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Abstract. The Allen-Cahn equation −∆u = u−u3 in R2 has family of trivial singly periodic solutions that
come from the one dimensional periodic solutions of the problem −u′′ = u− u3. In this paper we construct

a non-trivial family of singly periodic solutions to the Allen-Cahn equation. Our construction relies on the

connection between this equation and the infinite Toda lattice. We show that for each one-soliton solution
to the infinite Toda lattice we can find a singly periodic solution to that Allen-Cahn equation, such that its

level set is close to the scaled one-soliton.

1. Introduction

In this paper we construct new entire solutions of the Allen-Cahn equation in the plane:

(1.1) −∆u = u− u3 in R2.

The monotone bounded solutions of this equation have been extensively studied in the literature. These are
called planar solutions and they are given by H

(
e⊥ · x− r

)
, where e is a unit vector in R2, e⊥ = e iπ/2e,

r ∈ R is a constant, and H (s) = tanh s√
2

is the unique odd, heteroclinic solution:

−H ′′ = H −H3, H (±∞) = ±1.

The planar solutions are special examples of the so-called multiple-end solutions, which by definition are
solutions whose nodal curves are asymptotic at infinity to finitely many copies of half planar solutions (see
[5], [4], [13], [14], [15], [16] where the subject was treated extensively). Any planar solution has an important
property of being monotone in one direction. According to the De Giorgi conjecture any bounded solution
to (1.1) which is monotone in one direction must be a planar solution [11] (see also [2], [20], [6] for higher
dimensional results). In general, mulitple-end solutions will not be monotone in any direction, but it turns
out that they represent an important class of entire solutions.

Using infinite dimensional Lyapunov-Schmidt reduction and perturbation method, for each integer n > 1,
a family of 2n-end solutions is constructed in [5]. Their nodal curves are close to solutions to the classical
Toda system:

(1.2) c∗q
′′
i = e

√
2(qi−1−qi) − e

√
2(qi−qi+1), 1 ≤ i ≤ n,

where q0 = −∞ and qn+1 = +∞, and c∗ is a fixed constant. The Toda system is a classical example of an
integrable system describing the dynamics of n particles moving along a straight line and whose interaction
with their closest neighbour is given by the exponential of the negative of their distance. Another construction
of 2n-end solutions was given in [16] (see also [1], [3]) .

A particular example of 2n solutions is the set of four-end solutions. It contains the so called saddle
solution, whose nodal set consists of two straight line intersecting at the right angle. It is shown in [15] and
[14] that all four-end solutions are continuous deformations of the saddle solution. This gives a classification of
the set of four-end solutions. On the other hand when the number of ends is bigger than four, no satisfactory
classification result is available up to now, but it is known [15] that any multiple-end solutions must have
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finite Morse index. We also expect that any finite Morse index solution to be multiple-ended (this is proven
in [12] under an extra assumption on the growth of the energy). The purpose of this paper is to construct
non-trivial (i.e. depending on two spacial variables) solutions of (1.1) with infinitely many ends and infinite
Morse index.

In the one dimensional case, the Allen-Cahn equation reduces to a second order ODE. It is easy to see that
besides the heteroclinc solution, this ODE also admits periodic solutions, which in fact could be expressed
as a suitable scaling of the Jacobi elliptic functions. Clearly, they could be lifted to R2, yielding periodic
solutions depending only on one space variable. Since they are periodic, their Morse index is infinite but
because they depend on just one variable they are at the same time one-dimensional. Naturally, one would
like to find non-trivial periodic solutions. In this respect, a bifurcation analysis has been carried out in [21]
and some nontrivial doubly periodic solutions were found.

In this paper we will construct new entire solutions of (1.1) in R2 which are singly periodic. As we will see,
the nodal set of the solutions we construct will be determined by the solutions of the infinite Toda lattice :

(1.3) c∗q
′′
i = e

√
2(qi−1−qi) − e

√
2(qi−qi+1), i ∈ Z.

Due to the fact that the number of particles, whose positions are given by the functions qi, i ∈ Z, is infinite
this system is more complicated than the classical Toda system, however it is still integrable. For us a special
solution called one-soliton will be of crucial importance and we will describe it now. Given a parameter k > 0,
let us denote

c = c (k) :=
sinh k

k
> 1.

The function

Sc (t) := ln
cosh k

(
t− 1

2

)
cosh k

(
t+ 1

2

) ,
is odd and satisfies, for t large,

|Sc (t) + k| ≤ Ce−2kt.

Direct computation shows that

si (t; c, λ) := Sc (i− cλt)− 2i lnλ, i ∈ Z, λ > 0,

solve the Toda lattice equation:

s′′i = esi−1−si − esi−si+1 , i ∈ Z.
This one soliton solution and its properties were studied in a series of papers by Friesecke and Pego [7], [8],
[9], [10] and Mizumachi and Pego [18].

Rescaling the Toda lattice equation we see that:

(1.4) qi = qi (t; c, ε) :=
1√
2
si

(√√
2c−1
∗ t; c, ε

)
, i ∈ Z,

is a family of one-soliton solutions of (1.3) . The distance qi − qi−1 between two adjacent “particles” is

approximately
√

2 |ln ε|, which means they are far away from each other if the parameter ε is small.
Now we can state our main result precisely.

Theorem 1.1. For each sufficiently small ε > 0 and for each c > 0 the Allen-Cahn equation (1.1) has a
non-trivial singly periodic solution uc,ε with minimal period 2e, where

e =

(
1

ε
√√

2c−1
∗
,
√

2| ln ε|

)
.

Moreover, it holds

(1.5)
uc,ε (z) = −uc,ε (−z) ,
uc,ε (z) = −uc,ε (z + e) .
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Note that (1.5) means that uc,ε is odd and periodic in the direction e
|e| with minimal period 2e. As we will

see later on the nodal set of uc,ε is close to the family of curves {(t, qi (t; c, ε))}i∈Z, where {qi (t; c, ε)}i∈Z is
the one-soliton solution of the Toda lattice given by (1.4). Observe that this set of curves is periodic in the
direction e

|e| with minimal period e. Figure 1 makes the situation transparent.

Figure 1. Plot of a scaled one-soliton solution to the Toda lattice (left) and a corresponding
solution of the Allen-Cahn equation (right).

Let us finish this section by explaining the main ingredients of the proof. The main tool we will rely on is
the infinite dimensional Lyapunov-Schmidt reduction, in a version which in this particular context has been
implemented in [5]. Roughly speaking, the proof of the Theorem 1.1 will be split into three steps: first, a
suitable family of approximate solutions, which is expected to be very close to the true solution, is constructed.
Second, a perturbation term is added to these approximate solutions and a fixed point argument is applied to
solve the Allen-Cahn equation, modulo the kernel of the linearized operator around the approximate solution.
Finally, another fixed point argument is used to show that for some choices of the parameters involved in the
approximate solutions, the projection onto the kernel is indeed equal to zero, which implies that the equation
has been exactly solved and thus the desired solution of the original Allen-Cahn equation is obtained. This
procedure depends in a crucial way on good understanding of the linear properties of the Toda lattice soliton
and we devote the following section to this issue.

2. The Toda lattice and its linearization

2.1. The linearized Toda lattice around the one-soliton. As we will see later, it will be important
for us to analyze the linearized equation of the Toda lattice around the one-solition solution given by the
functions {qi}i∈Z. In particular, it will be crucial to understand the mapping property of the operator L :

ϕ 7−→ c∗ϕ
′′ −
√

2e
√

2(q−1(·;c,1)−q0(·;c,1))
(
ϕ
(
·+ α−1

)
− ϕ

)
+
√

2e
√

2(q0(·;c,1)−q1(·;c,1))
(
ϕ− ϕ

(
· − α−1

))
.

in the class of odd functions. Above and throughout the paper α = c
√√

2c−1
∗ .

Observe that after scaling of the operator L we obtain the operator L1:

ϕ 7−→ ϕ′′ − es−1(·;c,1)−s0(·;c,1)
(
ϕ
(
·+ c−1

)
− ϕ

)
+ es0(·;c,1)−s1(·;c,1)

(
ϕ− ϕ

(
· − c−1

))
.

Therefore, for notational reasons, we will analyze the operator L1 instead of L.
To begin with, let us introduce the weighted function spaces we will work with. Let L2

a (R) := eaxL2 (R) and
W 2,2
a (R) := eaxW 2,2 (R) . At the same time we will consider spaces L2

a (Ro) := eaxL2 (Ro) and W 2,2
a (Ro) :=

eaxW 2,2 (Ro). Here the subscript o of R indicates that the function spaces L2(Ro) and W 2,2(Ro) involve only
odd functions. Functions in the weighted spaces L2

a(Ro) and W 2,2
a (Ro) do not have to be odd, in general.
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Initially, the introductions of spaces involving odd functions only does not seem to be justified, however later
on the role of oddness will become apparent. Furthermore, let L̄2

a (R) = (coshx)
a
L2 (R) with the norm

‖h‖L̄2
a(R) =

∥∥∥(coshx)
−a
h
∥∥∥
L2(R)

.

Similarly, we define the space W̄ 2,2
a (R) = (coshx)

a
W 2,2 (R), and

C̄l,µa (R) = (coshx)
a Cl,µ (R) .

In what follows the Fourier transform f̂ of f and its inverse will be defined respectively by

f̂(ξ) =

∫
R
f(x)e−2πiξx dx, f(x) =

∫
R
f̂(ξ)e 2πiξx dξ.

The following non degeneracy result for L1 will be used later.

Proposition 2.1. Let a ∈ (−2k, 2k). Assume ϕ ∈W 2,2
a (R) and L1ϕ = 0. Then necessary ϕ = 0.

Essentially, up to some minor changes, this result was proved in [18] using a Bäcklund transformation. For
completeness, we summarise the main steps of the proof, and refer to [18] for more details.

Lemma 2.1 (Lemma 3.1 of [7]). The zeros of the function

p (ξ) := ξ2 − 4 sin2

(
ξ

2c

)
= 0,

are symmetric across the real and imaginary lines. The set of zeros in the closure of the first quadrant is

{0, 2ki} ∪ {aj (c) + ibj (c)}+∞j=1 ,

with
2jπ < aj (c) < 2(j + 1)π,

and bj >
9
2 , for j ≥ 1.

We introduce the operator L0 :

(2.1) ϕ 7−→ ϕ′′ − ϕ
(
·+ c−1

)
+ ϕ

(
· − c−1

)
+ 2ϕ.

Using Lemma 2.1, one can show the following

Lemma 2.2. Given a ∈ R. Suppose ϕ ∈W 2,2
a (R) satisfies L0ϕ = 0, then ϕ ≡ 0.

Proof. Let ϕ = eaxη with η ∈ L2 (R) . Then η solves

η′′ + 2aη′ + a2η − eac
−1

η
(
·+ c−1

)
− e−ac

−1

η
(
· − c−1

)
+ 2η = 0.

Taking Fourier transform on both sides of (2.1) , one gets

p (ia+ 2πξ) η̂ (ξ) = 0.

Using the result of Lemma 2.1, and the fact that η ∈ L2 (R), we get η = 0. This finishes the proof. �

Proof of Proposition 2.1. The idea of the proof is to establish a correpondence between the kernel of L1 and
L0, and use Lemma 2.2. We refer to [18] for details. �

Now, we will study the mapping properties of the operator L0 on the weighted Sobolev spaces.

Lemma 2.3. The operator L0 is an isomorphism from W 2,2
a (R) to L2

a (R) provided that |a| is small enough
and a 6= 0.

Proof. By the above lemma, the operator is injective. Hence it suffices to solve the equation

L0ϕ = f,

for each given f ∈ L2
a (R) .

Write f = eaxF and ϕ = eaxΦ, with F ∈ L2 (R) and Φ ∈W 2,2 (R) . Taking Fourier transforms we find

p (ia+ 2πξ) Φ̂ = −F̂ .
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By the result of Lemma 2.1, for any ξ ∈ R, p (ia+ 2πξ) 6= 0, if we suppose that |a| is small and a 6= 0. Hence
we get

‖Φ̂‖L2(R) ≤ Ca‖F̂‖L2(R),

where Ca is a constant depending on a. Applying Plancherel’s formula we complete the proof. �

Since L1 is asymptotic to L0 at infinity, the above lemma can be used to prove the following:

Lemma 2.4. The operator L1 : W̄ 2,2
a (R)→ L̄2

a (R) is Fredholm if |a| is small and a 6= 0.

Proof. We first show the following estimate:

(2.2) ‖u‖W̄ 2,2
a (R) ≤ C ‖L1u‖L̄2

a(R) + C ‖u‖L2([−t0,t0]) .

where t0 is a large constant to be determined later on. To do this, we let χ be a cutoff function equal to 1 in
[t0,+∞) and equal to 0 in (−∞, t0 − 1]. By the results of Lemma 2.3,

(2.3) ‖χu‖L2
a(R) ≤ C ‖L0 (χu)‖L2

a(R) .

On the other hand, using asymptotic behaviour of the one-soliton, we find that if t0 is large enough, then

‖L0 (χu)‖L2
a(R) ≤ C ‖L1 (χu)‖L2

a(R) + δ ‖χu‖L2
a(R) ,

for some small δ > 0. Similar estimate can be proven for L2
−a(R) norms, respectively of χ(−t)u, L0(χ(−t)u)

and L1(χ(−t)u). This together with (2.3) readily implies (2.2) . By elliptic estimates we get

(2.4) ‖u‖W̄ 2,2
a (R) ≤ C ‖L1u‖L̄2

a(R) + C ‖u‖L2([−t0,t0]) .

from which the Fredholm property follows by a standard argument (see for instance [19] or [4]) . �

Another property of L1 we shall use later on is contained in the following

Proposition 2.2 (Linear decomposition lemma). Let a > 0 be small. Suppose u ∈ W̄ 2,2
a (R) satisfies L1u = f

with f ∈ L̄2
−a (R). Then there exists φ ∈ W̄ 2,2

−a (R) and constants c±1 , c±2 such that

u (x) = φ (x) + (c+1 + c+2 x)χ+
0 (x) + (c−1 + c−2 x)χ−0 (x),

where χ+
0 is a smooth cut off function equal to 1 in [0,+∞) and equal to 0 in (−∞,−1], and χ−0 is a smooth

cut off function such that χ+
0 + χ−0 ≡ 1.

Proof. Recall that L1 − L0 decays exponentially fast at infinity. Therefore if a > 0 is small enough, then

L0u = L1u+ L0u− L1u := f̃ ∈ L̄2
−a (R) .

We also have χ+
0 u ∈W 2,2

a (R) and

L0

(
χ+

0 u
)

= f1,

where f1 ∈ L2
−a (R) . We write u = χ+

0 u+ χ−0 u and

χ+
0 (x)u (x) = eaxw (x) , w ∈W 2,2 (R) .

It suffices to show that

eaxw − (c1 + c2x)χ+
0 ∈ L2

−a (R) ,

for some constants c1 and c2 (the argument for χ−0 u being similar).
Let f2 = e−axf1 ∈ L2

−2a (R) . Similarly as before, the Fourier transform ŵ of w satisfies

ŵ =
−f̂2

p (ia+ 2πξ)
.

Then

w (x) =

∫
R

−f̂2 (ξ)

p (ia+ 2πξ)
e 2πiξxdξ.
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This implies

w′′ + 2aw′ + a2w

=

∫
R

(−ia+ 2πξ)
2
f̂2 (ξ)

p (ia+ 2πξ)
e 2πiξxdξ := g (x) .

Let us compute

g (x) e2ax =

∫
R

(−ia+ 2πξ)
2
f̂2 (ξ)

p (ia+ 2πξ)
e(ξ−

ia
π )2πixdξ

=

∫
R− aiπ

(
ia+ 2πξ̄

)2
f̂2

(
ξ̄ + ia

π

)
p
(
3ia+ 2πξ̄

) e2πiξ̄xdξ̄.

Recall that

f̂2

(
ξ̄ − a

πi

)
=

∫
R
e−axf1 (x) e−2πi(ξ̄− a

πi )xdx

=

∫
R
eaxf1 (x) e−2πiξ̄xdx.

Therefore,

g (x) e2ax =

∫
R− aiπ

(
ia+ 2πξ̄

)2 ∫
R e

axf1 (x) e−2πiξ̄xdx

p
(
3ia+ 2πξ̄

) e2πiξ̄xdξ̄.

This together with f1 ∈ L̄2
−a (R) and the property of p implies that g ∈ L2

−2a (R) . From

w′′ + 2aw′ + a2w = g,

we infer that eaxw − (c1 + c2x)χ+
0 ∈ L2

−a (R) for some constants c1 and c2. �

Using similar arguments, one gets an analogous result in weighted Hölder spaces.

Lemma 2.5. Assume a > 0 is small enough. Suppose L1u = f with f ∈ C̄0,µ
−a (R) and u ∈ L∞ (R) , then

there exists φ ∈ C̄2,µ
−a (R) and constants c+, c−, such that

u (x) = φ (x) + χ0(x)c+ + χ0(x)c−.

Proof. If a > 0 is small enough, then

L0u = f1 ∈ C̄0,µ
−a (R) .

Taking Fourier transform (u ∈ L∞(R) is a distribution), one gets

û(ξ) =
−f̂1 (ξ)

p (2πξ)

and

u (x) =

∫
R

−f̂1 (ξ)

p (2πξ)
e2πiξxdξ.

Hence

u′′(x) =

∫
R

− (2πξ)
2
f̂1 (ξ)

p (2πξ)
e2πiξxdξ := g (x) .

Denote e axf1 = f2 ∈ C̄0,µ (R) . Substituting in the above expression we get

g(x)e ax = −
∫
R
f2(y)

[
e a(x−y)

∫
R

(2πξ)2

p(2πξ)
e 2πiξ(x−y) dξ

]
dy = −f2 ∗ h,

where

h(x) = e axp̃(x), p̃(x) = F−1

[
(2πξ)2

p(2πξ)

]
(x)
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and F−1 is the inverse Fourier transform. It can be shown that p̃ is positive (Lemma 5.1 of [7]) and expo-

nentially decaying at infinity at the rate cosh−2k(c)(x), where 2k(c) > 0 is the zero of p which is the closets
to the real axis (see the poof of Lemma 5.4 of [7]). Consequently, when |a| is small enough

u′′ ∈ e−axL∞ (R) .

This, together with u ∈ L∞(R) readily implies the lemma. �

The above results lead to the definition of the deficiency space

D := Span {χ±0 , xχ
±
0 }.

We want to study the mapping properties of a densely defined operator

Ta : L̄2
a(R) −→ L̄2

a(R),

u 7−→ L1u.

By the above results Ta is Fredholm (Lemma 2.4). If |a| is small and a > 0 then T−a is injective and then by
duality Ta is surjective. Additionally we define a densely defined operator:

Ta : L̄2
a(R)⊕D −→ L̄2

a(R),

u 7−→ L1u.

The Linear Decomposition Lemma says that T−a is surjective when a > 0 is small and so in order to define
the inverse of L1 (or in other words determine the ”smallest” space in which L1 is an isomorphism) it remains
to find the kernel of L1.

Lemma 2.6. Let a > 0 be small. The dimension of the kernel of T−a is 2 and there exists a two dimensional

linear subspace E such that D = Ker T−a⊕E and the operator L1 : W̄ 2,2
−a (R)⊕E → L̄2

−a(R) is an isomorphism.

Proof. The proof of this Lemma, based on the Relative Index Formula, is quite standard (see [17], [19], [4]
among others). The argument goes as follows: by the Linear Decomposition Lemma

Ker Ta = Ker T−a.

By duality

dim Ker Ta = codim Im T−a.
By the Linear Decomposition Lemma we also have

dimD = dim Ker Ta + codim Im T−a.

Then we find

dim Ker T−a =
1

2
dimD = 2,

from which the assertion of the Lemma follows immediately. �

Now, we turn to considering functions which are odd. We define spaces L̄2
a (Ro), W̄ 2,2

a (Ro) and C̄l,µa (Ro) to
be, respectively, the subspaces of L̄2

a (R), W̄ 2,2
a (R) and C̄l,µa (R) which consist of odd functions. We introduce

a two dimensional deficiency space

Do = Span {χ+
0 − χ

−
0 , x}.

Without loss of generality we may assume that χ+
0 (x) = χ−0 (−x) and thus Do consists of odd functions. We

also define a one dimensional subspace

(2.5) Eo = Span {χ+
0 − χ

−
0 },

which consist of odd functions which are asymptotically constant at infinity.
With all these preparation, we state the following result:

Proposition 2.3. Let a > 0 with |a| small. Then the operator L1 is an isomorphism from W̄ 2,2
−a (Ro)⊕Eo to

L̄2
−a (Ro).
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Proof. By the results of Lemma 2.6 to prove the proposition it suffices to find an element of the kernel of L1

which is odd and linear at infinity. Let us construct it explicitly.
Recall that the functions si (t; c, λ) = Sc (i− cλt) − 2i lnλ, λ > 0 determine a two parameter family of

solutions to the Toda lattice equation:

s′′i = esi−1−si − esi−si+1 .

Therefore,
{
∂
∂csi (·, c, 1)

}n
i=1

and
{
∂
∂λsi (·, c, λ) |λ=1

}n
i=1

will be solutions of the linearized Toda lattice equa-
tion:

(2.6) ξ′′i (t) = esi−1(·;c,1)−si(·;c,1) (ξi−1 − ξi)− esi(·;c,1)−si+1(·;c,1) (ξi − ξi+1) , i ∈ Z.
Obviously, for any constant v, the function

t→ si (t; c, λ) + vt, i ∈ Z,
will also be a solution of the Toda equation. Differentiating this function with respect to v, we find another
solution of (2.6) which is the linear, odd function t. We have

∂si
∂c
|λ=1 = ∂cSc (x) |λ=1,x=i−ct − εtS′c (i− ct) := Ξi,

∂si
∂λ
|λ=1 = −ctS′c (i− ct)− 2i := Φi.

We claim that there exist constants k1, k2, k3 such that the function

Ki (t) := k1Ξi + k2Φi + k3t

is unbounded, odd and satisfies Ki

(
t+ c−1

)
= Ki−1 (t). Indeed, the above condition reads

k1

(
Ξi(t+ c−1)−Ξi(t)

)
+ k2

(
Φi(t+ c−1)− Φi(t)

)
+ k3c

−1 = 0.

We calculate directly
Ξi(t+ c−1)−Ξi(t) = −c−1S′c(i− 1− ct),
Φi(t+ c−1)− Φi(t) = S′c(i− 1− ct) + 2,

hence it suffices to choose k1 = 1, k2 = c−1, k3 = −2.
Accepting this claim for now (its proof is given in the appendix) we see that K0 is the desired element of

the kernel of L1. �

Actually, we have similar result in weighted Hölder spaces:

Proposition 2.4. Let a > 0 with |a| small. The operator L1: C̄2,µ
−a (Ro)⊕Eo → C̄0,µ

−a (Ro) is an isomorphism.

Proof. By the results of Proposition 2.3, L1 is injective. Hence it is enough to show that it is also surjective.
Given f ∈ C̄0,µ

−a (Ro) , let us show the existence of φ ∈ C̄2,µ
−a (Ro)⊕ Eo, a solution of L1φ = f.

Certainly, f ∈ L̄2
−a′ (Ro) , for a′ ∈ (0, a) . By Proposition 2.3, we can find φ ∈ W̄ 2,2

a′ (Ro) ⊕ Eo such that

L1φ = f. By elliptic regularity, φ ∈ L∞ (R) . Since f ∈ C̄0,µ
−a (Ro) , by Lemma 2.5, φ ∈ C̄2,µ

−a (Ro) ⊕ Eo. This
finishes the proof. �

3. A family of approximate solutions

We recall that α = c
√√

2c−1
∗ and c∗ =

√
2

24 is the constant appearing in (1.3). Let e = ec,ε :=
(

1
αε ,
√

2 |ln ε|
)
.

Note that the set of curves {(x, qi(x; c, ε))}i∈Z in R2 is periodic in the direction e
|e| with minimal period |e|

(we omit the subscript in ec,ε for simplification). For each ε > 0 small enough, we will construct a solution
uε of the Allen-Cahn equation which is odd and periodic in the direction e

|e| with minimal period 2 |e|. These

two conditions are equivalent to

u(z) = −u(−z), u(z) = −u(z + e).

An important step towards this aim will be the construction of suitable approximate solutions. As we will
see, the nodal sets of these functions will be very close to the graphs of the one-soliton solution to the Toda
lattice discussed in the last section.
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We first describe the Fermi coordinates (xi, yi), i ∈ Z, associated to the curve Γi, which is the graph of the
function y = qi(x) (for brevity we will write qi(x) for qi(x; c, ε) from now on). For a tubular neighbourhood
Ti (as we will see later, its radius will be O(ε−1)) of Γi, consider the map Xi given by

(xi, yi) 7−→ (x, y) = (xi, qi (xi)) + yini (xi) ∈ Ti,

where ni is the unit normal vector of the curve Γi at the point (xi, qi (xi)) :

ni (xi) =
(−q′i (xi) , 1)√
1 + (q′i (xi))

2
,

and yi is the signed distance from the point (x, y) to the curve Γi, positive in the upper part of R2 \ Γi and
negative in the lower part. This map Xi gives a parametrization of Ti. Since the slope of the graph of qi is
of order O(ε) and (x, qi(x)) is asymptotically horizontal, without difficulty one can show the following.

Lemma 3.1. There exists a constant C > 0 such that the map Xi is a diffeomorphism from R×(−Cε−1, Cε−1)
onto

Ti := {z ∈ R2 | d (Γi, z) < Cε−1}.

For each function f : Ti → R, the following convenient notation will be adopted:

X∗i f (xi, yi) = f ◦Xi (xi, yi) .

Let β0 > 0 be a constant to be fixed later. Given δ > 0 small, and h ∈ C2,µ
−a (Ro)⊕ Eo, with

(3.1) ‖h‖C2,µ
−δ (Ro)⊕Eo ≤ ε

β0 ,

let us denote

hi (x) = h
(
x− iα−1

)
.

Next, functions Hi = Hi (·;h) and H ′i = H ′i (·;h) , with h being a parameter, are defined through the relation

(3.2)
X∗i Hi (xi, yi;h) = H (yi − hi (εxi)) ,

X∗i H
′
i (xi, yi;h) = H ′ (yi − hi (εxi)) .

We recall that H is the unique, odd, monotonically increasing solution of −H ′′ = H −H3. Choose a smooth
nonnegative function ρ satisfying

ρ (s) =

{
1, s < −1,

0, s > 1,

and ρ (s) + ρ (−s) = 1. Fix a small number ς and define ρς(s) = ρ(ςs) Denote

γi (x) :=
qi (x)− qi−1 (x)

2
, i ∈ Z.

We define a cutoff function

η0 (x, y) :=

{
ρς (y − q0 (x)− γ1 (x)) , y > q0 (x) ,

ρς (−y + q0 (x)− γ0 (x)) , y ≤ q0 (x) .

Since q0 is an odd function, one may check that η0 (z) = η0 (−z). We set

ηi (z) = η0 (z − ie) , i ∈ Z.

ηi is supported in the region

Ωi :=

{
z ∈ R2 : z = (x, qi (x) + t) , t ∈ (−γi (x)− 1

ς
, γi+1 (x) +

1

ς
)

}
.

By construction,
+∞∑
i=−∞

ηi (z) = 1.
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Although, for brevity, we do not indicate the dependence of the functions ηi on ς we keep in mind that
eventually ς needs to be adjusted. This is because we will need

(3.3) |∇ηi|+ |D2ηi| ≤ Cς = o(1), ε→ 0,

which certainly can be achieved since γi = O(| ln ε|).
Note that ηi actually depends on the parameters c and ε, although we have not expressed this explicitly.

For future purpose, we need another family of cutoff functions η̂i, i ∈ Z, given by

η̂0(x, y) = η0

(
x,

2

5
y
)
, η̂i(z) = η̂0(z − ie).

Note the relation

(3.4) ηiη̂i = ηi.

The curve Γi is not a straight line, hence the Fermi coordinate (xi, yi) is not well defined in the whole plane.
A direct consequence is that the functions Hj are also not defined on the whole space. To overcome this
difficulty, we take advantage of the cutoff functions η̂i to define

Hj (·;h) := η̂jHj (·;h) + (1− η̂j)
Hj

|Hj |
, i ∈ Z.

With all these notations at hand, we shall define an approximate solution u to the Allen-Cahn equation
through a formal series

u =

∞∑
i=1

(−1)iHi.

With this definition infinitely many terms of the series are equal 1 or −1 and we agree that they cancel each
other, so that for any z ∈ Ωi,

u(z) := (−1)
i (−Hi−1(z) +Hi(z)−Hi+1(z)

)
.

Using the definition ofHi, one verifies directly that u is a smooth function. Using the symmetry and periodicity
of the family of curves {Γi}i∈Z we find

u (z) = −u (z + e) , u (−z) = −u (z) .

Note that the approximate solution depends on the still undetermined function h, we will indicate it by
writing u(z;h) whenever necessary.

4. From approximate solutions to genuine solutions

Recall that in the Fermi coordinate (xi, yi), the expression for the Laplacian operator is given by (see
Section 5.1 of [5]):

(4.1) ∆ =
1

Ai
∂2
xi + ∂2

yi +
1

2

∂yiAi
Ai

∂yi −
1

2

∂xiAi
A2
i

∂xi ,

where

Ai = 1 + (q′i (xi))
2 − 2yi

q′′i (xi)√
1 + (q′i (xi))

2
+ y2

i

(q′′i (xi))
2(

1 + (q′i (xi))
2
)2 .

In the region Ωi, by definition

(−1)
i
u = −Hi−1 +Hi −Hi+1.

If we denote by
E (u) := ∆u + u− u3

the error of the approximate solution, then a first glimpse at (4.1) tells us that E (u) does not decay exponen-
tially fast as |x| → +∞. Indeed, the heteroclinic solution H(y) = tanh

(
y√
2

)
and thus H(y)− 1, (respectively

H(y) + 1) and H ′(y) decay exponentially as |y| → ∞. This means that the error of the approximation is
globally small, of order O(e−c/ε). However, due to the fact that the level set of u consists of curves whose
mutual distances at infinity are constant there is no hope for an estimate of the error in a norm that takes
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into account decay both in the direction orthogonal and parallel to the level set. This makes our present
situation different than that of the multiple end solutions considered in [4] or [16]. As we will see later on in
order to deal with this difficulty we take advantage of the fact that at infinity our equation reduces essentially
to a one dimensional periodic problem.

4.1. The infinite dimensional reduction. We want to find a suitable function h and a corresponding
small perturbation φ = φ (·;h) of u, such that u+ φ is a genuine solution of the Allen-Cahn equation. If such
a φ exists, then it should satisfy

(4.2) T φ = E (u)− P (u, φ) ,

where

T φ = −∆φ+
(
3u2 − 1

)
φ, P (u, φ) = 3uφ2 + φ3.

To get a solution to equation (4.2), we suppose that φ can be written as

φ =
∑
i∈Z

ηiφ
#
i .

The unknown functions φ#
i are not globally defined in the whole R2 but only in some open neighbourhood

on the sets supp ηi. In reality, because our problem is periodic we only need to determine the function φ0 in
such a way that

(4.3) φ#
0 (z) = −φ#

0 (−z) .

Then we set

φ#
i (z) = (−1)iφ#

0 (z − ie) .

It is elementary to verify that with this definition we have (recall that ηi(z) = η0(z − ie) and η0 is odd)

φ (z) = −φ (−z) and φ (z) = −φ (z + e) .

The equation under consideration is

(4.4)
∑
i∈Z
T
(
ηiφ

#
i

)
= E (u)− P (u, φ) .

For each i ∈ Z we introduce the operator

Liϕ := −∆ϕ+
(
3H2

i − 1
)
ϕ.

The equation (4.4) can be rewritten as∑
i∈Z

(
Li(ηiφ

#
i ) + (T − Li) (ηiφ

#
i )
)

= E (u)− P (u, φ) .

This is equivalent to

(4.5)

∑
i∈Z

(ηiLiφ
#
i ) = E (u)− P (u, φ)

−
∑
i∈Z

(T − Li) (ηiφ
#
i )

−
∑
i∈Z

[Li, ηi]φ
#
i .

Here

[Li, ηi] = Li ◦ ηi − ηi ◦ Li
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is the commutator of Li and ηi. Hence, to find a solution φ of equation (4.2) , it will suffice to solve the

following equation for the function φ#
0 :

(4.6)

L0φ
#
0 = η̂0E (u)− η̂0P (u, φ)

− η̂0

∑
i∈Z

(T − Li) (ηiφ
#
i )− η̂0

∑
i∈Z

[Li, ηi]φ
#
i

:= F .

Indeed, multiplying (4.6) by η0, using (3.4) and (4.3) we get (4.5).

If we denote φi = X∗i φ
#
i and introduce the operator L∗0 through

L∗0ζ := X∗0
(
L0

(
ζ ◦X−1

0

))
,

then the equation satisfied by φ0 is

(4.7) L∗0φ0 = X∗0F .

Note that since φ#
0 is odd (4.3) and in the set T0 we have

z = X0(x0, y0) =⇒ −z = X0(−x0,−y0),

therefore

φ0(x0, y0) = φ#
0 ◦X0(x0, y0) = −φ#

0 ◦X0(−x0,−y0) = −φ(−x0,−y0),

which mean that φ0 should be odd. At first it seems that φ0 needs to be defined only in the set R ×
(−C/ε,C/ε) = X−1

0 (Ti) however we will see that it is more convenient to find φ0 by solving (4.7) in the whole
R2. This is possible since the operator L∗0 and the right hand side of the equation (4.7) can be naturally
understood as defined in R2. Of course at the end only the values of φ0 in the set N0 := X−1

0 supp η0 matter

for us. The function X∗0F is defined in the set N̂0 := X−1
0 supp η̂0, which is slightly bigger than N0 and

in particular intersects with the neighbouring sets N±1. As a consequence F depends nonlinearly and non
locally on the functions φ0 and h. Thus, we have

φ±1(x0, y0) = −φ0 ◦X−1
0 (X0(x0, y0)∓ e), h±1(x0) = h0 ◦X−1

0 (X0(x0, y0)∓ e).

As the last observation we have

Lemma 4.1. The function X∗0F is odd in N̂0.

The proof of this lemma follows right away from the properties of the functions φ#
i , i = 0,±1 and the

definition of the approximate solution u.
Our task now is to understand the mapping property of the operator L∗0. For this purpose, we shall recall

some known result for operator related to L∗0. First, we have (see [4]).

Lemma 4.2. Suppose θ ∈
(
0,
√

2
)
. For each function f ∈ C̄0,µ

−θ (R) satisfying∫
R
f (y0)H ′ (y0) dy0 = 0,

there exists a unique solution ζ ∈ C̄2,µ
−θ (R) of

−ζ ′′ +
(
3H2 − 1

)
ζ = f,

such that ∫
R
ζ (y0)H ′ (y0) dy0 = 0.

Moreover,

‖ζ‖C̄2,µ−θ (R) ≤ C ‖f‖C̄0,µ−θ (R) .
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Second, we consider the operator

L : C̄2,µ
σ,θ (R2) −→ C̄0,µ

σ,θ (R2)

ζ 7−→ −∆(x0,y0)ζ +
(

3H (y0)
2 − 1

)
ζ,

where the weighted Hölder spaces above are defined by:

C̄l,µσ,θ
(
R2
)

= (coshx0)
σ

(cosh y0)
θ Cl,µ

(
R2
)
.

Proposition 4.1. Given θ ∈
(
0,
√

2
)
, σ ∈

(
0,
√

2
2

)
with

θ2 + σ2 < 2.

Suppose that f ∈ C̄0,µ
−σ,−θ

(
R2
)

satisfies∫
R
f (x0, y0)H ′ (y0) dy0 = 0, ∀x0 ∈ R.

There exists a unique solution ζ ∈ C̄2,µ
−σ,−θ

(
R2
)

of L ζ = f, such that∫
R
ζ (x0, y0)H ′ (y0) dy0 = 0, ∀x0 ∈ R,

and

‖ζ‖C̄2,µ−σ,−θ(R2) ≤ C ‖f‖C̄0,µ−σ,−θ(R2) ,

with a constant C independent of σ.

Proof. We refer to [5] for a proof of this result. �

Now let δ ∈
(
0,
√

2
)

and let τ > 0, µ ∈ (0, 1) be constants to be determined later on, both independent of
ε. We will come back to equation (4.7) . To solve it, one should study its limit as x0 → +∞. We define the
operator L∞ by

(4.8) ψ 7−→ −ψ′′∞ +
(
3H2
∞ − 1

)
ψ∞.

Here H∞ (y0) = H (y0 − limx0→∞ h (x0)). Next, we denote

K0 := lim
x0→∞

(X∗0 η̂0)K1,

where

(4.9)

K1 (y0;ψ)= lim
x0→∞

X∗0 (E (u))− 3 lim
x0→∞

(X∗0u)ψ2 − ψ3

− 3
∑

i=0,±1

lim
x0→∞

[
X∗0
(
u2 −H2

0

)
ηi
]
ψ

−
∑

i=0,±1

[
2 lim
x0→∞

(X∗0∇ηi)∇ψ + lim
x0→∞

(X∗0 ∆ηi)ψ

]
.

Proposition 4.2. Suppose ‖h‖C̄2,µ−δ (Ro)⊕Eo ≤ εβ0 (as in (3.1)) and ε is small. There is a unique bounded

solution ψ∞ to the equation

(4.10) L∞ψ = K0 −
∫
RK0H

′
∞∫

RH
′2
∞

H ′∞.

satisfiying
∫
R ψH

′
∞ dy0 = 0. In addition ψ∞ is an odd function and

‖ψ∞‖C̄2,µ−τ (R) ≤ Cε
2− τ√

2 .
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Proof. The proof follows from Lemma 4.2 and a fixed point argument as soon as we show that

‖χ̂∞E∞‖C̄2,µ−τ (R) ≤ Cε
2− τ√

2 ,

where

E∞ = lim
x0→∞

X∗0 (E (u)) , χ̂∞ = lim
x0→∞

X∗0 η̂0.

As this type of estimate can be found in [5] we left the details to the reader. �

Evidently, we can use the above Proposition to solve the analogous problem as x0 → −∞. This amounts
to solving the same equation as (4.10) but with the function K0 on the right hand side replaced by its analog
K̄0 as x0 → −∞. Taking the limit x0 → −∞ in (4.9) and using the oddness of the function X∗0F we see that
K̄0(y0) = −K0(−y0) and thus ψ∞(y0) = −ψ−∞(y0). To write these two solutions conveniently we introduce
an odd, smooth function κ such that κ(x0) = 1 when x0 > 0 is large, κ is 0 in a neighbourhood of 0. Then,
we let ψ := ψ∞ and we agree that κψ is by definition equal to the solution our problem at infinity. We note
that this function depends in addition on the limx0→∞ h(x0) = − limx0→−∞ h(x0). At this point we will not
make this dependence explicit in the notation.

We recall that in (3.2) we have defined the function H0 locally in T0 by

X∗0H
′
0 (x0, y0;h) = H ′ (y0 − h0 (εx0)) .

For a problem involving the operator L∗0, which is defined for all (x0, y0) ∈ R2 it is natural to extend the
definition of H ′0 to the whole plane. In the sequel, when we speak of a problem defined in R2 we will not
write X∗0H

′
0 but simply H ′0.

For each g ∈ C̄0,µ
−εδ,−τ

(
R2
)

which is a function of variables x0 and y0, we will denote

π1 (g) :=

∫
R gH

′
0 dy0∫

RH
′2
0 dy0

H ′0,

and

π2 (g) = g − π1 (g) .

With these notations we have ∫
R
π2 (g)H ′0 dy0 = 0, ∀x0 ∈ R.

Proposition 4.3. Let δ, τ > 0 with |δ| , |τ | small. Suppose ε > 0 is small enough. Then there exists function
k = k (x0;h) and a function φ0 = φ0 (x0, y0;h) such that

(4.11) L∗0φ0 = X∗0F − k (x0)H ′0,

with π1 (φ0) = 0, and

‖φ0 − κ (x0)ψ‖C2,µ
−εδ,−τ (R2) ≤ Cε

2− τ√
2 .

Proof. We first show the Proposition assuming h = 0. As in Proposition 4.1 denote the operator

ζ 7−→ −∆(x0,y0)ζ +
(
3H2

0 − 1
)
ζ

by L. Let us consider the equation

(4.12) Lφ0 = π2 ◦ ((L− L∗0)φ0 +X∗0F) .

By the results of Proposition 4.1, we can write this equation as

φ0 = J ◦π2 ◦ ((L− L∗0)φ0 +X∗0F) ,

where J is a linear operator from π2(C̄0,µ
−εδ,−τ (R2)) to π2(C̄2,µ

−εδ,−τ (R2)) and whose inverse is bounded by a

constant. Suppose φ0 = κ (x0)ψ (y0) + φ̄0. Then φ̄0 satisfies

(4.13) φ̄0 = J ◦π2 ◦
(
(L− L∗0)

(
κψ + φ̄0

)
+X∗0F

)
− κψ.

Keep in mind that in this notation, the function F actually also depends on φ̄0.
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To solve equation (4.13), we shall use a fixed point argument for φ̄0 in the space

X :=

{
ζ ∈ C̄2,µ

−εδ,−τ
(
R2
)

:

∫
R
ζ (x0, y0)H ′0dy0 = 0,∀x0 ∈ R

}
.

We will show that the map M defined by

φ̄0 7−→ J ◦π2 ◦
(
(L− L∗0)

(
κψ + φ̄0

)
+X∗0F

)
− κψ

is a contraction map in a ball Bρ(0) of X , where the radius ρ is small (to be chosen).

Lemma 4.3. We have M (0) ∈ C̄2,µ
−εδ,−τ

(
R2
)
.

We give a proof this Lemma in the Appendix.
Continuing with the proof of the proposition let us first check that for i = 0,±1, the map Mi

φ̄0 7−→ J ◦π2 ◦X∗0
(
η̂0 [Li, ηi]φ

#
i

)
is a contraction. For two functions φ̄i,1 and φ̄i,2,

Mi

(
φ̄i,1
)
−Mi

(
φ̄i,2
)

= J ◦π2 ◦X∗0
(
η̂0 [Li, ηi]

(
φ̄#
i,1 − φ̄

#
i,2

))
,

where

(4.14) φ̄#
i,j(z) = φ̄#

0,j(z − ie) = φ̄0,j

(
X0(x0, y0)− ie

)
.

Observe that [Li, ηi] (φ̄#
i,1 − φ̄

#
i,2) is equal to zero in the region where ηi is equal to 1 or 0. Hence∥∥∥X∗0 η̂0 [Li, ηi]

(
φ̄#
i,1 − φ̄

#
i,2

)∥∥∥
C̄0,µ−εδ,−τ (R2)

=
∥∥∥coshεδ x0 coshτ y0X

∗
0

[
η̂0 [Li, ηi]

(
φ̄#
i,1 − φ̄

#
i,2

)]∥∥∥
C0,µ(R2)

≤ o(1)
∥∥∥X∗0 [η̂0(φ̄#

i,1 − φ̄
#
i,2)]

∥∥∥
C̄2,µ−εδ,−τ (R2)

≤ o(1)
∥∥(X∗0 η̂0)(φ̄i,1 − φ̄i,2)

∥∥
C̄2,µ−εδ,−τ (R2)

.

The o(1) factor comes from (3.3) by choosing ς small. Consequently,Mi is a contraction mapping. This and
(4.14) in turn implies that the map

φ̄0 → J◦π2 ◦X∗0

(
η̂0

∑
i∈Z

[Li, ηi] φ̄
#
i

)
is a contraction.

We proceed to consider the map

Ni : φ0 → J◦π2 ◦X∗0
(
η̂0 (T − Li)

(
ηiφ̄

#
i

))
.

When i = 0, from fact that in the set supp η0 we have

H0 − u = o(1),

we deduce ∥∥∥X∗0 η̂0 (T − L0)
(
η0φ̄

#
0

)∥∥∥
C̄0,µ−εδ,−τ (R2)

≤ o(1)
∥∥φ̄0

∥∥
C̄0,µ−εδ,−τ (R2)

.

Likewise, for i = ±1, we use the fact that in the set supp η̂0 ∩ supp ηi we have

Hi − u = o(1),

to conclude ∥∥∥X∗0 η̄0 (T − Li)
(
ηiφ̄

#
1

)∥∥∥
C̄0,µ−εδ,−τ (R2)

≤ o(1)
∥∥φ̄0

∥∥
C̄0,µ−εδ,−τ (R2)

.
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In fact, a similar argument shows that Ni are contractions.
We also need to investigate the term

J ◦π2 ◦X∗0
[
η̂0

(
E (u)− P

(
u,φ̄+ κψ

))]
.

Recalling that P (u,ϕ) = 3uϕ2 + ϕ3 we see that it is not difficult to show that the map

φ̄0 → J◦π2 ◦X∗0
(
η0P

(
u,φ̄+ κψ

))
is a contraction if

∥∥φ̄0

∥∥
C̄0,µ−εδ,−τ (R2)

is small.

On the other hand, using the expression (4.1) for the Laplacian operator, we infer that for ε small, the
map

φ̄0 → J◦π2 ◦ (L− L∗0) φ̄0

is also a contraction map in a small ball of C̄0,µ
−εδ,−τ (R2).

Combining all these estimates, we conclude that in the ball of radius

2 ‖J ◦π2 ◦X∗0 (η0E (u))‖C̄0,µ−εδ,−τ (R2) ≤ Cε
2− τ√

2 ,

of the space X , we get a unique fixed point φ̄0. The corresponding function φ0 and the function k given by

k = π1 ((L− L∗0)φ0 +X∗0F) .

satisfy the estimates stated in the proposition.
In the case h 6= 0, we let

φ0 (x0, y0) = κ (x0)ψ (y0 − h (εx0)) + φ̄0 (x0, y0) ,

and introduce a change of variables: {
x̃0 = x0,
ỹ0 = y0 − h (εx0) .

Then we get a similar equation as (4.13) up to some additional terms involving h, which could be treated as
perturbation terms. �

4.2. The reduced equation and Proof of Theorem 1. For each function h with ‖h‖C̄2,µ−δ (Ro)⊕Eo ≤ ε
β0 , we

have obtained φ0 = φ0 (·;h) , which is a function of x0, y0, and k = k (·;h) , which is a function of x0, solving
the equation (4.11). In this section we will find an h such that the corresponding k is identically zero. From
this and (4.11) , it will follow that the corresponding function u + φ is a solution of (1.1) which satisfies the
assertions of Theorem 1.1 and thus we will complete its proof.

By definition we have

k(x0) = π1(L∗0φ0 −X∗0F).

Hence to find a h such that k = 0, it remains to find φ0 = φ0 (·;h) satisfying

(4.15) π1(L∗0φ0 −X∗0F) = 0 =⇒
∫
R
L∗0φ0H

′
0 dy0 =

∫
R
X∗0H

′
0 dy0.

Let us investigate the left hand side of (4.15). Recall that one term contained in F is η̂0E (u), this term is
of most interest for us. For notational simplicity, we shall denote

h̃i (x) = hi (εx)

(recall that hi(x) = h(x − iα−1)). We will use β as a universal positive constant, which may change from
step to step. In addition when we choose τ sufficiently small we mean that at least 2(2− τ√

2
) > 2 + β∗, with

some β∗ > 0, small and fixed.
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Lemma 4.4. There exists β̄ > 0, independent of ε, δ, τ, µ, β0, such that for ε, τ sufficiently small we have∫
R
X∗0 (η̂0E (u))H ′0 dy0 = c∗h̃

′′
0 +
√

2e
√

2(q0−q1)
(
h̃0 − h̃1

)
−

√
2e
√

2(q−1−q0)
(
h̃−1 − h̃0

)
+OC̄2,µ−εδ(Ro)⊕Eo

(
ε2+min{2β0,β̄}

)
,

for some positive constant c∗.

Proof. This follows from similar computation as that of [5], we omit the details. �

By β, we will denote a universal positive constant. Making use of Lemma 4.4, we now prove:

Proposition 4.4. There exists β1 > 0, independent of ε, δ, τ, µ, β0, such that for all ε, τ sufficiently small,
equation (4.15) can be written as

c′′∗ h̃0 +
√

2e
√

2(q0−q1)
(
h̃0 − h̃1

)
−
√

2e
√

2(q−1−q0)
(
h̃−1 − h̃0

)
= G

(
·; h̃
)
,

where the function G satisfies

‖G (·; 0)‖C̄0,µ−εδ(Ro) ≤ Cε
2+β1 .

Moreover, for any two functions h], h[ with∥∥h]∥∥C̄2,µ−δ (Ro)⊕Eo
≤ εβ0 ,∥∥∥h[∥∥∥

C̄2,µ−δ (Ro)⊕Eo
≤ εβ0 ,

there holds ∥∥∥G (·;h](ε·))−G(·;h[(ε·))∥∥∥
C̄2,µ−εδ(Ro)

≤ Cε2+min{2β0,β1}
(∥∥∥h] − h[∥∥∥

C̄2,µ−δ (Ro)⊕Eo

)
.

Proof. Essentially, this follows from the estimates of φ0 obtained in Proposition 4.3 and similar computation
as that of Lemma 4.4. We sketch the proof and refer to [5] for more details.

First of all, let us consider the term
∫
R L
∗
0φ0H

′
0 dy0. We have∫

R
L∗0φ0H

′
0dy0 =

∫
R
X∗0

[(
−∆φ#

0 +
(
3H2

0 − 1
)
φ#

0

)]
H ′0 dy0

=

∫
R

(
−∂2

y0φ0 +
(
3X∗0H

2
0 − 1

)
φ0

)
H ′0 dy0︸ ︷︷ ︸

I

+

∫
R

(
−∂2

x0
φ0

)
H ′0 dy0︸ ︷︷ ︸

II

+

∫
R

(
∆(x0,y0)φ0 −X∗0 ∆φ#

0

)
H ′0 dy0︸ ︷︷ ︸

III

.

Integration by parts shows that I = 0. On the other hand, using the estimate for φ0 and h and the fact that∫
R
φ0H

′
0 dy0 = 0,

we see that

II = 2

∫
R
∂x0

φ0∂x0
H ′0 dy0 +

∫
R
φ0∂

2
x0
H ′0 dy0,

hence

‖II‖C̄2,µ−εδ(Ro) ≤ Cε
2+β .

Furthermore, by the expression of the Laplacian in the Fermi coordinate, the last integral is of the order
OC̄2,µ−εδ(Ro)

(
ε2+β

)
.
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Next, we will analyze the term
∫
RX

∗
0FH ′0 dy0. By Proposition 4.3,

φ0 (x0, y0) = κ (x0)ψ (y0 − h (εx0)) +OC̄2,µ−εδ,−τ (R2)

(
ε

2− τ√
2

)
.

Using this one can prove the following:

Lemma 4.5. We have ∫
R
X∗0FH ′0 dy0 =

∫
R
X∗0 (η̂0E (u))H ′0 dy0 +OC̄2,µ−εδ(R)

(
ε2+β

)
.

The proof of this lemma is left to the reader.
The equation (4.4) then follows from the above estimates and Lemma 4.4. The proof of the fact that

G(·;h) is Lipschitz is similar to that of [5], we omit the details. �

With all these preparations at hand, we are in a position to prove the main theorem.

Proof of Theorem 1.1. By Proposition 4.4 the linearized operator L1 of the one-soliton to the Toda lattice
is an isomorphism from C̄2,µ

−δ (Ro) ⊕ Eo into C̄0,µ
−δ (Ro). With the notation of Proposition 4.4, the projected

equation (4.15) can be written as

h (·) = ε−2L−1
1 ◦G

( ·
ε

;h
)
.

Using Proposition 4.4 and Proposition 2.4, if we choose τ sufficiently small independent of ε, and µ =
β1

4 , β0 = β1

2 , then the map given by

h 7−→ ε−2L−1
1 ◦G

( ·
ε

;h
)

will be a contraction in the ball of radius εβ0 in C̄2,µ
−δ (Ro)⊕ Eo. Indeed, it is straightforward to check that∥∥∥G( ·

ε
;h
)∥∥∥
C̄0,µ−δ (Ro)

≤ Cε−µ
∥∥G(·;h(ε·)

)∥∥
C̄0,µ−εδ(Ro)

≤ Cε2+min{2β0,β1}−µ‖h‖C̄0,µ−δ (Ro),

where we have used of Proposition 4.4. By a standard fixed point argument we find an h with ‖h‖C̄2,µ−δ (Ro)⊕Eo ≤
εβ0 . This completes the proof of the theorem. �

Appendix

Proof of Lemma 4.3. Recall that we assume here h = 0. Denoting the inverse of the operator L∞ (see (4.8))
restricted to a subspace of X consisting of functions which are x0 independent by J∞ we can write:

M(0) = J ◦ π2 ◦
(
(L− L∗0)κψ +X∗0F

)
− J∞ ◦ π2 ◦ (κK0).

By definition of the operators L and L∗0 and formula (4.1) it is easy to see that

J ◦ π2 ◦
(
(L− L∗0)κψ

)
∈ C̄2,µ
−εδ,−τ (R2).

It remains to estimate

J ◦ π2 ◦X∗0F − J∞ ◦ π2 ◦ (κK0) = J ◦ π2 ◦ (X∗0F − κK0)︸ ︷︷ ︸
A1

+ (J − J∞) ◦ π2 ◦ (κK0)︸ ︷︷ ︸
A2

.

Recalling that K0 = limx0→∞X∗0F we see that to estimate A1 we need to study

X∗0F − κ(x0) lim
x0→∞

X∗0F .

The leading order term in this difference is the one involving the error term E(u). We claim that for this
term we have

X∗0 η̂0E(u)− κ(x0) lim
x0→∞

X∗0 η̂0E(u) ∈ C̄2,µ
−εδ,−τ (R2).

This is quite easy to see observing that

X∗0 η̂0 − lim
x0→∞

X∗0 η̂0
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decays exponentially in x0, which is due to the fact that the lines qi(x) are parallel at infinity up to an
exponentially small term. To estimate A2 it suffices to estimate

(L− L∞)κ(x0)ψ(y0).

But since
(L− L∞) = −∂2

x0

it is obvious that
(L− L∞)κψ ∈ C̄0,µ

−εδ,−τ (R2),

from which we find A2 ∈ C̄2,µ
−εδ,−τ (R2). �
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