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Abstract

Recently, Wang and Hillen [Chaos 17 (3) (2007) 037108–037108] introduced a
modified Keller-Segel model with logistic growth that exhibits complex spatio-
temporal dynamics of spikes. These dynamics are driven by merging of spikes
on one hand, and spike insertion on the other. In this paper we analyse the
basic mechanisms that initiate and sustain these events. We identify two
distinguished regimes. In the first regime, a single interior spike drifts towards
a boundary. This instability is responsible for spike merging. The same regime
further exhibits spike insertion; we identify a fold-point bifurcation which is
precursor to spike insertion event. In the second regime, we show that it
is possible to stabilize a single interior spike, and we compute analytically a
critical threshold which is responsible for spike stabilization. In particular, our
calculation characterizes a stable spike in the Keller-Segel model with logistic
growth; this is in contrast to the classical Keller-Segel model where the interior
spike is known to be unstable.

1 Introduction

In paper [1], Wang and Hillen introduced a model of chemotaxis with self-production
terms. It is a system of two equation that combines chemotaxis sensing with cell growth
dynamics. In its simplest form, after some scaling, the one-dimensional model is [1], [2]

ut = Duuxx − χ (uvx)x + ru(1− u/K), vt = Dvvxx + αu− βv. (1)
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Here, u represents cell density. Cell dynamics are modeled using the logistic production
term ru(1− u/K); the diffusion and cross- diffusion terms model the sensing mechanism,
and v represents the density of the chemoattractant.

The system (1) is an extension of the Keller-Siegel model of chemotaxis introduced
in 1970 in [3], to incorporate cell growth dynamics. The classical Keller-Siegel model
corresponds to setting r = 0 in (1). By now a large literature exists on the classical case;
see for [4] and references therein for an extensive overview. One of the main results for the
classical Keller-Segel model is the presence of a chemotactic collapse in two dimensions,
whereby the solution blows up in finite time at certain points of the domain, provided
that the initial mass is sufficiently large. The chemotactic collapse, together with either
formal asymptotic or rigorous constructions of the local blowup profile, has been studied
by many authors. See for example [5, 6, 7, 8, 9, 10, 11] and many other references in [4].

As was shown in [1], the inclusion of production-saturation terms ru(1−u/K) prevents
the chemotactic collapse, and leads to formation of regions of concentrated density for u,
which we shall refer to as spikes. Even more interesting, as first demonstrated numerically
in [1], the presence of production terms leads to a very novel and complex behaviour
such as spike merging, spike creation, oscillations and spatio-temporal chaos. A typical
simulation of this phenomenon is shown in Figure 1. This behaviour is not present in
the classical Keller-Siegel model. The spikes in this simulation appear to have complex
dynamics: they tend to move towards each other and merge; on the other hand, new
spikes are created when there is too much ”free space” inbetween. In a recent work [2],
the authors model these dynamics by encoding merging/creation events into a dynamical
system, where particles can be created or destroyed in a collision. This “high-level” system
of particle dynamics reproduces the observed behaviour. In [12], the authors perform a
Turing-type analysis for the system (1). They show that the heterogeneous solutions
bifurcate from a homogeneous state, and compute the amplitude of the solutions close to
the bifurcation point. Unfortunately, this analysis does not capture the localized nature
spikes, which exist in the fully nonlinear regime far from the homogeneous state. In this
paper we address the following basic questions about the mechanisms underlying spike
dynamics of (1):

1. What is the profile of the spike?

2. Why/when do the spikes move towards each-other?

3. What is the mechanism responsible for “spike insertion”?

We identify two distinguished parameter regimes and three distinct types of spike
solutions with very different stability properties. The three solution types are:

• Type I: A single interior spike that is always unstable regardless of domain size
and moves to the boundary without self- replication.
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Figure 1: Left: numerical simulation of (2) on a domain of size 10 with ε = 0.05, a = 15.
Contour plot of u in time and space is shown. Right: snapshot of the solution at t = 100.

• Type II: Spike insertion is observed as domain size is increased.

• Type III: There exists a threshold such that a single interior spike is either stable
or unstable.

We provide an analytical explanation for each of these three types of behaviour. Each
solution type is constructed asymptotically. Then its stability is studied. As a result, this
provides a characterization of the expected behaviour of the system within these regimes.

The contents of this paper are as follows. In section 2 we treat Type 1 solution. This
is the simplest of the three types. The analysis is similar to what was done in [11] for
the classical Keller-Siegel system. There, the metastability of a spike was analysed; it
was shown that for a classical Keller-Siegel system in one dimension, an interior spike is
metastable and as a result, will move very slowly towards the boundary of the domain.
Whereas in the classical KS system the spike mass is determined by the mass of the initial
conditions, for equations (1), the spike mass is independent of initial conditions and is
determined instead by a balance between the growth ru and the saturation term −ru2/K.
Nonetheless, the stability analysis of type 1 solution follows the procedure developed in
[11] and the end-result is similar: an interior spike is unstable due to exponentially small
translational instabilities.
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In section 3 we study type II solutions. We demonstrate that there is a critical threshold
which leads to spike insertion as the parameters are varied past that threshold. This
thresholding is due to the disappearance of the steady state at the fold point. In this
sense, the mechanism for spike insertion is similar to self-replication such as studied in
[13], [14]. This phenomenon has no analogue in the classical KS system.

In section 4 we derive the threshold for stability of type III solutions. This threshold is
not present at all in the original KS model; in fact in the absence of the production terms,
the spikes in the original KS model either merge or drift towards the boundary. On the
other hand, the stability of an interior spike for system (1) was first observed numerically
in [1]. This is the first time that such stability is explained analytically. The study of
stabilizing mechanism requires a very delicate computation of an outer region.

2 Type I solutions

In this section, we consider the following regime, which is a rescaling of (1)1:

ut = (εux − uvx)x + u− u2, τvt = vxx +
a

ε
u− v (2)

ux(±L, t) = 0 = vx(±L, t) (3)

with the assumptions that

0 < ε≪ 1; a, τ, L are positive and O(1). (4)

In §2.1, we will first construct a steady which consists of a single spike for u, centered at
the origin, whose width is of O(ε). In turns out that there are two possible such solutions
for the regime (2), which we refer to as type I and type II. Type I solution is such that u is
exponentially small in the outer region |x| ≫ O(ε) away from the spike. Type II solution,
which is studied in §3, is more complicated and the outer region satisfies a certain third
order ODE. In §2.2 we will study the stability of type I solution. There are two eigenvalues
to consider, characterised by the parity (odd or even) of the corresponding eigenfunctions.
We will show that the even eigenvalue is stable but the odd is unstable. The instability
of the odd eigenvalue induces a translational motion of the spike; as a result, the spike
moves towards the closest boundary until it merges with it.

Type II steady state is constructed in §3. We show that there exists a threshold ac
such that type II solutions do not exist for a < ac; this is unlike the type I solutions which
exist for all a > 0.

1Equations (2) are obtained from (1) via the following transformations, after dropping the ∗’s:

u = Ku∗, v =
r

χ
v∗, x =

√

Dv

β
x∗, t =

1

r
t∗

ε = Du/r, a =
αχDuK

βr2
, τ = r/β,
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Figure 2: Two types of steady state solutions to (5). Inserts show the zoom-in in the inner
and outer regions of u. Type I: u is exponentially small in the outer region. Type II: u
is of O(ε) in the outer region and is non-constant. Parameter values are ε = 0.03, L =
1.5, a = 5.

2.1 Type I Steady state

We proceed to construct the steady state to (2) in the form of a symmetric spike centered
at the origin. This is equivalent to constructing a half-spike on the half-interval [0, L]
with Neumann boundary conditions. A sample profile for type I half-spike is illustrated
in Figure 2(a) and corresponds to u being exponentially small in the outer region. From
(2) the steady state equations on the half-domain x ∈ [0, L] are

(εux − uvx)x + u− u2 = 0, 0 = vxx +
a

ε
u− v (5)

with Neumann boundary conditions for u, v at x = 0, L. The spike itself is located at
x = 0 and has an extent of O(ε). To capture its profile, we introduce the inner variables
as

x = εy

u = U(y);

v = v0 + εW (y)
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where v0 is an O(1) quantity to be determined later. In the inner variables we obtain the
problem

Uyy − (UWy)y + ε
(

U − U2
)

= 0; Wyy + aU − (v0 + εW ) ε = 0.

Next we expand the solution as

U = U0 + εU1 . . . ; W = W0 + εW1 + . . . .

The leading order equations are

U0yy − (U0W0y)y = 0; W0yy + aU0 = 0. (6)

Recalling Neumann boundary conditions at y = 0, we therefore obtain

W0y =
U0y

U0
;

(

U0y

U0

)

y

+ aU0 = 0. (7)

We seek solution to (7) with U0(y) → 0 as y → 0 and with U0y = 0 = W0y at y = 0. We
obtain the solution

U0 = ξ sech2

(

y

√

ξa

2

)

; W0y = −
√

2ξa tanh

(

y

√

ξa

2

)

(8)

where ξ, the height of the spike, is the free parameter that is due to the scaling invariance
of the inner problem (6). To determine the height ξ, we now consider the outer region
L > x≫ ε. There are two possible solutions which we shall call type I and type II.

Type I solution satisfies u ∼ 0 in the outer region.Then v satisfies in the outer region,

v′′ − v = 0, x≫ ε, v′(L) = 0

with the solution given by

v = A cosh(x− L), x≫ ε. (9)

To determine the constant A, fix δ with ε≪ δ ≪ L and integrate the second equation in
(5) on [0, δ]. We then obtain

v′(δ) +
a

ε

∫ δ

0

udx ∼ 0.

Using (8) and (9) this yields

A sinh(L) ∼ a

∫ ∞

0

U0(y)dy =
√

2ξa

so that

v =
√

2ξa
cosh(x− L)

sinh(L)
, x≫ ε. (10)
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Figure 3: Bifurcation diagram for type I and II solutions. Solid curves denote the full
problem whereas dotted curves are the asymptotics. The horizontal red line corresponds
to the fold point ac. (a) ε = 0.05, L = 1.5. (b) ε = 0.15, L = 2.5.

It remains to determine the height ξ. To do so, we integrate the first equation in (5) to

obtain the solvability condition
∫ L

0
u−u2dx = 0. We then substitute (8) for u; this yields,

to leading order,

ξ =

∫∞
0

sech2 (z) dz
∫∞
0

sech4 (z) dz
=

3

2
. (11)

In summary, the type I equilibrium state of (5) is given by

u ∼ 3

2
sech2

(

x

ε

√

3a

4

)

; v ∼
√
3a

cosh(x− L)

sinh(L)
. (12)

2.2 Stability analysis of Type I solution

We now proceed to study the stability of type I solutions. The analysis presented below
builds on ideas from [11, 15].

Linearizing about the steady state, we write

u(x, t) = u(x) + eλtφ(x); v(x, t) = v(x) + eλtψ(x), φ, ψ ≪ 1

where u(x), v(x) is the symmetric spike equilibrium on domain [−L, L] as constructed in
§2.1. The linearized equations are

λφ = εφ′′ − (uψ′ + φv′)
′
+ (1− 2u)φ (13)

λτψ = ψ′′ +
a

ε
φ− ψ. (14)
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The solution space of (13, 14) is split into two subspaces, for eigenfunctions of different
parities which correspond to the following boundary conditions:

Odd eigenvalue: φ(0) = 0 = ψ(0); φ′(L) = 0 = ψ′(L) (15)

Even eigenvalue: φ′(0) = 0 = ψ′(0); φ′(L) = 0 = ψ′(L) (16)

In the inner region near the spike, we rescale as follows

x = εy; φ(x) = Φ(y); Ψ = Ψ0 + εP (y);

to obtain

ελΦ = Φyy − (UPy + ΦWy)y + ε (1− 2U) Φ

0 = Pyy + aΦ + (Ψ0 + εP ) ε.

We then expand in the power series in ε as

λ = λ0 + ελ1 . . . ; Φ = Φ0 + εΦ1 + . . . ; Ψ = Ψ0 + εΨ1 + . . .

so that to leading order we get

U0P0y + ΦW0y = 0; P0yy + aΦ0 = 0. (17)

There are two linearly independent solutions to (17) which correspond to even or odd
boundary conditions at the origin. The even solution to (17) corresponds to the scaling
invariance of the inner problem (6) and is given by

Φ0 =
∂U0

∂ξ
; P0 =

∂W0

∂ξ

where U0 and W0 are defined in (8). The odd solution to (17) corresponds to the trans-
lational invariance and is given by

Φ0 = U0y; P0 =W0y. (18)

The eigenvalue is then determined by formulating an appropriate solvability condition.

Even eigenvalue: integrate (13) on [0, L] ; because of boundary conditions (15) we
then obtain.

λ

∫ L

0

φdx =

∫ L

0

(1− 2u)φdx. (19)

Assume that φ is exponentially small in the outer region; then the leading order to (19)
becomes

λ0

∫ ∞

0

∂U0

∂ξ
dy =

∫ ∞

0

(1− 2U0)
∂U0

∂ξ
dy.
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Evaluating the integrals using (8) finally yields λ ∼ −2 so that the even eigenvalue is
stable.

Odd eigenvalue: The odd solution to (17) is given by (18). To determine λ, multiply
(13) by x and integrate. to obtain

λ

∫ L

0

xφdx =

∫ L

0

(uψ′ + φv′) dx−
∫ L

0

(1− 2u)φxdx. (20)

To estimate
∫ L

0
(uψ′ + φv′) dx, multiply (14) by vx and integrate by parts. First note that

∫ L

0

ψ′′v′ = −ψ(L)v′′(L) +
∫ L

0

ψv′′′

= −ψ(L)v′′(L) +
∫ L

0

ψv′ +
a

ε

∫ L

0

ψ′u

so that

τλ

∫ L

0

ψv′ = −ψ(L)v′′(L) + a

ε

∫ L

0

(ψ′u+ v′φ) ;

∫ L

0

(ψ′u+ v′φ) =
ετλ

a

∫ L

0

ψv′ +
ε

a
ψ(L)v′′(L). (21)

We therefore obtain an exact expression

λ

∫ L

0

xφdx =
ε

a
ψ(L)v′′(L) +

ετλ

a

∫ L

0

ψv′ −
∫ L

0

(1− 2u)φxdx. (22)

Next we estimate

∫ L

0

xφdx ∼ ε2
∫ ∞

0

yU0ydy = −ε2
∫ ∞

0

U0 = −ε2
√

2ξ/a (23)

and

∫ L

0

(1− 2u)φxdx ∼ ε2
∫ ∞

0

(1− 2U0)U0yydy = −ε2
∫ ∞

0

(

U0 − U2
0

)

dy = 0. (24)

so that (22) becomes

ε
√

2ξaλ = −ψ(L)v′′(L)− τλ

∫ L

0

ψv′.

We recall from (10) that v(x) ∼
√
2aξ

sinh(L)
cosh(L− x) so that

v′′(L) =

√
2aξ

sinh(L)
.
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It remains to determine ψ. For concreteness, consider at first the case τ = 0. Then ψ
satisfies

ψ′′ − ψ ∼ −a
ε
U0y ∼ Aδ′(x)

where

A =

∫ L

0

x
a

ε
U0ydx ∼ εa2

∫ ∞

0

yU0ydy = −2ε
√

2ξa.

It follows that

ψ(x) = −ε
√

2aξ
cosh(L− x)

coshL

so that

λ =

√
2ξa

sinhL coshL
; τ = 0.

This shows that in the case τ = 0, the odd eigenvalue is unstable. More generally for an
arbitrary τ , an analogous computation yields the following equation for λ,

λ
sinhL cosh(µL)√

2ξa
= coshL coshµL− µ sinhµL sinhL; µ =

√
1 + λτ. (25)

We claim that (25) has a solution with λ > 0. Indeed, lhs(25) → ∞ as λ → ∞ and
rhs(25) → −∞ as λ → ∞. On the other hand, when λ = 0 we have lhs(25) = 0
and rhs(25) = 1. Thus by intermediate value theorem there is a positive (i.e. unstable)
eigenvalue. We summarize our results as follows.

Theorem 2.1 A symmetric spike of Type 1 centered at the origin on the domain [−L, L]
is stable with respect to even eigenvalue but is unstable with respect to odd (translational)
eigenvalue for all τ > 0.

The stability of an even eigenfunction is sometimes referred to as structural stability :
it means that even thought the spike is translationally unstable, it does not disappear but
simply moves away from its central location and towards the boundary. This dynamical
behaviour is qualitatively illustrated in Figure 5(a). On the other hand, a spike at the
boundary, or a half-spike centered at 0 on the domain [0, L], does not admit translational
mode (16), and only admits the even mode (15). As a corollary of Theorem 2.1, a single
boundary spike is stable. This is also seen numerically in Figure 5(a): after the spike
merges with the boundary, it remains there as a stable steady state.

3 Type II solutions

Type II solutions co-exist with type I solutions constructed in the previous section, in
the regime given by equations (2), whose steady state equations are given by (5). The
spike construction in the inner region |x| ≤ O(ε) is identical to the equations (8). The
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u v

Figure 4: Evolution of (2) with ε = 0.05, L = 1.5 and a = 2 − 10−4t. Due to the fold
point bifurcation, spike insertion occurs as a is decreased below ac ∼ 1.08

difference is that in the outer region, u is no longer assumed to be zero. Then the height ξ
in (8) will longer given by 3/2 but rather will be determined along with the outer solution
for u and v. Away from the spike in the outer region |x| ≫ O(ε) we rescale

u = εû.

Then to leading order the steady state satisfies

(ûvx)x = û; vxx − v + ûa = 0.

Solving for û = v−v′′

a
we then obtain a third-order ODE for v in the outer region,

(v − v′′) (v′′ − 1) + (v − v′′)
′
v′ = 0. (26)

Since v′(L) = 0, either v′′(L) = 1 or else û(L) = 0. The latter corresponds to Type I
solutions so here we assume that v′′(L) = 1. We then solve (26) subject to the boundary
conditions

v(L) = A; v′(L) = 0; v′′(L) = 1 (27)

where the constant A and ξ are to be found.

As in section 2.1, we integrate the second equation in (5) on a small interval [0, δ] where
ε≪ δ ≪ 1. We then obtain the matching condition

v′(0+) = −a
∫ ∞

0

U0 = −
√

2ξa.
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Integrating the first equation in (5) yields an addition equation

∫ ∞

0

(

U0 − U2
0

)

dy +

∫ L

0

û(x)dx ∼ 0.

Using the identities
∫∞
0

sech2(s)ds = 1,
∫∞
0

sech4(s)ds = 2
3
we then obtain

∫ ∞

0

U0 − U2
0dy = ξ

(

1− 2

3
ξ

)
√

2

ξa
.

We also evaluate

∫ L

0

û(x)dx =

∫ L

0

(ûv′)
′
dx = −û(0)v′(0)

= û(0)
√

2ξa

so that

1− 2

3
ξ = −û(0)a; v′ (0) = −

√

2ξa; û(0) =
v(0)− v′′(0)

a
.

Solving for a and ξ yields

a =
v′(0)2

3 (1 + v(0)− v′′(0))
; ξ =

3

2
(1 + v(0)− v′′(0)) . (28)

Note that v(0), v′(0) and v′′(0) are can be viewed as a function of the parameter A = v(L).
Thus (28) together with (26, 27) defines a parametric curve a(L), ξ(L) in the a, ξ plane.
Figure 3 shows the graph of a as a function of A = v(L). There are two such curves,
one for type I and another for type II solutions. In the asymptotic limit ε → 0 (shown
by dashed curves) these curves intersect near A = 1. For small but positive ε, the two
branches connect to each-other near A = 1 (solid curves). Thus the branch to the left of
A ∼ 1 is such that u(L) < 0; this follows from the fact that the outer solution satisfies
û = v−v′′

a
with v′′(L) ∼ 1. Similarly, the branch to the right of A = 1 has u, v > 0.

As Figure 3 shows, the bifurcation curves of type I and type II intersect at A = 1 in
the asymptotic limit ε → 0. For any positive value of ε, the two curves cannot cross due
to uniqueness of the solution; instead they fold over. When L = 2.5, the fold point occurs
near A ∼ 1. On the other hand, when L = 1.5, the bifurcation curve has a fold point
around A ∼ 1.3 > 1, as shown in the figure. So there is some critical value of L = L∗

for which the bifurcation structure changes. This critical value occurs precisely when the
asymptotics of the type II curve (indicated by dashed line the figure) has a horizontal
tangent at A = 1. Fortunately, the asymptotics near A ∼ 1 can be explicitly computed
as we now show.

Asymptotics near A ∼ 1. We set

A = 1 + δ; δ ≪ 1.
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For simplicity, we also change variables

z = L− x.

When δ = 0, the solution to (26, 27) is given by v = cosh(z). More generally, for small δ
we expand

v = cosh(z) + v1(z)δ. (29)

We then obtain the ODE
d

dz
ln (v1 − v′′1 ) =

1− cosh z

sinh z

along with the boundary conditions

v1(0) = 1; v′1(0) = 0; v′′1(0) = 0.

We note that
∫

1− cosh z

sinh z
dz = ln

(

sech2(z/2)
)

+ C

so that
v′′1 − v1 = K sech2(z/2)

where K is some constant. Substituting in the initial conditions we obtain

v′′1 − v1 = − sech2(z/2); v1(0) = 1; v′1(0) = 0.

Next we substitute (29) into (28) to obtain

3uca = sinh2 L+ δ
(

2v′1(L) sinhL− sinh2 L sech2(L/2)
)

.

The expression for v′1(L) is computed using the variation of parameters as follows

v′1(z) = sinh(z)−
∫ z

0

cosh(z − s) sech2(s/2)ds. (30)

We have da
dA

∣

∣

A=1
= 0 if and only if

2v′1(L) = sinhL sech2(L/2). (31)

It is easy to show that (31) has a root; in fact its uniqueness can also be shown using
convexity arguments. Using Maple to evaluate the integral in (30), we find that the unique
root of (31) is given by

L∗ = 2.202162338. (32)

It follows that da
dA

∣

∣

A=1
is positive when L > L∗ and is negative when L < L∗.

Note that at the intersection point A = 1, we have a = 1
3
sinh2(L). Now consider the

case L > L∗. In this case, numerical computations of the limiting problem (26, 27, 28)
show that a(A) is an increasing function of A for A > 1 (dashed curve in Figure 3(b)).
On the other hand, the bifurcation curves corresponding to type I and type II solutions
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cannot cross each other due to uniqueness of solutions to ODE’s. Numerically, their
connection is observed as shown in Figure 3. In the case L < L∗, this connection implies
the existence of the fold point near A = 1, ac ∼ 1

3
sinh2(L). More generally, we now show

that a→ ∞ as A→ ∞, confirming the existence of the fold point.

Large A limit: in this case we rescale v = Av̂ so that (26) becomes

(v̂ − v̂′′)

(

v̂′′ − 1

A

)

+ (v̂ − v̂′′)
′
v̂′ = 0;

subject to boundary conditions

v̂(L) = 1; v′(L) = 0; v̂′′(L) = 1/A.

To leading order, we obtain:

ln (v̂ − v̂′′) + ln v̂′ = O(1/A)

so that
(v̂ − v̂′′)v̂′ ∼ 0.

Therefore
v ∼ A cosh(x− L)

from where we determine the asymptotics

a ∼ A2 sin2 L

3
; A≫ 1.

This shows that a→ ∞ as A→ ∞, in the asymptotic limit ε → 0.

We summarize our finding as follows.

Proposition 3.1 (Type II solutions) A type II solution to (5) is such u has a spike of
O(1) at the center while in the outer region, u(x)/ε is O(1) and is non-zero for |x| ≫ O(ε).
There exists a number ac such that Type II solution exists if and only if a > ac. If
L < L∗ = 2.20216 then ac <

1
3
sin2 L. If L ≥ L∗ then ac ∼ 1

3
sin2 L. The solution

disappears at the fold point bifurcation as a is decreased below ac.

The number ac corresponds to the fold point, and is responsible for spike insertion. To
illustrate this, consider Figure 4. We take L = 1.5 and consider initial solution in the
form of a single spike of type I at the left boundary. Initially, we take a = 2 and then
slowly increase a in time according to the formula a = 2− 10−4t. As shown in the figure,
a new spike rises out of the background state at around a ≈ 1.08, which corresponds to
the critical value ac at the fold point, as seen from Figure 3(a).
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4 Type III solutions

So far, we have described two regimes for both of which the interior spike is translationally
unstable: we have shown this for type I solutions in section 2. While we did perform the
stability analysis for type II solutions, the numerical simulations we performed indicate
that type II solutions discussed in section 3 are indeed unstable and move towards the
boundary. This raises the question, is there a regime for which an interior spike is stable?
The goal of this section is to answer this question in the affirmative. Namely, we consider
the following rescaling of the equations (1)2,

ut = uxx − (uvx)x + u− u2, τut = ε2vxx − aεv + u, x ∈ [−L, L] (33)

where we additionally assume that 0 < ε ≪ 1 and a, L are positive O(1) parameters.
First, consider the steady state equations

0 = uxx − (uvx)x + u− u2, 0 = ε2vxx − aεv + u. (34)

As before, we start by constructing a half-spike on domain [0, L] with Neumann boundary
conditions for u, v at x = 0, L; the interior spike is then obtain by even reflection through
the origin. It turns out that the steady state for U has three distinct layers which we will
refer to as the inner, middle and outer layers, and which scale as follows:

Inner layer: x = εy u(x) = U(y)

Middle layer: x = (ε/a)1/2 z, u(x) = U(z)
Outer layer: x = x

We now go through the construction inside each layer and their matchings.

Inner layer: To leading order, the equations in the inner layer are the same as for Type
I, namely,

Vyy + U = 0; Uyy − (UVy)y ∼ 0. (35)

As before, we obtain

U = ξ sech2(
√

ξ/2y); V = ln(U) + C (36)

where the constants ξ and C will be determined through matching later.

2Equations (33) are obtained from (1) via the following transformations, after dropping the *’s:

x =

√

Du

r
x∗, v =

Du

χ
v∗, u = Ku∗, t =

1

r
t∗

ε =

√

Dv

Du

, a =
αK

β
√
DuDv

, τ = r/β.
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The constant ξ is determined by integrating the first equation in (33) on [0, L]. Similarly
to type I solution, it will be shown below that the contributions of the middle and outer
regions are negligible. Similarly to section 2.1 we then obtain that ξ = 3/2.

Middle layer: to leading order, we have

Vzz − V =
U
aε

Uzz + (UVz)z ∼ 0 (37)

Moreover, we make a self-consistent anzatz that U
α0ε

≪ O(V) in the middle region; this
consistency condition will be valided below by matching the inner and middle layer. Since
V must remain bounded for z ≫ 1, we then obtain

V ∼ Ae−z. (38)

We now match the inner and the middle layer. Expanding (36) for large y we obtain

U ∼ 4ξ exp(−
√

2ξy), y ≫ 1;

V ∼ ln(4ξ) + C −
√

2ξy, y ≫ 1. (39)

On the other hand, expanding (38) for small z = ε1/2a1/2y we obtain

V ∼ A(1− ε1/2a1/2y) (40)

Matching (39) and (40) inbetween inner and middle layer 1 ≪ y ≪ O(ε−1/2) yields

A =

√

2ξ

aε
; C = A− ln(4ξ).

Since the equation for U in (37), is the same as (35), we obtain that (36) also holds with
U, V replaced by U ,V. Thus we obtain

V = lnU − ln 4ξ + A

so that

U ∼ 4ξ exp
(

Ae−z −A
)

∼ 4ξ exp(−A), z ≫ 1. (41)

Outer layer: Since U and V are both small for z ≫ 1, the dominant terms in (34) in
the outer region become

uxx + u = 0, x ≫ O((ε/a)1/2).

Imposing the boundary condition ux(L) = 0 we then obtain

u ∼ B cos(x− L), x≫ O(ε1/2).
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Matching to the middle layer (41) we then obtain

B =
4ξ

cosL
exp(−A) = 4ξ

cosL
exp

(

−
√

2ξ

aε

)

. (42)

The equation for v then becomes

ε2v′′ − aεv +B cos(x− L) ∼ 0.

Recalling that v′(L) = 0, its solution is given by

v ∼ B

aε
cos(x− L) +D

{

exp

(

(x− L)

√

a

ε

)

+ exp

(

(L− x)

√

a

ε

)}

Matching to the inner layer, we get

D = A exp

(

−L
√

a

ε

)

=

√

2ξ

aε
exp

(

−L
√

a

ε

)

.

We summarize this construction as follows.

Proposition 4.1 (type III steady state) Suppose that 0 < L < π/2. Then the steady state
to (34) on domain [−L, L] with Neumann boundary conditions which has even symmetry
with respect to the origin is given by

u(x) ∼















3
2
sech2(

√
3x/(2ε)), |x| ≤ O(ε)

6 exp
(√

3
aε
[exp(− |x| /√ε)− 1]

)

, O(ε) ≪ |x| ≤ O(
√
ε)

6 exp
(

−
√

3

aε

)

cosL
cos(|x| − L), O(

√
ε) ≪ |x| ≤ L

v(x) ∼







ln (u)− ln 6 +
√

6
aε
, |x| ≤ O(

√
ε)

6 exp
(

−
√

3

aε

)

aε cosL
cos(|x| − L) +

√

6
aε
exp

(

−L
√

a
ε

)

2 cosh
(

(|x| − L)
√

a
ε

)

, O(
√
ε) ≪ |x| ≤ L

Note that in the outer region |x| ≫ O(
√
ε), the solution for u is exponentially small

in ε; however unlike the type I solution, it does not decay exponentially, and is actually
increasing in that region. Also, the outer solution for v consists of two competing terms;
in particular we have

v(L) ∼ 6

εa cosL
exp

(

−
√

3

aε

)

+

√

6

aε
2 exp

(

−L
√

a

ε

)

. (43)

The stability of the small eigenvalue is precisely determined by which of the two terms in
(43) is dominant. We now state the main result of this section.
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Figure 5: Numerical simulation of (33) with ε = 0.05, τ = 1. Left: a = 1, the interior
spike is unstable and moves to the boundary. Right: a = 2, the interior spike is stable.

Theorem 4.2 Consider the steady state as constructed in Proposition 4.1 to the system
(33) on [−L, L] with Neumann boundary conditions. Suppose that τ = 0. In the limit
ε→ 0, this steady state is stable if L >

√
3/a and is unstable if L <

√
3/a. The instability

is due to the odd eigenfunction.

The eigenvalue problem associated with (33) corresponding to the odd eigenfunction
with τ = 0 is

λφ = φ′′ − (uψ′ + φv′)
′
+ φ− 2uφ; (44)

0 = ψ′′ − a

ε
ψ +

1

ε2
φ; (45)

φ(0) = 0 = ψ (0) ; φx(L) = 0 = ψx(L). (46)

where u, v is the steady state to (33). Retracing the derivation of (20) leads to the
following identity:

λ

∫ L

0

xφdx = −φ(L) + aεψ(L)v(L) +

∫ L

0

x(1− 2u)φdx. (47)

In the inner and middle region, we estimate that (φ, ψ) = (u′, v′) . This solution satisfies
equations (44, 45) as well as the Dirichlet boundary conditions at 0. However it does not
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satisfy the Neumann boundary condition at L, so the outer region must be considered
separately. Assuming that λ ≪ 1, the solution in the outer region satisfies to leading
order

φ′′ + φ ∼ 0, x≫ O(
√
ε)

so that
φ ∼ B̂ cos(x− L), x≫ O(

√
ε).

To determine the constant B̂, we match with the intermediate region φ ∼ u′. In the regime
O(

√
ε) ≪ x≪ 1 we have

u ∼ B cos(x− L)

∼ B cos(L) +Bx sin(L) +O(x2)

where B is given by (42). Then ux ∼ B sin(L) ∼ B̂ cos(L) so that

B̂ = B tan(L) = φ(L).

The equation for ψ then becomes

ψ′′ − a/εψ + B̂ cos(x− L) ∼ 0

so that

ψ ∼ 1

aε
B̂ cos(x− L) + Â

{

exp

(

(x− L)

√

a

ε

)

+ exp

(

(L− x)

√

a

ε

)}

The constant Â is determined by matching the outer region to the inner region where

vx ∼ −
√
2ξa

ε
exp

(

−x
√

a

ε

)

, O
(√

ε
)

≤ x≪ O(1)

so that

Â = −
√
2ξa

ε
exp

(

−L
√

a

ε

)

.

This yields

ψ(L) ∼ 1

aε

4ξ tanL

cosL
exp

(

−
√

2ξ

aε

)

−
√
8ξa

ε
exp

(

−L
√

a

ε

)

.

Next we compute the integral term on the right hand side of (47). Let δ be any number
with

√
ε≪ δ ≪ 1 and split

∫ L

0

xφ (1− 2u) =

∫ δ

0

+

∫ L

δ

= I1 + I2.
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We compute

I1 ∼
∫ δ

0

xux(1− 2u) ∼ −
∫ δ

0

(

U − U2
)

dx.

We then use the fact that

0 =

∫ L

0

u− u2 =

∫ δ

0

U − U2 +

∫ L

δ

B cos(x− L)

so that

I1 ∼
∫ L

0

B cos(x− L) ∼ B sinL.

For I2 we estimate

I2 ∼
∫ L

0

xB̂ cos(x− L) = B̂(1− cosL) = φ(L)− B sinL

Thus we get
∫ L

0
xφ (1− 2u) = φ(L) so that (47) becomes

λ

∫ L

0

xφdx = aεψ(L)v(L).

Finally we estimate
∫ L

0

xφdx ∼ −
∫ ∞

0

Udy < 0.

Since v(L) > 0, it follows that λ < 0 provided that ψ(L) > 0; otherwise λ ≥ 0 is unstable.
To leading order the threshold ψ(L) = 0 is achieved when L ∼ Lc where

Lc =

√

2ξ

a
(48)

with λ ≶ 0 when Lc ≶ L.

To conclude the proof of theorem 4.2, it suffices to show that the even eigenvalue is
stable. The argument here is identical to the analysis of stability of the even eigenvalue
for type I solutions as given in section 2.2. The key to that argument is the observation
that u is exponentially small in the outer region, so that the integral

∫ L

0
updx is well-

approximated by assuming that u is negligible in the outer region. �

5 Discussion

The chemotaxis model (1) introduced in [1] exhibits a surprising variety of spike dynamics.
In this paper, we studied some of the mechanisms that drive these dynamics. We have
identified three types of solutions. For type I solution, a single interior spike is unstable
and moves towards the boundary of the domain. For type II solution, spike-insertion
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Figure 6: Oscillatory dynamics in the system (2). (a) τ = 50, ε = 0.02, a = 0.075. (b)
τ = 200, ε = 0.3, a = 0.075. (c) The snapshot of the solution at the final time t = 1018
with parameters as in (b).

can be observed. Stability thresholds are established for the type III solution. These
mechanisms provide for basic building blocks from which more complex dynamics can be
constructed.

The instability of type I solution is qualitatively similar to the behaviour of a spike for
the classical KS model in one dimension. However there are no analogues for behaviours
of type II and III solutions in the classical KS model. The production terms in (1)
are essential for spike insertion and stabilization behaviours observed in type II and III
solutions. To our knowledge, this is the first result showing analytically that an interior
spike can be stable for Keller-Segel type models.

Spike solutions are commonplace in many other reaction-diffusion models. The stability
theory for localized spikes was first developed for Gierer- Meinhardt model [16] and Gray-
Scott model [17]. For both of these models, the basic question about the stability of
a single spike with respect to the even eigenvalue reduces to the study of the so-called
nonlocal eigenvalue problem (NLEP), which has terms that involve the integral of the
eigenfunction itself [18]. For the KS model, the stabilization mechanism is completely
different: due to a scaling invariance in the inner region, the even eigenvalue can be
computed explicitly and no NLEP problem arises.

For simplicity, we only considered a single spike in this paper. The analysis of stability
can be extended to multiple spikes using Floquet-type theory such as was done for example
in [19, 20, 16]. Another open problem is to derive the equations of spike motion, such as
was done for example in [16] for the Gierer-Meinhardt model.
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Finally, there are other regimes of interest in this model. Numerical simulations from
[2] show that the spikes can exhibit oscillations. Examples of these are shown in figure 6.
It remains an open question to explain and quantify how these oscillations occur.
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