have v = 0. This then implies that

p _|Vui|2+]7_|ui|p+1 dr — p—|vuz‘|2+p—|u,~|p+1 dor.
2 p+1 2 p+1

Because u; — u weakly in H:_ N L' w; — u strongly in HL 0 LPH
Then the stationary condition for u; can be passed to the limit, so u
also satisfies the stationary condition. This finishes the proof of the

second claim of Theorem 1.2.

4. THE DIMENSION REDUCTION

In this section we consider the partial regularity for a stationary

solution u to (1.1), where n — 2% is not an integer. A crucial point
is the fact we have just established: weak convergent solutions of (1.1)
also converges strongly in H} N LY Otl.

Pacard’s partial regularity result ([14]) says that the singular set of
u, S(u) is a closed set satisfying

H" %75 (S(u)) = 0.

In particular, dim(S(u)) < n — 2%. We will use Federer’s dimension
reduction principle to reduce this dimension to n —m, the integer part
of n — 2%.

By the monotonicity of E(r;z,u), we can define the density function
O(z,u) = rlif(% E(r;x,u).
By [14, Lemma 2 and Lemma 3|, we have
Lemma 4.1. O(x,u) > 0 is an upper-continuous function.
Next we have the following characterization of singular points.

Proposition 4.2. There exists a constant 1 depending only on n and
p, such that for any stationary weak solution u of (1.1), z € S(u) if
and only if ©(x,u) > .

Proof. If x is in the regular set of w, there exists an ry > 0 such that
w is smooth in B, (z). Then there exists a constant C' such that for
every r < 1o,

/ |Vul® + [ufPt < Cr", / u? < Crl
Br(x) OBy ()
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Substituting this into the second formulation of E(r;z, u) we get

p+1

E(r;z,u) < Or*er.
Thus ©(x,u) = 0.
On the other hand, for z € S(u), by Theorem 2.2 and Lemma 2.4,
there exists a universal constant €; > 0 such that for any r > 0,
E(r;z,u) > .
By definition, we get ©(z;u) > €. O
Assume 0 € S(u). For A — 0, define the blow up sequence
uMz) = )\%u(/\m).
By rescaling Lemma 2.4, for any « € By-1, and r € (0,A71/2),
9P+l

B, (z)

Here C'(M) is a constant independent of A — 0.

By Theorem 1.2, we can subtract a subsequence A\; — 0 such that
u; := u™ converges strongly to a stationary solution us, in HL _(R™) N
Lie (R").

By the weak convergence of u; in H}

loc
for any r > 0 and x € R,

/ u? = lim u?.
dB,(z) 1=+ JoB,(x)

E(r;0,us) = iLiHlOOE(r; 0, u;).
On the other hand, a direct scaling shows
E(r;0,u;) = E(\r; 0,u).
By the monotonicity of E(r;0,u), we obtain

E(r;0,ux) = liné E(r;0,u) = ©(0,u), ¥Vr > 0.

(R™) and the trace theorem,

Then we get

By Theorem 2.1, u,, is homogeneous, that is, for any A > 0,
Uoo(AT) = )\_%uoo(az) a.e. in R™.
In particular, the singular set S(u.,) is a cone, that is,
AS (o) = S(teo), YA > 0.
By Theorem 1.2 we have

Lemma 4.3. For anye > 0, ifi large, S(u;)NBy lies in an e—neighborhood
of S(ux) N By.
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pt1
p—1
Since u; converges to us, in any C* topology away from ¥, for all i
large, u; is smooth outside the e—neighborhood of S(u«,), and by this
the claim can be seen. U

Proof. Because n—22% is not an integer, the blow up locus ¥ = S(ueo)-

The following result is the key step to apply Federer’s dimension
reduction principle. The proof can be found in [22] (cf. Lemma 3.2
therein. The proof only uses the validation of the monotonicity formula,
Theorem 2.1).

Lemma 4.4. Given a stationary weak solution u of (1.1) on R", as-
sume that u is homogeneous, that is, VA > 0,

u(Ax) = )\_%u(x).
Then Yz € R, O(z,u) < O(0,u). Moreover, if O(x,u) = O(0,u),
then u s invariant in the direction of x, i.e. Vt € R,
u(y + tr) = u(y), a.e. yeR™

The last claim means v can viewed as a solution of (1.1) in R
The following result shows that the stationary condition is preserved
under this operation.

Lemma 4.5. Let u = u(zy, - ,x,_1) € HL (R* )N LT (R be a

loc loc
weak solution of (1.1) in R"™'. Take u to be the trivial extension of u

to R™,
a('rh e 7xn> = U<I1, U 7'In—1)-
Then w is stationary if and only if u is stationary.

Proof. First assume « is stationary but u is not stationary. By defini-
tion there exists a vector field Y € C5°(R™™1, R"™1), such that

1 1
/ <§]Vu|2 — mw’“) divY — DY (Vu,Vu) =6 > 0.
Rn—l

For any T, take a function nr € C3°((—=1 — 1,7 + 1)) such that n =1
n (=7,7), |n'| <2. Then

Y(~T17 ey Tp—1, 'Tn) - Y(ZL’l, Tt 7xn—1)7](xn)

is a smooth vector field in R™ with compact support. So

1 1 _ _
/ <§|Vu|2 T |u|p+1) divY — DY (Vi, Vi) = 0.
]Rn

However, direct calculation shows that this also equals

1 1
/ (—|Vu|2 - —|u|p+1) divY — DY (Vu, Vu)
Rr—1x{—T<an<T} \2 p+1
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1 1 _ _
+ /ﬁ (ﬁVﬂF—~——%ﬂPH)dwY—aDYﬁﬁLVa)
Rn—1x {T<|zn|<T+1} \ 2 p+1
= 276+ O(1).

Hence if we choose T' large we get a contradiction. This proves the
stationary condition for u.

Now assume u is stationary. For any vector field Y € Cg°(R™, R"),
by noting that 68771 =0 a.e., we have

1 1 _ _
R

oo 1 1 % dY; 0u Ou
_ - 2 L ptl i i vu

1<i<n—1 1<i,j<n—1
1 1 o0 9Y,,
+/ ~|Vu]? = ——[uff™ | x /
Rn—l 2 p + ]_ — 00 81‘”
= 0.
This proves the stationary condition for . 0

When the blow up limit u., has a singular point x; # 0, the next step
in Federer’s dimension reduction argument is to blow up u., once again
at 1, thus obtaining another homogeneous solution u., ;. By Lemma
4.1 and Lemma 4.4, we can show that u.; is translation invariant
along the direction x;. Hence we can view it as a solution defined on
R™~!, which is also stationary by Lemma 4.5. Note that this operation
also decreases the Hausdorff dimension of its singular set by 1. We
can repeat this step until we get a homogeneous solution defined on
R*, which is singular only at the origin 0. Since by our assumption
p E (:Z—fg, z—fé) (in particular, p is subcritical in dimension m — 1), it
can be directly verified that £ > m. Roughly speaking, after at most
n —m steps, we get a solution with singular set of dimension 0. Recall
that at each step of reduction we decrease the dimension of singular
sets by 1, thus the dimension of S(u) is at most n — m. This proves
Theorem 1.3. For a precise treatment of this argument and also the
case when p € (22 2t1) we refer to [18, Appendix A] and [10, Section

n—2’ n—3
2.3).

5. THE BUBBLE CONSTRUCTION

In this section and the following parts of this paper we consider the
case where n — 2;’%} is an integer. Denote m = 2%, that is, p is the

critical Sobolev exponent in R™.
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We first explore the local properties of > near an arbitrary point,
say 0 € ¥. For any A > 0, define p* := Lg’o,u, ie.

prMA) = )\2%_"#(/\14) for any Borel set A.
By (3.2), for any ball B,

pA(B,) = N (Byy) < C(M)r" %,
Hence we can subtract a subsequence \; — 0, so that y* converges
weakly to a positive Radon measure jo on R". Note that for a.a. r > 0,
we have pg(0B,) = 0. Then for such r, by (3.1),

p+1

po(B) = lim_pus, (B,) > ceor™ 25
J—+o0
A posterior this holds for all » > 0 by continuity, not only those r with
to(0B,.) = 0. In particular this implies that 1 # 0 is nontrivial.
By a rescaling using Remark 3.5, we see for any A,r > 0,

H"™™(B, N < C(M)r™™™.

where X* := A71%. By the Blaschke Selection Theorem (cf. [10, Theo-
rem 2.1.5]), after further subtracting a subsequence of A\; — 0, we can
assume that X% converges to a closed set X°.

By Lemma 3.9 and Preiss theorem ([16], see also [10] for a direct
proof without using Preiss theorem), 3 is countably (n—m)-rectifiable.
In particular, for H" ™-a.a. x € X, there exists a tangent plane T' to
Y. (This can also be proved directly, see [9, Section 2].) Thus for any
e>0,as A\ — 0,

A1 (2 — {2}) N B, belongs to an ¢ neighborhood of T.
Recall that
O(x) = limr™ "v(B,(z)), H"™ ™ —a.e. in X,

r—

is Borel measurable. We have (for a direct proof see for example [21,
Lemma 3.2.2])

Lemma 5.1. ©(x) is H"™ approximate continuous at H" ™ —a.a.
x € ¥. Here ©(x) is H"™™ approzimate continuous at xq if for any
e >0,

iy 2" ({2 € S0 Br(wo) + [6(z) — O(0)| > £})

= 0.
r—0 Hn_m(BT(I0> N E)

If 0 is an approximate continuous point of ©, then by the same proof
of [9, Lemma 2.1], there exists a tangent plane T' of ¥ at 0. Without
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loss of generality, assume T'=R"™ x {0} C R". We can also assume

that (3.3) holds at 0, i.e.
lim rm—n/ (1Vul? + [u"*') = 0.
r—0 B,

In this case X0 = T and po = ©(0)H" ™| 7.

In the following we will always assume that such a base point has
been chosen. Denote x = (2/,2") € R"™™ x R™, and open balls in
R™™ (or R™) by Bl.(x') (respectively, B! (z")).

For each ), the sequence u} () := /\P%lui()\x) converges to u(x) 1=
A Tu(Az) weakly in H(Bay-1) N LP*(Byy-1). As i — +00, the mea-
sures

A_ao (P a2, D=1 s A A
fi = Ly pui (TWU’ +m|u ) de vt =t

For each j, we can choose an i(j) and R; large so that the Levi
distance between p;\é) LBRj and v LBRJ- is smaller than 1/j. Then by

a diagonal argument, we find a sequence of stationary solutions v; to
(1.1), satisfying

/ |V, 2+, [P < C(M)TTHQ%, for all z € Bg, 2, r € (0, R;/2),
Br(x
and
. p— 1 2 p— 1 pil N n—m
= 51Vl +m|vj| dz — po = O(0)H" " [7. (5.1)
First we note

Lemma 5.2. In L}

loc

(Rn>7

Proof. Because
—1 —1
W= (pT|ij|2 + %h}ﬂp*l) dx — 0 outside T,
p

and T is a subspace of R" with codimension m > 3, v; must converge
weakly to 0 in H} (R”)ﬂLf;l (R™). By the compact Sobolev embedding

loc

theorem, v; converges to 0 in L7 (R™).

For a.a. 7 > 0, po(0B,(0)) = 0. By the strong convergence of v; in

L? (R"), after passing to a subsequence of j again, we also have for

loc
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/ 1)]2- — 0.
dB,(0)
For such r, we have

to(Br(0)) = (p+3)(1(B,(0)) — v2(B-(0)))
L (Vo |* JuyP*!
B jginoo(p—l—?))/r(o) 2 pt1°

Since po(B,(0)) = Cr" %51 for some constant C , for any generic 0 <
0 < R < +o0o (avoiding a countable set),

lim E(R;0,v;) — E(0;0,v;) = 0.

Jj—-+oo

a.a. r >0,

By the monotonicity formula for v;, we see

2 1,0=1,,.)2
. (i Vv + 5=yl o)
i=+% J Br(0)\B,(0) ly[*=m

~0. (5.2)

2

i(R™), after an expansion we obtain

Because v; converges to 0 in L
lim ly - V> = 0.
77100 BR(0)\Bo (0)

Take the standard basis & of R*™™ 1 < k <n —m. If we choose R
and o suitably, the same argument above still works if we replace the
center of ball by &, which gives

lim (y — &) - V> = 0.
I=H J Br(&w)\Bo (£1)

If Rislarge and o is small, in D = N (Br(&) \ B (&:))N(Br(0) \ B,(0)),

tm [ 6 Vol
J—+o° Jp

= lim /D (y — &) - Vos|* =y - Vo[ +2(y - Voy) (& - V)

j—+oo

1
<t [ |- &) Tyl - 1ly- Vo + 56 T
J—+ Jp 2

So
1m1/ﬁ@~vwﬁzo
D

j—Foo

Then a suitable covering using translations of D gives the result. [
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In the proof we have used the following fact. For any ¢ > 0, there
exists a constant C' such that, for all j large,
sup |v;] < C. (5.3)
{l="|>€}
In particular, v; are smooth outside the e—neighborhood of T
By Pacard’s partial regularity result [15] for stationary solutions,
H™™(S8(v;)) = 0. Since the projection 7 from R™ to T is a 1—Lipschitz
map, direct calculation using the definition of Hausdorff measures gives

H" ™(7S(vj)) = 0.

In other words, for H" " —a.a. 2/ € T, ({2'} x R™)NS(v;) = (. Thus
for all j large, v;(z',-) are smooth functions in R™ for H" " —a.a.
x' € T, and these points form an open set. (Note that the regular set
of v; is open.)

Let

"
dx”.

)= [ Sl

Lemma 5.2 says f; converges to 0 in Lj (R"™™). By the weak—L*
estimate for the Hardy-Littlewood maximal function, for H" ™ —a.a.
xeT,
M) = sw [ =0, asj ko (54
0<r<1/2 B!.(z')
For any 6 > 0, we can take an open set £; C B} with
H™ ™ (E;) 2 (1= 0)H" ™(By), (5.5)
such that for any 2’ € £, (5.4) holds and v; is smooth in a neighbor-
hood of {z'} X B .
Take an arbitrary sequence z; € Ej;. Then for all 2" € BY Y

-1 —1
lim 5mn/ Pl p+ Pt pi—0. (56
Bs(a' ,x") 2 P +1

6—0
On the other hand, by the definition of the blow up locus, there exists
a 0; > 0, which goes to 0 as j — +o00, such that

m—n p_]- 2 p_l 1 €0
5 / Pligypy Pty pas 5y
! Bs.(z/,0) 2 Top+1t 2

These two imply the existence of an r; € (0,9;), such that

m—n p 1 2 b 1 +1
max 1 —|Vu;|" + ——v; [’ = €0, 5.8
xHGBi//Z J /B (;r ) 9 ’ ]| P 1‘ j‘ 1<€0 ( )
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where we have chosen a fixed constant ¢; € (0,1/2).

Assume this maxima is attained at 7, and denote z; = (z},z7).

Jrg
Define
2

vj(z) = r; Ty + ).

By Lemma 2.4, for any r € (0,7;'/2),

—1
/ p—|V77j|2 + 2
2
~(0)

Without loss of generality, assume that v; converges weakly to v in
HE (R")NLZT(R™). By the compact Sobolev embedding, 7; converges
to v in quc(]R”)) for any ¢ < p + 1. In particular, v is an H' weak
solution of (1.1) in R™.

By (5.4) and Fatou lemma, for all 0 < r <r;"'/2,

/T al“k )

2P+1

—1
Lt <o (59)

2

n—m @
< liminfr™™" — (2, 2") 5.10
< liminfr™ / kz D, (5.10)
= liminf(rr; / :0.
J~>+OO< J TT Ij)kz: a.fk

Hence v(2',2") = v(2”). In (5.9), we can replace B, by the cylinder
B’/2 X B”/Q, which then gives (noting that m = 2p+1 and r can be

=1
arbitrarily large)

/ |V”z7(:v")|2 + |U(I/,)|p+1d1)” S C(M)

Because v is a solution to (1.1), with p the critical exponent in R™, by
[19, Lemma B.3] it is a smooth solution.
We can assume the measures

(Vo + |9; [P Ydz — (|Vo]? + o]t )de + 7.
Here 7 is a positive Radon measure.

Lemma 5.3. 7 is translation invariant under ' direction.

Proof. For any ¢ € C3°(R™), define

1 1
B = [ (390P - ) @+ o
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F;(a) are smooth functions of a. Then for k =1,--- ,n —m,
OF; a (1. |
—J — — | 2IV5.|? — |ptl dr.
2o = [ (510 - Pt @+ @l
Define Y = cp(x)a%k, then divY = g—fk. By the stationary condition,
— == — — —(z)dx.
8(1k —1 /Rn 8$k (37 * Cl) 83:l (l‘ + CL) 8351 ($) v

By (5.10), this goes to 0 uniformly on any compact set of R™. Since
the measures

1 1 1 1 p—1
ZIVo. 2 — 0[P ) doe — | = |V — ——|o|P ) dat—,

and (%]V'D\Q — ]ﬁ]@]p“) dz is translation invariant in z; directions,

1 <k <n—m, 7 is also translation invariant in x directions. O

By the choice of x; (see (5.8)), we have

ci1€0 = / |V, + |o,)PH! = _,max / ) IV, + Ju [Pt (5.11)
By ijl/2 Bl(O,x )

Take two nonnegative functions ¢ € C5°(By)), ¢ € C§°(Bj), such that
p=1in B}, ¥ =11in B]. For a € B} x By, define

Fi(a) = [(90f + o517 ) (o + a)ola)oa")de

Similar to the above discussion, Fj are uniformly bounded in C'*(Bj x
BY), and it converges uniformly to

/ (IVoP +2lP*) (e’ — d)p(a” — ") + / (@ — d)p(a” — d")dr
- / (1Y + [07) () (a” — o) + / (@Yl — aydr,

which is independent of a’. Thus for any R > 0 fixed, if j is large
enough,

max / IV, + | [P < 2¢160 < 0.
x'€BY,x"" €BY, Bi(a! ")

By Theorem 2.2 and standard elliptic estimates, for any k, v; are

uniformly bounded in Cf (B3/5(0) x By_1(0)). Then we can take limit

loc
in (5.11) to get
150 _/ Vo[ 4[5 (5.12)
B1
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In particular, v is nontrivial.
In conclusion, after two rescalings from u;, we construct a nontrivial
smooth solution v to the equation

Moreover, v satisfies
/ VB 4 [5]2 < C(M). (5.13)

This proves the last part of Theorem 1.2.

Note that positive solutions (to (1.1) in R™) have the least energy.
By [2], up to a translation and scaling, for every 1 <i < N the positive
solution has the form

[m(m = 2)]T (1+]y"[A) "

Since translations and scalings in R™ do not change the energy, there
exists a constant ¢(m) depending only on m, such that for any positive
solution v of (1.1) on Rm,

| B+ et = ).

For any R > 0, by a rescaling and using the smooth convergence of
v; in Br, we have

—1 —1
/ (])T‘ij(x;"x”)P+§+1|Uj<x;‘vx”)|p+l> dz"
1

p—1 p—1

> /H (x//) <—2 |ij($;,x”)’2 +1|v](x T )‘p—l—l) dz"
p—1 p—1 _

B /B,, ( 5 1Va(0,2")F + o 1|Uj(07fr")|p+1> da”  (5.14)
P— |2 my|p+1 1
—— IV + P dx

- /( s+ )

> cm) ~ o(R).

Here o(R) is defined by the following lemma.

Lemma 5.4. There exists a positive, continuous non-increasing func-
tion o(R) defined on [0,400) with

lim o(R) =0,

R—+o00
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such that for any solution v of (1.1) on R™, satisfying (5.12),

p—l " 12
- - 2 > — .
/ 190 + ool % 2 e(m) — ()

Proof. Arguing by contradiction, we can assume that there exist a con-
stant o > 0, a sequence of solutions v; satisfying all of the assumptions,
and R; — +oo such that

/,, PV Pl < em) = (519

With the above uniform bound we can assume that v; converges
(R™) A L2/ (™2 (RmY | If v is nonzero, by Fatou

loc

weakly to v in H},
lemma we get

—1
/ p 5 ‘vnv‘2+p

This is a contradiction since the lowest energy is exactly c¢(m).

If v =0, by (5.12) and Struwe’s global compactness theorem [19,
Theorem 3.1], there must exists an blow up point zo € BY such that
(at least) one bubble concentrates at xg. More precisely, there exists

x — x9 and r; — 0 such that

-1 m
1]1} < c(m) — o.

m—2

rovj (1:;' + 12"

converges to a nontrivial solution of (1.1) weakly in HL_(R™)NL>™ (42 (Rm).

loc loc
This bubble carries energy at least ¢(m), which is concentrated in a

small ball around x,. Thus we get a contradiction once again. U

Since (5.14) holds for any «’ € E;, by noting (5.5), we get

. p—
ljl'gﬁgf/;, /B” (—]Vv](:c )? + Y 1\11](56 T )\p“) dz"da’

-1
> 1;%%?/ /// (—|ij(x ") |? —l—er 1|vj(a:’,x")|p+1) dx"dx’
> (¢(m) - —6)H""(By).

After letting R — 400 and 6 — 0, and noting (5.1), we obtain

Corollary 5.5. For H* ™ —a.a. © € ¥, O(z) > ¢(m).
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6. QUANTIZATION OF DENSITY FUNCTION

In the previous section we have constructed a sequence of v; such
that (here we use the same notations as in the previous section)

p—1 P
(2w

In this section we prove the quantization of ©(0), under the following
assumption

1
1 |'Uj|p+1> dﬂ? — @(O)Hn_m LRn—m. (61)

p+1

Av;— 0, in L2 (R"). (6.2)
Note that since v; are uniformly bounded in L7 +1(R") by standard

+1 p+1
interior W% estimates, D?v; are uniformly bounded in L,? (R™).
In view of Lemma 5.2, it is natural to conjecture that (6.2) holds.

loc

Theorem 6.1. There exists at most N solutions of (1.1) in R™, w;,
1<i< N, with

—1
/ P w2+ 2= |mw”<+m
m 2 p+1

such that
Z/ —IV \2+ !wz!p“
Here o
N < (M)
c(m)

Before proving this theorem, we first show that the problem can be
reduced to a slice.

Lemma 6.2. For a.a. ' € By, on By,
p—1

(25 vn e+ L

where g is the Dirac measure supported at the origin 0 € R™.

Proof. Fix a ¢ € C§°(BY) such that 0 < ¢ <1, ¢ = 1in By,. For
any smooth vector field X € C§°(Bj, R"™™), substitute ¢X into the
stationary condition (1.2). This leads to

1

—/ / DX (V'v;, V'v;) + (V"o - V"0;) (X - V'v)| da"da’.

]v](x x )\p“) dz" — ©(0)dy, (6.3)

1
. |Uj|p+1) edivXda"dx' (6.4)
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By using the equation (1.1) and integrating by parts, we have

// v [P odivX da” da’
1/ BY

= — / / AvjvjpdivXde"ds’ (6.5)
= / / |V, 2 pdivX dr”da’
+/ / [v; (Vv - V'divX) ¢ + v (V'v; - V') divX] da"dx’.

Integrating by parts once again,

/ / v; (V' - V'divX) pda"dx’
B JBY

—/ / (V05> + A'vjv;) divX pda”da'.
B, JBY

By Lemma 5.2, (6.2) and the uniform LP*(B{ x B}) bound on v;,
lim / (IV'v;]* + |Avjv]) dada’ = 0, (6.6)
j—o00 / "
1
0v; (%'
I 20|25 dada’ = 0. 6.7
]l’ngo/l /// axk &L’l v ( )

By Lemma 5.2 and the uniform LQ(Bi x BY) bound on V"v; and Cauchy

inequality,
lim / /
I=eo )y J By

Because v; — 0 in L?*(B] x BY) (note that v; converges uniformly to
0 on any compact set in By x (B7 \ {0})), combining this with the
uniform L?(Bj x BY) bound on V"v; and Cauchy inequality, we get

lim
Jj—00 ’ "
1 1

Substituting (6.5)-(6.9) into (6.4), we obtain

11 ,
S ) |V Pede” | divXde = | f- X+ A DXdd!
/{[/1’<2 p+1)|Vv]|<,0x] ivXdx Bgf] +A; x,

(V”(p A V///Uj) V/,Uj

dz"dz’ = 0. (6.8)

v; (V"v; - V") ‘dx”dx/ = 0. (6.9)
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where f; € L'(B},R"™) and A; € L'(B],R"™ @ R"™™) (i.e. A; are
matrix valued), satisfying

iim [ 1]+ |A4)de’ o
j—% Jp,

By (6.1) and Lemma 2.6,

1 1 o(0 :
[/1’ (5 — m) |ij]230dx”] — 2%7 weakly in L'(B)).

Then we can apply Allard’s strong constancy lemma (cf. [1, Section
1]) to conclude that

1 1 2 " @(0) : 1 !
- : — LY(B)).
/;f (2 p+1)|vvj‘ oy M)

We can also substitute (6.5) into (6.4) to eliminate |Vv;|%. This leads
to the strong convergence of

1 1
R C -
v\2 p+1
in LY(By).

Now we have proved that

[ (55 vu + Pl ) paa” — 600
By +

in L'(B}). Since v; converges to 0 in C'*(Bj x (B” \ B1/3> and 1—p =0
in BY

1/29
i [ (P5HVeR+ Pl ) - g i’ =0,
J— / //
Thus
p_l N2 p— p+1 "
/( Vs + Ll aP ) de — 00)
in L'(B)).

After passing to a subsequence of j, we can assume that for a.a.
x' € Bi,

/1, (—!Wg( N+ 2 (a0 )|p+1> dz" — ©(0).

p+1
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Then by noting that

—1 —1
(pTlvvj(I,,ﬁﬂ)P +§ |'Uj($,,l’//)|p+1> N 0’

uniformly on any compact set of By \ {0}, we must have

—1 —1
(pT|ij(x’, 2")|? + i | |vj(:v',x”)|p+1) dx" — ©(0)d,

weakly as measures. O

Proof of Theorem 6.1. By (6.2) and the previous lemma, for each j,
there exists a closed set E; C Bj with lim;_, .., H" ™ (E;) = 0, such
that for any 2, € B} \ Ej, (6.3) holds and

. 2m_
lim |A" v (2, 2")[m+2da” = 0. (6.10)
j—00 Bi/
Moreover, as in the previous section, we can also restrict E; further so
that v; is smooth in a neighborhood of E; x BY.
Let x; € B \ E; be an arbitrary sequence, and

0(2") = v;(aj,2").

Thanks to (6.3), 0; are uniformly bounded in H'(B}) N L=23(B).
Since v; is smooth in a neighborhood of {z;} x BY,
A5+ 5Py = —A'D;.

Thus by (6.10) and the Sobolev embedding theorem in dimension m,
for any ¢ € Hi(BY),

/(A"@jﬂ@j’p_l@j)sﬁ = / — Ay
BY B

"
1
m—+2

2m
< (/ IA"vj(xé,x”)l"%> (/ o2
By BY

= oi(llellmay)-

Hence 9; is a Palais-Smale sequence.
Then by [19, Theorem 3.1] (see also [6, Section 3.1]), we get N
functions w;(z”), 1 <i < N, with

—AN'w,; = |wi]ﬁwi, / |V"w; | + |wzl% < 400,
Rm
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and N points z; ; and radius R;; > 0, 1 <7 < N, such that
N m—2
15 = > R, 7 wiRij(x — 2i5)) | sy — 0. (6.11)
i=1

Their L%(B{’ ) norm also converge to 0.
By Lemma 3.9 and (6.3),

. p—l .o pP—1_
1 — |V, —|o; [P =0(0) < C(M). 6.12
Jim [ PSVEL L p =00 s00n. (612)

There also exists a constant ¢;(m) depending only on m such that (see
Lemma 5.4)

-1 -1
/ I’Twwiﬁ + Z?mv’“ > c(m). (6.13)

Note that this energy is invariant under scaling and translations in R™.
Combining (6.11)-(6.13) we get the upper bound for N. O

If the sequence of solutions are positive, then w; > 0 for every 1 <
i < N (for a proof see [6, Section 3.2]). By [2], up to a translation and
scaling, for every 1 <i¢ < N,

_ m=2
2

wily") = [mlm —2)]°% (L+ |y")

Note that the translation and scaling do not change the energy of wj,
SO

= c(m).
Together with (6.4) and (6.11), this gives

Corollary 6.3. In the case of positive solutions, there exists a constant
c(m) depending only on'm such that, for H* " —a.a. x € 3, ©(x)/c(m)
15 an integer.

7. STATIONARY PROPERTY OF BLOw UP Locus

In this section we prove that the stationary property of the limit
function u is equivalent to that of the blow-up locus.



30 K. WANG AND J. WEI

For any smooth vector field Y with compact support, the stationary
condition for u; says

1 1
/ (—]Vul|2 - —‘Ui|p+1> divY — DY(VUZ, Vul) =0.
2 p+1
Let the Radon measure
m(m — 2)
voi= 0.
4(m —1)

Then we have the weak convergence
\Vu;|Pde — |Vu|*dz + 7.
Let

if |Vug| # 0 (if [Vug| = 0, we simply take [7/5] = 0). We can assume
the matrix-valued measures

. ou Ou
78|V Pde = =—=—dx + T,adv.
b [Vl 0z, 0 ap
Here [7,5] is symmetric, non-negative definite, measurable with respect
toy, and Y | Taa = 1 7y—a.e.. By passing to the limit in the station-
ary condition for u;, we get

_ 1 2 1 p+1\ 1
0 = /(Z\Vu| p+1|u| divY — DY (Vu,Vu) (7.1)
1 n
2 —divy — DY P15 | dv.
+ /(m v Q;I Tg) Y

For any 1 < «, 8 < n, 7,4 is approximate continuous in the following
sense: given an ¢ > 0, for y—a.a. xy,

iy Y78 (2) = Tag(wo)l > €} 0 By (z0) _
r—0 V(B (20)) ‘

Assume that 0 € 3 = spt(y) satisfies this condition for all 1 < a, § < n,
and o = ©(0)H" ™ |gn-m is defined as in Section 5. Then as \; — 0,

| ~9)
lim LV _ m(m
Am Ly ras(@)d] = 30—y 7a0(0)dp

m(m — 2)

= —4(m — 1) @(O)Taﬁ(O)Hnim LRn—m.
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For the sequence v; constructed in Section 5, similar to the discussion
above,
ov; O0v; m(m — 2)
——dr = ——7,3(0)duo.
Oza 015 2(m =1y (0o

The stationary condition for v; can be written as

1 9 1 o1\ 1 & Ov; Ov;
2V 2 — . divy — D,)YP——L L —.
/<2IVUJ| Dt 1|UJ| v aél Oz aa;ﬁ

Passing to the limit, by Lemma 2.6, we get

1 m-—-2 . -
/ (5 N —> divYdpo — ) DaY 7ap(0)dpuo = 0.

2m
a,f=1

Since g = O(0)H™ ™ |gn-m, this can be written as

" /1
/ > (—5aﬁ - Taﬁ(0)> D)YPdH"™™™ = 0.
n—m m
a7ﬁ:1

Here 0,4 is the Kronecker symbol.
First, for any n —m +1 < k < n and n € C§°(R"), by choosing
YP = ndrs, we see

1
Tap(0) = —0ap, faor f>n—m+1
m
Let [Aag] = [Tap0))1<a,8<n—m- It is symmetric, nonnegative definite,
with

n

i Apo = ZTM(O) — Z Taa(0) = 0.

a=n—m+1
Thus A = 0. This implies
1
w3 = —{Ud—=9),
[rag) = - (1d = 5)

where Id is the identity operator on R" and S is the projection op-
erator onto R"™™ i.e. the tangent plane of 3 at 0. (Note that this
tangent plane exists uniquely H" ™ —a.e. on X, because X is (n —m)—
rectifiable.)

Substituting this into (7.1), we get

1 2 1 p+1 :
= = - — Y - DY 2
0 / <2 |Vul P |ul div (Vu,Vu) (7.2

—i—E/DY - Sdry.
m
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Let G"™™ be the (n —m)-dimensional Grassmanian space of R", i.e.
the space of (unoriented) (n —m)—dimensional subspace in R". Define
the varifold Vs associated to ¥ as

< V5, ® >= /ECI)(x,S(x))dy(x),

for any ® € CJ(B; x G"™™). Here S(z) is the weak tangent plane of X
at x, which exists uniquely H" ™ —a.e. in 3. We say Vy is stationary
if for any smooth vector field Y with compact support (see [10, Section
6.2] for more discussions),

/ DY - S(z)dvy(x) = 0.
b
By (7.2) we get
Theorem 7.1. u is a stationary solution if and only if Vx, is stationary.
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