Bifurcation diagram of solutions to elliptic equation with exponential nonlinearity in higher dimensions

Hiroaki Kikuchi and Juncheng Wei

Abstract

We consider the following semilinear elliptic equation: $$
\begin{cases}-\Delta u=\lambda e^{u^{p}} & \text { in } B_{1} \tag{0.1}\\ u=0 & \text { on } \partial B_{1}\end{cases}
$$

where B_{1} is the unit ball in $\mathbb{R}^{d}, d \geq 3, \lambda>0$ and $p>0$. First, following Merle and Peletier [13], we show that there exists a unique eigenvalue $\lambda_{p, \infty}$ such that (0.1) has a solution $\left(\lambda_{p, \infty}, W_{p}\right)$ satisfying $\lim _{|x| \rightarrow 0} W_{p}(x)=\infty$. Secondly, we study a bifurcation diagram of regular solutions to (0.1). It follows from the result of Dancer [4] that (0.1) has an unbounded bifurcation branch of regular solutions which emanates from $(\lambda, u)=(0,0)$. Here, using the singular solution, we show that the bifurcation branch has infinitely many turning points around $\lambda_{p, \infty}$ in case of $3 \leq d \leq 9$. We also investigate the Morse index of the singular solution in case of $d \geq 11$.

1 Introduction

In this paper, we study the following semilinear elliptic equation:

$$
\begin{cases}-\Delta u=\lambda e^{u^{p}} & \text { in } B_{1} \tag{1.1}\\ u=0 & \text { on } \partial B_{1}\end{cases}
$$

where B_{1} is the unit ball in $\mathbb{R}^{d}, d \geq 3, \lambda>0$ and $p>0$.
The purpose of this paper is to study the existence of a singular solution and a bifurcation diagram of regular solutions to (1.1) for general power $p>0$. By a singular solution, we mean a positive regular solution to (1.1) in $B_{1} \backslash\{0\}$ and tends to infinity at the origin $x=0$. For example, putting $\lambda_{1, \infty}=2(d-2)$ and $W_{1}(x)=-2 \log |x|$, we see that $\left(\lambda_{1, \infty}, W_{1}\right)$ is a singular solution to (1.1) in case of $p=1$.

Several studies have been made on (1.1) in case of $p=1$. See $[1,3,5,6,9,10,15$, $17,16]$ and references therein. We recall some of them. Gel'fand [6] showed that when $d=3$, (1.1) has infinitely many solutions at $\lambda=\lambda_{1, \infty}$. Then, Joseph and Lundgren [10] gave a complete classification of solutions to (1.1). More precisely, they showed that (1.1) has infinitely many solutions at $\lambda=\lambda_{1, \infty}$ when $3 \leq d \leq 9$ and has a unique solution for
$0<\lambda<\lambda_{1, \infty}$ and no solution for $\lambda>\lambda_{1, \infty}$ when $d \geq 10$. See Jacobsen and Schmitt [9] for the survey of this problem.

In this paper, we will treat general power $p>0$ and show that (1.1) has a singular solution in the case where $p>0$ and $d \geq 3$. In addition, we shall show that (1.1) has infinitely many regular solutions in the case where $p>0$ and $3 \leq d \leq 9$.

First, we focus our attention on the existence of a singular solution. As we mentioned above, in case of $p=1$, (1.1) has the explicit singular solution ($\lambda_{1, \infty}, W_{1}$). The singular solution plays an important role in the bifurcation analysis of regular solutions to (1.1). However, we encounter difficulties when we seek a singular solution if the power p does not equal to 1 . Therefore, it is worthwhile to investigate the existence of a singular solution for general power $p>0$. Concerning this, we obtain the following.

Theorem 1.1. Assume that $d \geq 3$ and $p>0$. Then, there exists a unique eigenvalue $\lambda_{p, \infty}>0$ such that the equation (1.1) has a singular solution $\left(\lambda_{p, \infty}, W_{p}\right)$ satisfying

$$
\begin{equation*}
W_{p}(x)=\left[-2 \log |x|-\left(1-\frac{1}{p}\right) \log (-\log |x|)\right]^{\frac{1}{p}}+O\left((\log |x|)^{-1+\frac{1}{p}}\right) \tag{1.2}
\end{equation*}
$$

as $|x| \rightarrow 0$.
Once we obtain the singular solution, we investigate the relation between the singular solution and regular ones. Dancer [4] showed that for any $p>0$, there exists an unbounded bifurcation branch $\mathcal{C} \subset \mathbb{R} \times L^{\infty}\left(B_{1}\right)$ which emanates from $(\lambda, u)=(0,0)$. Let λ_{1} be the first eigenvalue of the operator $-\Delta$ in B_{1} with the Dirichlet boundary condition and ϕ_{1} be the corresponding eigenfunction. By multiplying the equation in (1.1) by ϕ_{1} and integrating the resulting equation, we see that if $(\lambda, u) \in \mathcal{C}$, we have $0<\lambda<\lambda_{1}$. This yields that $\sup \left\{\|u\|_{\infty} \mid(\lambda, u) \in \mathcal{C}\right\}=\infty$. Moreover, from the result of Korman [12, Theorem 2.1] (see also Miyamoto [15, Proposition 6]), we see that the branch \mathcal{C} can be parameterized by $\|u\|_{\infty}$. Namely, the branch \mathcal{C} can be expressed by the following:

$$
\begin{equation*}
\mathcal{C}=\left\{(\lambda(\gamma), u(x, \gamma)) \mid \gamma=\|u\|_{L^{\infty}}, 0<\gamma<\infty\right\} . \tag{1.3}
\end{equation*}
$$

Then, we obtain the following.
Theorem 1.2. Assume that $d \geq 3$ and $p>0$. Let $\left(\lambda_{p, \infty}, W_{p}\right)$ be the singular solution to equation (1.1) given by Theorem 1.1 and $(\lambda(\gamma), u(x, \gamma)) \in \mathcal{C}$. Then, we have $\lambda(\gamma) \rightarrow \lambda_{p, \infty}$ and

$$
u(x, \gamma) \rightarrow W_{p}(x) \quad \text { in } C_{l o c}^{1}\left(B_{1} \backslash\{0\}\right) \text { as } \gamma \rightarrow \infty
$$

From Theorem 1.2, we can obtain the following result.
Theorem 1.3. Assume that $3 \leq d \leq 9$ and $p>0$. Let $\lambda_{p, \infty}>0$ be the eigenvalue given by Theorem 1.1. Then, for any integer k, there exist at least k regular positive solutions to (1.1) if λ is sufficiently close to $\lambda_{p, \infty}$. In particular, there exist infinitely many regular solutions to (1.1) at $\lambda=\lambda_{p, \infty}$.

Finally, we estimate the Morse index of the singular solution W_{p} in case of $d \geq 11$. Here, we mean the Morse index by the number of the negative eigenvalues of the linearized operator $-\Delta-p W_{p}^{p-1} e^{W_{p}^{p}}$ with the domain $H^{2}\left(B_{1}\right) \cap H_{0}^{1}\left(B_{1}\right)$. It is well-known that the Morse index plays an important role in the bifurcation analysis for nonlinear elliptic equations (see e.g. [2], [8], [11] and references therein). In case of $9 \geq d \geq 3$, we see that the Morse index of the singular solution W_{p} is infinite by combining the argument of Guo and Wei [8, Proposition 2.1] with Proposition 4.1 below. However, concerning the case of $d \geq 11$, we find that the situation becomes different from the above. More precisely, we obtain the following result.

Theorem 1.4. Assume that $d \geq 11$ and $p>0$. Let W_{p} be the singular solution to (1.1) obtained in Theorem 1.1. Then, the Morse index of the singular solution W_{p} is finite.

We prove Theorems 1.1 in the spirit of Merle and Peletier [13]. We first transform the equation (1.1) to a suitable one. From the result of Gidas, Ni and Nirenberg [7], we find that a positive solution to (1.1) is radially symmetric. Therefore, the equation (1.1) can be transformed into the following ordinary differential equation:

$$
\begin{cases}u_{r r}+\frac{d-1}{r} u_{r}+\lambda e^{u^{p}}=0 & 0<r<1 \tag{1.4}\\ u(r)=0 & r=1\end{cases}
$$

We put $s=\sqrt{\lambda} r$ and $\widehat{u}(s)=u(r)$. Then, we see that \widehat{u} satisfies

$$
\begin{cases}\widehat{u}_{s s}+\frac{d-1}{s} \widehat{u}_{s}+e^{\widehat{u}^{p}}=0 & 0<s<\sqrt{\lambda} \tag{1.5}\\ \widehat{u}(s)=0 & s=\sqrt{\lambda}\end{cases}
$$

We construct a local solution to the equation in (1.5) which has a singularity at the origin $s=0$. To this end, we employ the Emden-Fowler transformation. Namely, we put $t=-\log s$ and $\bar{u}(t)=\widehat{u}(s)$. This yields that \bar{u} satisfies the following:

$$
\begin{cases}\bar{u}_{t t}-(d-2) \bar{u}_{t}+\exp \left[-2 t+\bar{u}^{p}\right]=0 & -\frac{\log \lambda}{2}<t<\infty \tag{1.6}\\ \bar{u}(t)=0 & t=-\frac{\log \lambda}{2}\end{cases}
$$

We give an approximate form of a singular solution near $t=\infty$. Then, we make an error estimate for the approximation. The proof of Theorem 1.2 is also based on that of Merle and Peletier [13]. We note that Dancer [4] already proved that there exists infinitely many regular positive solutions to (1.1) by by calculating the Morse index. Here, following Guo and Wei [8] and Miyamoto [14, 15], we shall show Theorem 1.3 by counting a intersection number of the singular solution and regular solutions. As a result, we can obtain a precise bifurcation diagram of solutions to (1.1). Let us explain this in detail. Let I be an interval in \mathbb{R}. For a function $v(s)$ on I, we define a number of zeros of v by

$$
\mathcal{Z}_{I}[v(\cdot)]=\#\{s \in I \mid v(s)=0\}
$$

We put $\widehat{W}_{p}(s)=W_{p}(r)$, where $s=\sqrt{\lambda} r$ and W_{p} is the singular solution given by Theorem 1.1. Let $(\lambda(\gamma), \widehat{u}(s, \gamma))$ be a regular solution to (1.5) with $\widehat{u}(0)=\gamma$. Then, we have

$$
Z_{I_{\lambda}}\left[\widehat{u}(\cdot, \gamma)-\widehat{W}_{p}(\cdot)\right] \rightarrow \infty \quad \text { as } \gamma \rightarrow \infty
$$

See Lemma 4.2 below in detail. From this, we can show that the bifurcation branch \mathcal{C} given by (1.3) has infinitely many turning points, which yields Theorem 1.3.

This paper is organized as follows: In Section 2, we construct the singular solution to (1.1) in case of $d \geq 3$. In Section 3, we investigate the asymptotic behavior of the regular solutions $(\lambda(\gamma), u(r, \gamma))$ as γ goes to infinity. In Section 4, we count the intersection number and give a proof of Theorem 1.3. In Section 5, we show that the Morse index of the singular solution is finite in case of $d \geq 11$.

2 Existence of a singular solution

To prove Theorem 1.1, we first consider (1.6) and restrict ourselves to the case where $t>0$ is sufficiently large. We seek a solution to (1.6) of the form

$$
\begin{equation*}
\bar{u}(t)=(\varphi(t)+\kappa)^{\frac{1}{p}}+\eta(t), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(t)=2 t-A_{p} \log t, \quad A_{p}=1-\frac{1}{p}, \quad \kappa=\log \frac{(d-2) 2^{\frac{1}{p}}}{p} \tag{2.2}
\end{equation*}
$$

Then, the function η solves the following:

$$
\begin{equation*}
\eta_{t t}-(d-2) \eta_{t}+\exp \left[-2 t+\bar{u}^{p}\right]-\frac{2(d-2)}{p}(\varphi+\kappa)^{-A_{p}}=f_{1}(t) \tag{2.3}
\end{equation*}
$$

for sufficiently large $t>0$, where

$$
\begin{equation*}
f_{1}(t)=\frac{(d-2) A_{p}(\varphi+\kappa)^{-A_{p}}}{p t}+\frac{1}{p}\left(1-\frac{1}{p}\right)(\varphi+\kappa)^{\frac{1}{p}-2}\left(\varphi_{t}\right)^{2}-\frac{1}{p}(\varphi+\kappa)^{-A_{p}} \varphi_{t t} \tag{2.4}
\end{equation*}
$$

Then, we show the following:
Theorem 2.1. Let $d \geq 3$ and $p>0$. There exist $T_{\infty}>0$ and a solution $\eta_{\infty} \in$ $C\left(\left[T_{\infty}, \infty\right), \mathbb{R}\right)$ to the equation (2.3) satisfying $\lim _{t \rightarrow \infty} \varphi^{A_{p}} \eta_{\infty}(t)=0$.

We show Theorem 2.1 by using the contraction mapping principle. To this end, we transform (2.3). First, we have

$$
\begin{align*}
& \exp \left[-2 t+\bar{u}^{p}\right] \\
= & \exp \left[-2 t+\left\{(\varphi+\kappa)^{\frac{1}{p}}+\eta\right\}^{p}\right] \\
= & \exp \left[-2 t+(\varphi+\kappa)+(\varphi+\kappa)\left\{\left(1+(\varphi+\kappa)^{-\frac{1}{p}} \eta\right)^{p}-1\right\}\right] \tag{2.5}\\
= & \frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}} \exp \left[(\varphi+\kappa)\left\{\left(1+(\varphi+\kappa)^{-\frac{1}{p}} \eta\right)^{p}-1\right\}\right]
\end{align*}
$$

Furthermore, we obtain

$$
\begin{equation*}
(\varphi+\kappa)\left\{\left(1+(\varphi+\kappa)^{-\frac{1}{p}} \eta\right)^{p}-1\right\}=p(\varphi+\kappa)^{A_{p}} \eta+(\varphi+\kappa) g_{1}(t, \eta) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{1}(t, \eta)=\left\{1+(\varphi+\kappa)^{-\frac{1}{p}} \eta\right\}^{p}-1-p(\varphi+\kappa)^{-\frac{1}{p}} \eta \tag{2.7}
\end{equation*}
$$

This yields that

$$
\begin{align*}
& \exp \left[(\varphi+\kappa)\left\{\left(1+(\varphi+\kappa)^{-\frac{1}{p}} \eta\right)^{p}-1\right\}\right] \\
= & \exp \left[p(\varphi+\kappa)^{A_{p}} \eta+(\varphi+\kappa) g_{1}(t, \eta)\right] \tag{2.8}\\
= & \exp \left[p(\varphi+\kappa)^{A_{p}} \eta\right]+\exp \left[p(\varphi+\kappa)^{A_{p}} \eta\right]\left\{\exp \left[(\varphi+\kappa) g_{1}(t, \eta)\right]-1\right\} .
\end{align*}
$$

By (2.5), (2.6), and (2.8), we have

$$
\begin{aligned}
\exp \left[-2 t+\bar{u}^{p}\right]= & \frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}} \exp \left[p(\varphi+\kappa)^{A_{p}} \eta\right] \\
& +\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}} \exp \left[p(\varphi+\kappa)^{A_{p}} \eta\right]\left\{\exp \left[(\varphi+\kappa) g_{1}(t, \eta)\right]-1\right\}
\end{aligned}
$$

Therefore, (2.3) can be written by the following:

$$
\begin{aligned}
& \eta_{t t}-(d-2) \eta_{t}+2(d-2) \eta \\
= & f_{1}(t)-\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}}+\frac{2(d-2)}{p}(\varphi+\kappa)^{-A_{p}} \\
& +2(d-2) \eta-\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}} \times p(\varphi+\kappa)^{A_{p}} \eta \\
& -\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}} \exp \left[p(\varphi+\kappa)^{A_{p}} \eta\right]\left\{\exp \left[(\varphi+\kappa) g_{1}(t, \eta)\right]-1\right\} \\
& -\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}}\left\{\exp \left[p(\varphi+\kappa)^{A_{p}} \eta\right]-1-p(\varphi+\kappa)^{A_{p}} \eta\right\} \\
= & f_{1}(t)+f_{2}(t)+f_{3}(t, \eta)+f_{4}(t, \eta)+f_{5}(t, \eta),
\end{aligned}
$$

where

$$
\begin{align*}
& f_{2}(t)=-\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}}+\frac{2(d-2)}{p}(\varphi+\kappa)^{-A_{p}} \\
&=\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}}\left(1-(2 t)^{A_{p}}(\varphi+\kappa)^{-A_{p}}\right) \tag{2.9}\\
& f_{3}(t, \eta)=2(d-2) \eta-\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}} \times p(\varphi+\kappa)^{A_{p}} \eta \tag{2.10}\\
&=2(d-2)\left\{1-(2 t)^{-A_{p}}(\varphi+\kappa)^{A_{p}}\right\} \eta \\
& f_{4}(t, \eta)=-\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}} \exp \left[p(\varphi+\kappa)^{A_{p}} \eta\right]\left\{\exp \left[(\varphi+\kappa) g_{1}(t, \eta)\right]-1\right\} \tag{2.11}
\end{align*}
$$

$$
\begin{equation*}
f_{5}(t, \eta)=-\frac{(d-2) 2^{\frac{1}{p}}}{p} t^{-A_{p}}\left\{\exp \left[p(\varphi+\kappa)^{A_{p}} \eta\right]-1-p(\varphi+\kappa)^{A_{p}} \eta\right\} . \tag{2.12}
\end{equation*}
$$

Thus, we seek a solution to the following equation:

$$
\eta_{t t}-(d-2) \eta_{t}+2(d-2) \eta=f_{1}(t)+f_{2}(t)+f_{3}(t, \eta)+f_{4}(t, \eta)+f_{5}(t, \eta)
$$

We estimate the inhomogeneous terms $f_{i}(t)(1 \leq i \leq 5)$. We obtain the following.
Lemma 2.1. (i) $f_{1}(t)=O\left(t^{-A_{p}-1}\right), \quad f_{2}(t)=O\left(t^{-A_{p}-1} \log t\right)$ as $t \rightarrow \infty$,
(ii) If η satisfies $\eta(t) \leq \varepsilon t^{-A_{p}}$ for sufficiently small $\varepsilon>0$, we have

$$
f_{3}(t, \eta)=O\left(t^{-A_{p}-1} \log t\right), \quad f_{4}(t)=O\left(t^{-A_{p}-1}\right), \quad\left|f_{5}(t)\right| \leq \varepsilon^{2} t^{-A_{p}}
$$

for sufficiently large $t>0$
Proof. By (2.4) and (2.9), we obtain (i). It follows from (2.2) that

$$
\begin{equation*}
\left|1-(2 t)^{-A_{p}}(\varphi+\kappa)^{A_{p}}\right| \lesssim \frac{\log t}{t} \tag{2.13}
\end{equation*}
$$

for sufficiently large $t>0$. Thus, by (2.10), we have

$$
\left|f_{3}(t, \eta)\right|=\left|2(d-2)\left\{1-(2 t)^{-A_{p}}(\varphi+\kappa)^{A_{p}}\right\} \eta\right| \lesssim t^{-A_{p}-1} \log t .
$$

From (2.7), we have

$$
\begin{equation*}
\left|g_{1}(t, \eta)\right| \lesssim|\varphi+\eta|^{-\frac{2}{p}} \eta^{2} . \tag{2.14}
\end{equation*}
$$

This yields that

$$
\left|(\varphi+\eta) g_{1}(t, \eta)\right| \lesssim t^{-1}
$$

It follows that

$$
\begin{equation*}
\left|\exp \left[(\varphi+\kappa) g_{1}(t, \eta)\right]-1\right| \lesssim\left|(\varphi+\kappa) g_{1}(t, \eta)\right| \lesssim t^{-1} . \tag{2.15}
\end{equation*}
$$

From (2.11), we have $f_{4}(t)=O\left(t^{-A_{p}-1}\right)$. Similarly, we see that

$$
\left|\exp \left[p(\varphi+\kappa)^{A_{p}} \eta\right]-1-p(\varphi+\kappa)^{A_{p}} \eta\right| \lesssim(\varphi+\kappa)^{2 A_{p}} \eta^{2} \lesssim \varepsilon^{2} .
$$

Thus, we obtain $\left|f_{5}(t)\right| \leq \varepsilon^{2} t^{-A_{p}}$ from (2.12).
We are now in a position to prove Theorem 2.1.
Proof of Theorem 2.1. We set

$$
F(t, \eta)=f_{1}(t)+f_{2}(t)+f_{3}(t, \eta)+f_{4}(t, \eta)+f_{5}(t, \eta)
$$

In order to prove Theorem 2.1, it is enough to solve the following final value problem:

$$
\begin{cases}\eta_{t t}-(d-2) \eta_{t}+2(d-2) \eta=F(t, \eta) & T<t<+\infty \tag{2.16}\\ \varphi^{A_{p}}(t) \eta(t) \rightarrow 0 & \text { as } t \rightarrow+\infty\end{cases}
$$

for some $T>0$. We note that

$$
(d-2)^{2}-8(d-2)=(d-2)(d-10) \begin{cases}<0 & \text { if } 3 \leq d \leq 9 \\ =0 & \text { if } d=10 \\ >0 & \text { if } d \geq 11\end{cases}
$$

We consider the case where $3 \leq d \leq 9$ only because we can prove similarly in the other cases. Let $\mu=\sqrt{-(d-2)(d-10)}$. Then, the final value problem (2.16) is transformed into the following integral equation:

$$
\eta(t)=\mathcal{T}[\eta](t)
$$

in which

$$
\mathcal{T}[\eta](t)=\frac{e^{\frac{d-2}{2} t}}{\mu} \int_{t}^{\infty} e^{-\frac{(d-2)}{2} \sigma} \sin (\mu(\sigma-t)) F(\sigma, \eta) d \sigma
$$

Fix $T>0$ large enough and let X be a space of continuous function on (T, ∞) equipped with the following norm:

$$
\|\xi\|=\sup \left\{|t|^{A_{p}}|\xi(t)| \mid t>T\right\} .
$$

We fix arbitrary $\varepsilon>0$ and set

$$
\begin{equation*}
\Sigma=\{\xi \in X \mid\|\xi\|<\varepsilon\} . \tag{2.17}
\end{equation*}
$$

First, we shall show that \mathcal{T} maps from Σ to itself. It follows from Lemma 2.1 that $|F(t, \eta)| \leq \varepsilon^{2} t^{-A_{p}}$ for sufficiently large $t>0$. This yields that

$$
|\mathcal{T}[\eta](t)| \lesssim e^{\frac{d-2}{2} t} \int_{t}^{\infty} e^{-\frac{d-2}{2} \sigma} \varepsilon^{2} \sigma^{-A_{p}} d \sigma \leq \varepsilon^{2} t^{-A_{p}} e^{\frac{d-2}{2} t} \int_{t}^{\infty} e^{-\frac{d-2}{2}} d \sigma \lesssim \varepsilon^{2} t^{-A_{p}}
$$

for $\eta \in \Sigma$. It follows that $T[\eta] \in \Sigma$. Thus, we have proved the claim.
Next, we shall show that \mathcal{T} is a contraction mapping. For $\eta_{1}, \eta_{2} \in \Sigma$, we have

$$
\left|\mathcal{T}\left[\eta_{1}\right](t)-\mathcal{T}\left[\eta_{2}\right](t)\right| \leq C e^{\frac{(d-2)}{2} t} \sum_{i=3}^{5} \int_{t}^{\infty} e^{-\frac{(d-2)}{2} \sigma}\left|f_{i}\left(\sigma, \eta_{1}\right)-f_{i}\left(\sigma, \eta_{2}\right)\right| d \sigma .
$$

From the definition, we obtain

$$
\begin{equation*}
\left|f_{3}\left(t, \eta_{1}\right)-f_{3}\left(t, \eta_{2}\right)\right| \lesssim t^{-1} \log t\left|\eta_{1}-\eta_{2}\right| \lesssim t^{-A_{p}-1} \log t\left\|\eta_{1}-\eta_{2}\right\| . \tag{2.18}
\end{equation*}
$$

Thus, we see that

$$
\begin{equation*}
\left|f_{3}\left(t, \eta_{1}\right)-f_{3}\left(t, \eta_{2}\right)\right| \leq \varepsilon t^{-A_{p}}\left\|\eta_{1}-\eta_{2}\right\| . \tag{2.19}
\end{equation*}
$$

Next, we estimate the term $\left|f_{5}\left(t, \eta_{1}\right)-f_{5}\left(t, \eta_{2}\right)\right|$. It follows that

$$
\begin{aligned}
& \left|f_{5}\left(t, \eta_{1}\right)-f_{5}\left(t, \eta_{2}\right)\right| \\
\lesssim & t^{-A_{p}}\left|\exp \left[p(\varphi+\kappa)^{A_{p}} \eta_{1}\right]-\exp \left[p(\varphi+\kappa)^{A_{p}} \eta_{2}\right]-p(\varphi+\kappa)^{A_{p}}\left(\eta_{1}-\eta_{2}\right)\right| \\
= & t^{-A_{p}}\left|\exp \left[p(\varphi+\kappa)^{A_{p}} \eta_{2}\right]\left\{\exp \left[p(\varphi+\kappa)^{A_{p}}\left(\eta_{2}-\eta_{1}\right)\right]-1\right\}-p(\varphi+\kappa)^{A_{p}}\left(\eta_{1}-\eta_{2}\right)\right| \\
\lesssim & t^{-A_{p}}\left|\exp \left[p(\varphi+\kappa)^{A_{p}} \eta_{2}\right]\left\{\exp \left[p(\varphi+\kappa)^{A_{p}}\left(\eta_{2}-\eta_{1}\right)\right]-1-p(\varphi+\kappa)^{A_{p}}\left(\eta_{1}-\eta_{2}\right)\right\}\right| \\
& +t^{-A_{p}}\left|\exp \left[p(\varphi+\kappa)^{A_{p}} \eta_{2}\right]-1\right| p(\varphi+\kappa)^{A_{p}}\left|\eta_{1}-\eta_{2}\right| \\
\lesssim & t^{-A_{p}}\left|p(\varphi+\kappa)^{A_{p}}\left(\eta_{1}-\eta_{2}\right)\right|^{2}+t^{-A_{p}}\left|p(\varphi+\kappa)^{A_{p}} \eta_{2}\right|\left\|\eta_{1}-\eta_{2}\right\| \\
\lesssim & \varepsilon t^{-A_{p}}\left\|\eta_{1}-\eta_{2}\right\| .
\end{aligned}
$$

Therefore, for sufficiently large $t>0$, we have

$$
\begin{equation*}
\left|f_{5}\left(t, \eta_{1}\right)-f_{5}\left(t, \eta_{2}\right)\right| \leq \varepsilon t^{-A_{p}}\left\|\eta_{1}-\eta_{2}\right\| . \tag{2.20}
\end{equation*}
$$

Finally, we estimate the term $\left|f_{4}\left(t, \eta_{1}\right)-f_{4}\left(t, \eta_{2}\right)\right|$. We can compute that

$$
\begin{align*}
\left|f_{4}\left(t, \eta_{1}\right)-f_{4}\left(t, \eta_{2}\right)\right| \lesssim & t^{-A_{p}} \mid \exp \left[p \varphi^{A_{p}} \eta_{1}\right]-\exp \left[p \varphi^{A_{p}} \eta_{2}| | \exp \left[g_{1}\left(t, \eta_{2}\right)\right]-1 \mid\right. \\
& +t^{-A_{p}} \exp \left[p \varphi^{A_{p}} \eta_{2}\right]\left|\exp \left[g_{1}\left(t, \eta_{1}\right)\right]-\exp \left[g_{1}\left(t, \eta_{2}\right)\right]\right| \tag{2.21}\\
= & I+I I .
\end{align*}
$$

By the Taylor expansion together with (2.15), we have

$$
\begin{align*}
I & \lesssim t^{-A_{p}-2} \exp \left[p \varphi^{A_{p}} \eta_{2}\right]\left\{\exp \left[p \varphi^{A_{p}}\left(\eta_{2}-\eta_{1}\right)\right]-1\right\} \\
& \lesssim t^{-A_{p}-2} \exp [p \varepsilon]\left|\varphi^{A_{p}}\left(\eta_{2}-\eta_{1}\right)\right| \\
& \lesssim t^{-A_{p}-2} \varphi^{A_{p}}\left|\eta_{1}-\eta_{2}\right| \tag{2.22}\\
& \lesssim t^{-A_{p}-2}\left\|\eta_{1}-\eta_{2}\right\| .
\end{align*}
$$

Similarly, by (2.14), we obtain

$$
\begin{align*}
& I I \lesssim t^{-A_{p}} \exp \left[p \varphi^{A_{p}} \eta_{2}\right]\left|\exp \left[g_{1}\left(t, \eta_{1}\right)\right]-\exp \left[g_{1}\left(t, \eta_{2}\right)\right]\right| \\
& \quad \lesssim t^{-A_{p}} \exp \left[p \varphi^{A_{p}} \eta_{2}\right] \exp \left[g_{1}\left(t, \eta_{2}\right)\right]\left|\exp \left[g_{1}\left(t, \eta_{1}\right)-g_{1}\left(t, \eta_{2}\right)\right]-1\right| \tag{2.23}\\
& \lesssim t^{-A_{p}}\left|g_{1}\left(t, \eta_{1}\right)-g_{1}\left(t, \eta_{2}\right)\right| .
\end{align*}
$$

From (2.7), we obtain

$$
\begin{align*}
&\left|g_{1}\left(t, \eta_{1}\right)-g_{1}\left(t, \eta_{2}\right)\right| \\
& \lesssim\left|\left\{1+p(\varphi+\kappa)^{-\frac{1}{p}} \eta_{1}\right\}^{p}-\left\{1+p(\varphi+\kappa)^{-\frac{1}{p}} \eta_{2}\right\}^{p}\right|+(\varphi+\kappa)^{-\frac{1}{p}}\left|\eta_{1}-\eta_{2}\right| \tag{2.24}\\
& \lesssim|\varphi+\kappa|^{-\frac{1}{p}}\left|\eta_{1}-\eta_{2}\right| \\
& \lesssim t^{-1}\left\|\eta_{1}-\eta_{2}\right\| .
\end{align*}
$$

It follows from (2.21)-(2.24) that

$$
\begin{equation*}
\left|f_{4}\left(t, \eta_{1}\right)-f_{4}\left(t, \eta_{2}\right)\right| \leq \varepsilon t^{-A_{p}}\left\|\eta_{1}-\eta_{2}\right\| \tag{2.25}
\end{equation*}
$$

By (2.18), (2.20) and (2.25), we see that

$$
\begin{equation*}
\left|\mathcal{T}\left[\eta_{1}\right](t)-\mathcal{T}\left[\eta_{2}\right](t)\right| \leq C \varepsilon t^{-A_{p}}\left\|\eta_{1}-\eta_{2}\right\| \leq \frac{1}{2} t^{-A_{p}}\left\|\eta_{1}-\eta_{2}\right\| \tag{2.26}
\end{equation*}
$$

Thus, we find that \mathcal{T} is a contraction mapping. This completes the proof.
We are now in a position to prove Theorem 1.1.
Proof of Theorem 1.1. It follows from Theorem 2.1 that there exist a constant $T_{\infty}>0$ and a solution $\eta_{\infty}(t)$ to the equation (2.3) for $t \in\left(T_{\infty},+\infty\right)$ satisfying $|t|^{A_{p}}\left|\eta_{\infty}(t)\right| \leq \varepsilon$. For such a solution η_{∞}, we put

$$
\bar{u}_{\infty}(t)=(\varphi(t)+\kappa)^{\frac{1}{p}}+\eta_{\infty}(t)
$$

Then we see that $\bar{u}_{\infty}(t)$ satisfies

$$
\begin{equation*}
\bar{u}_{t t}-(d-2) \bar{u}_{t}+\exp \left[-2 t+\bar{u}^{p}\right]=0 \tag{2.27}
\end{equation*}
$$

for $t \in\left(T_{\infty},+\infty\right)$. We shall show that $\bar{u}_{\infty}(t)$ has a zero for some $T_{0} \in(-\infty, \infty)$. Suppose the contradiction that $\bar{u}_{\infty}(t)$ is positive for all $t \in(-\infty, \infty)$. Then, we see that \bar{u}_{∞} is monotone increasing. Indeed, if not, there exists a local minimum point $t_{*} \in(-\infty, \infty)$. It follows that $\left(d^{2} \bar{u}_{\infty} / d t^{2}\right)\left(t_{*}\right) \geq 0$ and $\left(d \bar{u}_{\infty} / d t\right)\left(t_{*}\right)=0$. Then, from the equation (2.27), we obtain

$$
0 \leq \frac{d^{2} \bar{u}_{\infty}}{d t^{2}}\left(t_{*}\right)-(d-2) \frac{d \bar{u}_{\infty}}{d t}\left(t_{*}\right)=-\exp \left[-2 t_{*}+\bar{u}_{\infty}^{p}\left(t_{*}\right)\right]<0
$$

which is a contradiction. Since \bar{u}_{∞} is positive and monotone increasing, there exists a constant $C \geq 0$ such that $\bar{u}_{\infty}(t) \rightarrow C$ as $t \rightarrow-\infty$. This together with (2.27) yields that

$$
0=\lim _{t \rightarrow-\infty}\left\{\frac{d^{2} \bar{u}_{\infty}}{d t^{2}}(t)-(d-2) \frac{d \bar{u}_{\infty}}{d t}(t)\right\}=\lim _{t \rightarrow-\infty}-\exp \left[-2 t+\bar{u}_{\infty}^{p}(t)\right]=-\infty
$$

which is absurd. Therefore, we see that \bar{u}_{∞} has a zero for some $T_{0} \in(-\infty, \infty)$. Then, \bar{u}_{∞} satisfies

$$
\begin{cases}\bar{u}_{t t}+(d-2) \bar{u}_{t}=-e^{-2 t+\bar{u}^{p}}, & t \in\left(T_{0}, \infty\right) \\ \bar{u}(t)=0, & t=T_{0} \\ \bar{u}(t)>0, & t \in\left(T_{0}, \infty\right)\end{cases}
$$

If we choose $\lambda_{p, \infty}>0$ so that $-\log \lambda_{p, \infty}=2 T_{0}$, that is, $\lambda_{p, \infty}=e^{-2 T_{0}}$, we find that $\bar{u}_{\infty}(s)$ is a solution to (1.6) with $\lambda=\lambda_{p, \infty}$. This completes the proof.

3 Asymptotic behavior of a regular solution

In this section, we give a proof of Theorem 1.2. We denote by $\widehat{u}(s, \gamma)$ a positive solution to (1.5) with $\widehat{u}(0)=\|\widehat{u}\|_{L^{\infty}}=\gamma$. If there is no confusion, we just denote by $\widehat{u}(s)$. We set

$$
\begin{equation*}
\widehat{u}(s, \gamma)=\gamma+\frac{\gamma^{1-p}}{p} \widetilde{u}(\rho, \gamma), \quad \rho=\sqrt{\gamma^{p-1} \exp \left(\gamma^{p}\right)} s \tag{3.1}
\end{equation*}
$$

Then, we see that $\widetilde{u}(\rho, \gamma)$ satisfies

$$
\begin{cases}\widetilde{u}_{\rho \rho}+\frac{d-1}{\rho} \widetilde{u}_{\rho}+p \exp \left[-\gamma^{p}+\gamma^{p}\left(1+\frac{\gamma^{-p}}{p} \widetilde{u}\right)^{p}\right]=0, & 0<\rho<\sqrt{\lambda \gamma^{p-1} \exp \left(\gamma^{p}\right)}, \tag{3.2}\\ \widetilde{u}(0)=0, & 0<\rho<\sqrt{\lambda \gamma^{p-1} \exp \left(\gamma^{p}\right)} \\ \widetilde{u}(\rho)<0, & \end{cases}
$$

Concerning the solutions to (3.2), the following lemma holds:
Lemma 3.1. Let $\widetilde{u}(\rho, \gamma)$ be a solution to (3.2). Then, we have $\widetilde{u}(\cdot, \gamma) \rightarrow U(\cdot)$ in $C_{l o c}^{1}([0, \infty))$ as $\gamma \rightarrow \infty$, where $U(\rho)$ is a solution to the following equation:

$$
\begin{cases}U_{\rho \rho}+\frac{d-1}{\rho} U_{\rho}+p \exp [U]=0, & 0<\rho<\infty \tag{3.3}\\ U(\rho)=0, & \rho=0 \\ U(\rho)<0, & 0<\rho<\infty\end{cases}
$$

Remark 3.1. We note that Dancer [4] already gave the proof of Lemma 3.1 in more general situations. Here, using an ODE approach, we shall give an alternative proof.

Proof of Lemma 3.1. First, for each $\rho_{0}>0$, we shall show that $\widetilde{u}(\rho, \gamma)$ is uniformly bounded for $\rho \in\left[0, \rho_{0}\right)$. Since $\gamma=\|\widehat{u}\|_{L^{\infty}}$ and $\widehat{u}(\rho, \gamma)$ is positive, (3.1) yields that

$$
\begin{equation*}
-p \gamma^{p}<\widetilde{u}(\rho, \gamma) \leq 0 \tag{3.4}
\end{equation*}
$$

By (3.4), we have

$$
0<1+\frac{\gamma^{-p}}{p} \widetilde{u} \leq 1
$$

This yields that

$$
\exp \left[-\gamma^{p}+\gamma^{p}\left(1+\frac{\gamma^{-p}}{p} \widetilde{u}\right)^{p}\right] \leq \exp \left[-\gamma^{p}+\gamma^{p}\right]=1
$$

It follows from the first equation in (3.2) that

$$
\widetilde{u}_{\rho \rho}+\frac{d-1}{\rho} \widetilde{u}_{\rho} \geq-p .
$$

This yields that

$$
\left(\rho^{d-1} \widetilde{u}_{\rho}\right)_{\rho} \geq-p \rho^{d-1}
$$

Integrating the above inequality, we have $\rho^{d-1} \widetilde{u}_{\rho}(\rho) \geq-p \rho^{d} / d$. Thus, we obtain $\widetilde{u}_{\rho}(\rho) \geq$ $-p \rho / d$ for $\rho \in[0, \rho)$. Integrating the inequality yields that

$$
\widetilde{u}(\rho) \geq \widetilde{u}(0)-\frac{p}{d} \int_{0}^{\rho} \tau d \tau=-\frac{p}{2 d} \rho^{2} .
$$

Therefore, for $\rho \in\left[0, \rho_{0}\right)$, we have

$$
\begin{equation*}
-\frac{p}{2 d} \rho_{0}^{2} \leq \widetilde{u}(\rho) \leq 0 \tag{3.5}
\end{equation*}
$$

This together with the equation in (3.2) gives the uniform boundedness of \widetilde{u}_{ρ} and $\widetilde{u}_{\rho \rho}$ for $\rho \in\left[0, \rho_{0}\right)$. Then, by the Ascoli-Arzela theorem, there exists a function U such that $\widetilde{u}(\rho, \gamma)$ converges to U in $C_{\text {loc }}^{1}\left(\left[0, \rho_{0}\right)\right)$ as γ goes to infinity. Moreover, by the Taylor expansion, there exists $\theta \in(0,1)$ such that

$$
\begin{aligned}
& \left|\exp \left[-\gamma^{p}+\gamma^{p}\left(1+\frac{\gamma^{-p}}{p} \widetilde{u}(\rho, \gamma)\right)^{p}\right]-\exp [U]\right| \\
= & \left|\exp \left[\widetilde{u}+\frac{p-1}{2 p}\left(1+\theta \frac{\gamma^{-p}}{p} \widetilde{u}\right)^{p-2} \gamma^{-p} \widetilde{u}^{2}\right]-\exp [U]\right| \\
\leq & \exp [\widetilde{u}]\left|\exp \left[\frac{p-1}{2 p}\left(1+\theta \frac{\gamma^{-p}}{p} \widetilde{u}\right)^{p-2} \gamma^{-p} \widetilde{u}^{2}\right]-1\right|+|\exp [\widetilde{u}]-\exp [U]| .
\end{aligned}
$$

Therefore, by (3.5), we have

$$
\left|\exp \left[-\gamma^{p}+\gamma^{p}\left(1+\frac{\gamma^{-p}}{p} \widetilde{u}(\rho, \gamma)\right)^{p}\right]-\exp [U]\right| \rightarrow 0 \quad \text { as } \gamma \rightarrow \infty .
$$

This yields that U satisfies (3.3). This completes the proof.
Next, we put $t=-\log s$. We define $y(t, \gamma)$ by

$$
\begin{equation*}
\widehat{u}(s, \gamma)=\varphi^{1 / p}(t)+\frac{\varphi^{-A_{p}}(t)}{p}(\kappa+y(t, \gamma)) . \tag{3.6}
\end{equation*}
$$

We see that $y(t, \gamma)$ satisfies the following:

$$
\begin{align*}
& y_{t t}-\left\{(d-2)+2 A_{p} \varphi^{-1} \varphi_{t}\right\} y_{t}-2(d-2)+p \varphi^{A_{p}} \exp \left[-2 t+\varphi\left(1+\frac{\varphi^{-1}}{p}(\kappa+y)\right)^{p}\right] \\
= & f_{6}(t, y) \tag{3.7}
\end{align*}
$$

for sufficiently large $t>0$, where

$$
\begin{align*}
f_{6}(t, y)= & A_{p} \varphi^{-1}\left(\varphi_{t}\right)^{2}-\varphi_{t t}-A_{p}\left(A_{p}+1\right) \varphi^{-2}\left(\varphi_{t}\right)^{2}(\kappa+y)+A_{p} \varphi^{-1} \varphi_{t t}(\kappa+y) \\
& +(d-2) A_{p} \varphi^{-1} \varphi_{t}(\kappa+y)+\frac{(d-2) A_{p}}{t} \tag{3.8}
\end{align*}
$$

For the function $y(t, \gamma)$, we make the following spatial translation:

$$
\begin{equation*}
\tau=-\log \rho=t-\frac{\gamma^{p}}{2}-\frac{(p-1) \log \gamma}{2}, \quad \widehat{y}(\tau, \gamma)=y(t, \gamma), \quad \widehat{\varphi}(\tau)=\varphi(t) \tag{3.9}
\end{equation*}
$$

Let U be the solution to (3.3). We put $U_{*}(\tau)=U(\rho)$ and

$$
\begin{equation*}
Y(\tau)=U_{*}(\tau)-2 \tau-\log \frac{2(d-2)}{p} \tag{3.10}
\end{equation*}
$$

Then, Y satisfies

$$
\begin{cases}Y_{\tau \tau}-(d-2) Y_{\tau}+2(d-2)\{\exp [Y]-1\}=0, & -\infty<\tau<\infty \tag{3.11}\\ \lim _{\tau \rightarrow \infty}\left\{Y(\tau)+2 \tau+\log \frac{2(d-2)}{p}\right\}=0, & -\infty<\tau<\infty \\ Y(\tau)+2 \tau+\log \frac{2(d-2)}{p}<0, & -\infty\end{cases}
$$

Then, the following lemma holds:
Lemma 3.2. Let \widehat{y} and Y be the functions defined by (3.10) and (3.9), respectively. Then, we have $\widehat{y}(\tau, \gamma) \rightarrow Y(\tau)$ in $C_{l o c}^{1}((-\infty, \infty))$ as $\gamma \rightarrow \infty$.

Proof. It follows from (3.1) and (3.6) that

$$
\begin{align*}
\widetilde{u}(\rho, \gamma) & =-p \gamma^{p}+p \gamma^{p-1} \widehat{u}(s, \gamma) \\
& =-p \gamma^{p}+p \gamma^{p-1}\left\{\varphi^{1 / p}(t)+\frac{\varphi^{-A_{p}}(t)}{p}(\kappa+y(t, \gamma))\right\} \tag{3.12}\\
& =p\left(-\gamma^{p}+\gamma^{p-1} \widehat{\varphi}^{1 / p}(\tau)\right)+\gamma^{p-1} \widehat{\varphi}^{-A_{p}}(\tau)(\kappa+\widehat{y}(\tau, \gamma))
\end{align*}
$$

By (2.2), (3.9) and the Taylor expansion, we have

$$
\begin{align*}
& -\gamma^{p}+\gamma^{p-1} \widehat{\varphi}^{1 / p}(\tau) \\
= & -\gamma^{p}+\gamma^{p-1}\left\{2 \tau+\gamma^{p}+(p-1) \log \gamma-A_{p} \log \left(\tau+\frac{\gamma^{p}}{2}+\frac{p-1}{2} \log \gamma\right)\right\}^{\frac{1}{p}} \\
= & -\gamma^{p}+\gamma^{p}\left\{\frac{2 \tau}{\gamma^{p}}+1-\frac{A_{p}}{\gamma^{p}} \log \gamma^{-p}-\frac{A_{p}}{\gamma^{p}} \log \left(\tau+\frac{\gamma^{p}}{2}+\frac{p-1}{2} \log \gamma\right)\right\}^{\frac{1}{p}} \\
= & -\gamma^{p}+\gamma^{p}\left\{1+\frac{2 \tau}{\gamma^{p}}-\frac{A_{p}}{\gamma^{p}} \log \left(\frac{\tau}{\gamma^{p}}+\frac{1}{2}+\frac{(p-1) \log \gamma}{2 \gamma^{p}}\right)\right\}^{\frac{1}{p}} \tag{3.13}\\
= & \frac{1}{p}\left(2 \tau-A_{p} \log \left(\frac{1}{2}+\frac{\tau}{\gamma^{p}}+\frac{(p-1) \log \gamma}{2 \gamma^{p}}\right)\right) \\
& +\frac{p-1}{2 p^{2} \gamma^{p}}\left(1+\theta\left(\frac{2 \tau}{\gamma^{p}}-\frac{A_{p}}{\gamma^{p}} \log \left(\frac{1}{2}+\frac{\tau}{\gamma^{p}}+\frac{(p-1) \log \gamma}{2 \gamma^{p}}\right)\right)\right)^{\frac{1}{p}-2} \times \\
& \times\left(2 \tau+A_{p} \log \left(\frac{1}{2}+\frac{\tau}{\gamma^{p}}+\frac{(p-1) \log \gamma}{2 \gamma^{p}}\right)\right)^{2}
\end{align*}
$$

for some $\theta \in(0,1)$. This yields that

$$
\begin{equation*}
-\gamma^{p}+\gamma^{p-1} \widehat{\varphi}^{1 / p}(\tau) \rightarrow \frac{2 \tau}{p}+\frac{A_{p}}{p} \log 2 \quad \text { as } \gamma \rightarrow \infty \tag{3.14}
\end{equation*}
$$

for each $\tau \in(-\infty, \infty)$. Similarly, we obtain

$$
\begin{equation*}
\gamma^{p-1} \widehat{\varphi}^{-A_{p}}(\tau)=\left\{1+\frac{2 \tau}{\gamma^{p}}-\frac{A_{p}}{\gamma^{p}} \log \left(\frac{1}{2}+\frac{\tau}{\gamma^{p}}+\frac{(p-1) \log \gamma}{2 \gamma^{p}}\right)\right\}^{-A_{p}} \rightarrow 1 \quad \text { as } \gamma \rightarrow \infty \tag{3.15}
\end{equation*}
$$

(3.12)-(3.15) imply that

$$
\begin{equation*}
\lim _{\gamma \rightarrow \infty} \widetilde{u}(\rho, \gamma)=2 \tau+A_{p} \log 2+\kappa+\lim _{\gamma \rightarrow \infty} \widehat{y}(\tau, \gamma) . \tag{3.16}
\end{equation*}
$$

It follows from Lemma 3.1 that $\lim _{\gamma \rightarrow \infty} \widetilde{u}(\rho, \gamma)=U(\rho)=U_{*}(\tau)$. Thus, by (2.2), (3.10) and (3.16), we see that

$$
\begin{aligned}
\lim _{\gamma \rightarrow \infty} \widehat{y}(\tau, \gamma) & =-2 \tau-A_{p} \log 2-\kappa+U_{*}(\tau) \\
& =-2 \tau-A_{p} \log 2-\kappa+Y(\tau)+2 \tau+\log \frac{2(d-2)}{p} \\
& =Y(\tau)-\kappa+\log \frac{(d-2) 2^{\frac{1}{p}}}{p}=Y(\tau) .
\end{aligned}
$$

This completes the proof.
Lemma 3.3. Let Y be a solution to (3.11). Then, Y satisfies $\left(Y, Y_{\tau}\right) \rightarrow(0,0)$ as $\tau \rightarrow$ $-\infty$.

Proof. We set $Z_{1}(\tau)=Y(\tau)$ and $Z_{2}(\tau)=Y_{\tau}(\tau)$. Then, the pair of functions $\left(Z_{1}, Z_{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
\frac{d Z_{1}}{d \tau}=Z_{2}, \tag{3.17}\\
\frac{d Z_{2}}{d \tau}=(d-2) Z_{2}-2(d-2)\left[\exp \left[Z_{1}\right]-1\right]
\end{array}\right.
$$

We define an energy E by

$$
E(\tau)=\frac{\left(Z_{2}\right)^{2}}{2}+2(d-2)\left[\exp \left[Z_{1}\right]-1-Z_{1}\right] .
$$

From the equation (3.17), we have $\frac{d E}{d \tau}(\tau)=(d-2)\left(Z_{2}\right)^{2}>0$. Moreover, $(0,0)$ is an equiblium point of (3.17) and a minimum of the energy E. This yields that $\left(Z_{1}(\tau), Z_{2}(\tau)\right) \rightarrow$ $(0,0)$ as $\tau \rightarrow-\infty$.

We set

$$
\begin{equation*}
z_{1}(t, \gamma)=y(t, \gamma), \quad z_{2}(t, \gamma)=y_{t}(t, \gamma), \tag{3.18}
\end{equation*}
$$

where $y(t, \gamma)$ is the function defined by (3.6). Then, $\left(z_{1}(t, \gamma), z_{2}(t, \gamma)\right)$ satisfies

$$
\left\{\begin{array}{lr}
\frac{d z_{1}}{d t}= & z_{2} \tag{3.19}\\
\frac{d z_{2}}{d t}= & \left(d-2-2 A_{p} \varphi^{-1} \varphi_{t}\right) z_{2}+2(d-2)+f_{6}\left(t, z_{1}\right)
\end{array} \quad \text { for } t \in\left(-\frac{\log \lambda(\gamma)}{2}, \infty\right), ~\left(-\frac{\log \lambda(\gamma)}{2}, \infty\right) .\right.
$$

From Lemma 3.3, we see that for any $\varepsilon>0$, there exists $\tau_{\varepsilon} \in(-\infty, 0)$ such that $\left|\left(Z_{1}\left(\tau_{\varepsilon}\right), Z_{2}\left(\tau_{\varepsilon}\right)\right)\right|<\varepsilon / 2$, where $\left(Z_{1}, Z_{2}\right)$ is a solution to (3.17). We fix $\tau_{\varepsilon} \in(-\infty, 0)$ and put

$$
t_{\varepsilon}=\tau_{\varepsilon}+\frac{\gamma^{p}}{2}+\frac{(p-1) \log \gamma}{2} .
$$

Then, by Lemma 3.2, we have

$$
\begin{equation*}
\left|\left(z_{1}\left(t_{\varepsilon}, \gamma\right), z_{2}\left(t_{\varepsilon}, \gamma\right)\right)\right|<\varepsilon \tag{3.20}
\end{equation*}
$$

for sufficiently large $\gamma>0$. We shall show the following.
Lemma 3.4. Let $\left(z_{1}(t, \gamma), z_{2}(t, \gamma)\right)$ be the function defined by (3.18). For arbitrary $\varepsilon>0$, we set

$$
\Gamma_{\varepsilon}=\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2} \left\lvert\, 2(d-2)\left\{\exp \left[\xi_{1}\right]-1-\xi_{1}\right\}+\frac{\xi_{2}^{2}}{2}<\varepsilon\right.\right\} .
$$

There exists T_{ε} which does no depend on γ and t_{ε} but on ε such that $\left(z_{1}(t, \gamma), z_{2}(t, \gamma)\right) \in$ $\Gamma_{2 \varepsilon}$ for $t \in\left(T_{\varepsilon}, t_{\varepsilon}\right)$.

Proof. We define an energy by

$$
E_{1}(t)=\frac{z_{2}^{2}}{2}+2(d-2)\left\{\exp \left[z_{1}\right]-1-z_{1}\right\}
$$

By (3.19), we have

$$
\begin{aligned}
\frac{d E_{1}}{d t}(t)= & z_{2} z_{2 t}+2(d-2)\left\{\exp \left[z_{1}\right]-1\right\} z_{2} \\
= & \left(d-2-2 A_{p} \varphi^{-1} \varphi_{t}\right) z_{2}^{2} \\
& -p \varphi^{A_{p}} \exp \left[-2 t+\varphi\left(1+\frac{\varphi^{-1}}{p}\left(\kappa+z_{1}\right)^{p}\right] z_{2}+f_{6}\left(t, z_{1}\right) z_{2}\right. \\
& +2(d-2) \exp \left[z_{1}\right] z_{2} .
\end{aligned}
$$

Similarly as in (2.5), by the Taylor expansion, we obtain

$$
\begin{aligned}
& p \varphi^{A_{p}} \exp \left[-2 t+\varphi\left(1+\frac{\varphi^{-1}}{p}\left(\kappa+z_{1}\right)\right)^{p}\right] \\
= & (d-2) 2^{\frac{1}{p}} \varphi^{A_{p}} t^{-A_{p}} \exp \left[z_{1}\right] \exp \left[\widetilde{g}_{1}\left(t, z_{1}\right)\right] \\
= & 2(d-2) \exp \left[z_{1}\right] \\
& -\left(2(d-2) \exp \left[z_{1}\right]-(d-2) 2^{\frac{1}{p}} \varphi^{A_{p}} t^{-A_{p}} \exp \left[z_{1}\right] \exp \left[\widetilde{g}_{1}\left(t, z_{1}\right)\right]\right),
\end{aligned}
$$

where

$$
\widetilde{g}_{1}\left(t, z_{1}\right)=\varphi\left(1+\frac{\varphi^{-1}}{p}\left(\kappa+z_{1}\right)\right)^{p}-\varphi(t)-\kappa-z_{1} .
$$

Therefore, we have

$$
\begin{align*}
\frac{d E_{1}}{d t}(t)= & \left(d-2-2 A_{p} \varphi^{-1} \varphi_{t}\right) z_{2}^{2}+f_{6}\left(t, z_{1}\right) z_{2} \tag{3.21}\\
& +\left(2(d-2) \exp \left[z_{1}\right]-(d-2) 2^{\frac{1}{p}} \varphi^{A_{p}} t^{-A_{p}} \exp \left[z_{1}\right] \exp \left[\widetilde{g}_{1}\left(t, z_{1}\right)\right]\right) z_{2}
\end{align*}
$$

Since Γ_{ε} is a neighborhood of (0,0), we can take $\varepsilon>0$ so small such that $\Gamma_{2 \varepsilon} \subset$ $\left\{\left(x_{1}, x_{2}\right)\left|\left|x_{1}\right|+\left|x_{2}\right|<1\right\}\right.$. We choose $T_{\varepsilon}>0$ so that

$$
\begin{equation*}
0<\frac{C_{*}}{\sqrt{T_{\varepsilon}}}<\frac{\varepsilon}{2}, \tag{3.22}
\end{equation*}
$$

where the constant $C_{*}>0$ which does not depend on ε and is defined by (3.26) below. We shall show that $\left(z_{1}(t), z_{2}(t)\right) \in \Gamma_{2 \varepsilon}$ for $t \in\left(T_{\varepsilon}, t_{\varepsilon}\right)$ by contradiction. Suppose the contrary that $\left(z_{1}(t), z_{2}(t)\right) \in \Gamma_{2 \varepsilon}$ for $t \in\left(T_{\varepsilon}, t_{\varepsilon}\right]$ and $\left(z_{1}\left(T_{\varepsilon}\right), z_{2}\left(T_{\varepsilon}\right)\right) \notin \Gamma_{2 \varepsilon}$. Then, by (3.21), we have

$$
\begin{align*}
& E_{1}\left(t_{\varepsilon}\right)-E_{1}\left(T_{\varepsilon}\right) \\
= & \int_{T_{\varepsilon}}^{t_{\varepsilon}}\left(d-2-2 A_{p} \varphi^{-1} \varphi_{t}\right) z_{2}^{2} d s+\int_{T_{\varepsilon}}^{t_{\varepsilon}} f_{6}\left(s, z_{1}\right) z_{2} d s \tag{3.23}\\
& +\int_{T_{\varepsilon}}^{t_{\varepsilon}}\left(2(d-2) \exp \left[z_{1}\right]-(d-2) 2^{\frac{1}{p}} \varphi^{A_{p}}(s) s^{-A_{p}} \exp \left[z_{1}\right] \exp \left[\widetilde{g}_{1}\left(s, z_{1}\right)\right]\right) z_{2} d s
\end{align*}
$$

Since $\left|z_{1}(t)\right|+\left|z_{2}(t)\right|<1$, we see from (3.8) that there exists a constant $C_{1}>0$ satisfying $\left|f_{6}\left(s, z_{1}\right)\right| \leq C_{1} /|s|$. Furthermore, from (2.2), we have

$$
\begin{align*}
& \left|2(d-2) \exp \left[z_{1}\right]-(d-2) 2^{\frac{1}{p}} \varphi^{A_{p}}(s) s^{-A_{p}} \exp \left[z_{1}\right] \exp \left[\widetilde{g}_{1}\left(s, z_{1}\right)\right]\right| \\
= & 2(d-2) \exp \left[z_{1}\right]\left|1-\left(\frac{\varphi(s)}{2}\right)^{A_{p}} s^{-A_{p}} \exp \left[\widetilde{g}_{1}\left(s, z_{1}\right)\right]\right| \\
= & 2(d-2) \exp \left[z_{1}\right]\left|1-\left(1-\frac{A_{p}}{2} \frac{\log s}{s}\right)^{A_{p}} \exp \left[\widetilde{g}_{1}\left(s, z_{1}\right)\right]\right| \tag{3.24}\\
\leq & C\left|1-\exp \left[\widetilde{g}_{1}\left(s, z_{1}\right)\right]\right|+C\left|1-\left(1-\frac{A_{p}}{2} \frac{\log s}{s}\right)^{A_{p}}\right| \exp \left[\widetilde{g}_{1}\left(s, z_{1}\right)\right]
\end{align*}
$$

Similarly as in the proof of Lemma 2.1, there exists a constant $C>0$ such that

$$
\left|1-\left(1-\frac{A_{p}}{2} \frac{\log s}{s}\right)^{A_{p}}\right| \leq C \frac{\log s}{s}, \quad\left|\widetilde{g}_{1}\left(s, z_{1}\right)\right| \leq \frac{C}{s}
$$

for sufficiently large $s>0$. This yields together with (3.24) that

$$
\left|2(d-2) \exp \left[z_{1}\right]-(d-2) 2^{\frac{1}{p}} \varphi^{A_{p}}(s) s^{-A_{p}} \exp \left[z_{1}\right] \exp \left[g_{1}\left(s, z_{1}\right)\right]\right| \leq \frac{C}{s^{\frac{3}{4}}}
$$

for some constant $C>0$. Therefore, by the Young inequality, we have

$$
\begin{align*}
& \left|\int_{T_{\varepsilon}}^{t_{\varepsilon}}\left(2(d-2) \exp \left[z_{1}\right]-(d-2) 2^{\frac{1}{p}} \varphi^{A_{p}} s^{-A_{p}} \exp \left[z_{1}\right] \exp \left[g_{1}\left(s, z_{1}\right)\right]\right) z_{2} d s\right| \\
& \quad+\left|\int_{T_{\varepsilon}}^{t_{\varepsilon}} f_{6}\left(s, z_{1}\right) z_{2} d s\right| \\
& \leq \int_{T_{\varepsilon}}^{t_{\varepsilon}} \frac{C}{s^{\frac{3}{4}}} z_{2} d s \tag{3.25}\\
& \leq \frac{2 C^{2}}{d-2} \int_{T_{\varepsilon}}^{t_{\varepsilon}} \frac{1}{s^{\frac{3}{2}}} d s+\frac{(d-2)}{2} \int_{T_{\varepsilon}}^{t_{\varepsilon}}\left|z_{2}\right|^{2} d s \\
& \leq \frac{4 C^{2}}{(d-2) \sqrt{T_{\varepsilon}}}+\frac{d-2}{2} \int_{T_{\varepsilon}}^{t_{\varepsilon}}\left|z_{2}\right|^{2} d s
\end{align*}
$$

We set

$$
\begin{equation*}
C_{*}=\frac{4 C^{2}}{d-2} \tag{3.26}
\end{equation*}
$$

Then, it follows from (3.22) and (3.25) that

$$
\begin{align*}
& \quad\left|\int_{T_{\varepsilon}}^{t_{\varepsilon}}\left(2(d-2) \exp \left[z_{1}\right]-(d-2) 2^{\frac{1}{p}} \varphi^{A_{p}} s^{-A_{p}} \exp \left[z_{1}\right] \exp \left[g_{1}\left(s, z_{1}\right)\right]\right) z_{2} d s\right| \\
& \quad+\left|\int_{T_{\varepsilon}}^{t_{\varepsilon}} f_{1}\left(s, z_{1}\right) z_{2} d s\right| \tag{3.27}\\
& \leq \frac{C_{*}}{\sqrt{T_{\varepsilon}}}+\frac{d-2}{2} \int_{T_{\varepsilon}}^{t_{\varepsilon}}\left|z_{2}\right|^{2} d s \leq \frac{\varepsilon}{2}+\frac{d-2}{2} \int_{T_{\varepsilon}}^{t_{\varepsilon}}\left|z_{2}\right|^{2} d s .
\end{align*}
$$

Moreover, we take $T_{\varepsilon}>0$ so that $\left|2 A_{p} \varphi^{-1}(t) \varphi_{t}(t)\right|<(d-2) / 2$ for $t>T_{\varepsilon}$. Then, we have

$$
\begin{equation*}
\int_{T_{\varepsilon}}^{t_{\varepsilon}}\left(d-2-2 A_{p} \varphi^{-1} \varphi_{t}\right) z_{2}^{2} d s \geq \frac{d-2}{2} \int_{T_{\varepsilon}}^{t_{\varepsilon}}\left|z_{2}\right|^{2} d s . \tag{3.28}
\end{equation*}
$$

It follows from (3.23), (3.27) and (3.28) that

$$
E_{1}\left(t_{\varepsilon}\right)-E_{1}\left(T_{\varepsilon}\right) \geq \frac{d-2}{2} \int_{T_{\varepsilon}}^{t_{\varepsilon}}|z|_{2}^{2} d s-\frac{\varepsilon}{2}-\frac{d-2}{2} \int_{t_{\varepsilon}}^{T_{\varepsilon}}\left|z_{2}\right|^{2} d s>-\frac{\varepsilon}{2} .
$$

This together with (3.20) and $\left(z_{1}\left(T_{\varepsilon}\right), z_{2}\left(T_{\varepsilon}\right)\right) \notin \Gamma_{2 \varepsilon}$ implies that

$$
2 \varepsilon \leq E\left(T_{\varepsilon}\right)<E\left(t_{\varepsilon}\right)+\frac{\varepsilon}{2}=\frac{3}{2} \varepsilon
$$

which is a contradiction. Therefore, our assertion holds.
We are now in a position to prove Theorem 1.2.
Proof of Theorem 1.2. Let $\left\{\gamma_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}_{+}$be a sequence satisfying $\lim _{n \rightarrow \infty} \gamma_{n}=\infty$. Let $\left(z_{1}\left(t, \gamma_{n}\right), z_{2}\left(t, \gamma_{n}\right)\right)$ be the function defined by (3.18). By Lemma 3.4, we find that $\left(z_{1}\left(t, \gamma_{n}\right), z_{2}\left(t, \gamma_{n}\right)\right)$ is uniformly bounded in the interval $\left(T_{\varepsilon}, t_{\varepsilon}\right)$. This together with (3.7) implies that $y_{t t}\left(t, \gamma_{n}\right)$ is also uniformly bounded in the interval ($T_{\varepsilon}, t_{\varepsilon}$). Differentiating the equation (3.7) implies that $y_{t t t}(t, \gamma)$ is also uniformly bounded in $\left(T_{\varepsilon}, t_{\varepsilon}\right)$. This yields that $\left(z_{1}\left(t, \gamma_{n}\right), z_{2}\left(t, \gamma_{n}\right)\right)$ and $\left(z_{1 t}\left(t, \gamma_{n}\right), z_{2 t}\left(t, \gamma_{n}\right)\right)$ are equicontinuous. Thus, it follows from the Ascoli-Arzela theorem that there exists a subsequence $\left\{\left(z_{1}\left(t, \gamma_{n}\right), z_{2}\left(t, \gamma_{n}\right)\right)\right\}$ (we still denote by the same letter) and a pair of functions $\left(z_{*, 1}(t), z_{*, 2}(t)\right)$ in $\left(C^{1}\left(T_{\varepsilon}, t_{\varepsilon}\right)\right)^{2}$ as n tends to infinity, Since $t_{\varepsilon}\left(>T_{\varepsilon}\right)$ is arbitrary, we find that $\left(z_{1}\left(t, \gamma_{n}\right), z_{2}\left(t, \gamma_{n}\right)\right)$ converges to $\left(z_{*, 1}(t), z_{*, 2}(t)\right)$ in $\left(C^{1}\left(T_{\varepsilon}, \infty\right)\right)^{2}$ as n goes to infinity. We note $0<\lambda\left(\gamma_{n}\right)<\lambda_{1}$, where λ_{1} is the first eigenvalue of the operator $-\Delta$ in B_{1} with the Dirichlet boundary condition. Thus, there exists $\lambda_{*} \geq 0$ such that $\lambda\left(\gamma_{n}\right) \rightarrow \lambda_{*}$ as n tends to infinity. By the result of Dancer [4], we see that $\lambda_{*}>0$. From these, we see that ($z_{*, 1}, z_{*, 2}, \lambda_{*}$) satisfies

$$
\left\{\begin{aligned}
\frac{d z_{1}}{d t}= & z_{2} \quad \text { for } t \in\left(-\frac{\log \lambda_{*}}{2}, \infty\right), \\
\frac{d z_{2}}{d t}= & \left(d-2-2 A_{p} \varphi^{-1} \varphi_{t}\right) z_{2}+2(d-2)+f_{6}\left(t, z_{1}\right) \\
& -p \varphi^{A_{p}} \exp \left[-2 t+\varphi\left(1+\frac{\varphi^{-1}}{p}\left(\kappa+z_{1}(t)\right)\right)^{p} \quad \text { for } t \in\left(-\frac{\log \lambda_{*}}{2}, \infty\right)\right.
\end{aligned}\right.
$$

We shall show that

$$
\begin{equation*}
z_{*, 1}(t) \rightarrow 0 \quad \text { as } t \rightarrow \infty . \tag{3.29}
\end{equation*}
$$

Let us admit (3.29) for a moment and continue to prove. We set

$$
\eta_{*}(t)=\varphi^{\frac{1}{p}}(t)+\frac{\varphi^{-A_{p}}(t)}{p}\left(\kappa+z_{*}(t)\right)-(\varphi(t)+\kappa)^{\frac{1}{p}} .
$$

Then, we see that η_{*} satisfies (2.3). Moreover, it follows that

$$
\begin{aligned}
\eta_{*}(t)= & \varphi^{\frac{1}{p}}(t)+\frac{\varphi^{-A_{p}}(t)}{p}\left(\kappa+z_{*}(t)\right)-\varphi^{\frac{1}{p}}(t)-\kappa \frac{\varphi^{-A_{p}}(t)}{p} \\
& -\frac{1}{2 p}\left(\frac{1}{p}-1\right)\left(1+\theta_{*} \kappa \varphi^{-1}(t)\right)^{\frac{1}{p}-2}\left(\kappa \varphi^{-1}(t)\right)^{2} \\
= & \frac{\varphi^{-A_{p}}(t)}{p} z_{*}(t)-\frac{1}{2 p}\left(\frac{1}{p}-1\right)\left(1+\theta_{*} \kappa \varphi^{-1}(t)\right)^{\frac{1}{p}-2}\left(\kappa \varphi^{-1}(t)\right)^{2}
\end{aligned}
$$

for some $\theta_{*} \in(0,1)$. This together with (3.29) implies that $\eta_{*} \in \Sigma$, where the function space Σ is defined by (2.17). From Theorem 2.1, there exists a unique solution η_{∞} to (2.3) in Σ. Therefore, we have $\eta_{*}(t)=\eta_{\infty}(t)$. This yields that $\lambda_{*}=\lambda_{p, \infty}$.

Thus, all we have to do is to prove (3.29). Suppose the contrary that there exists $\delta>0$ and $\left\{t_{k}\right\} \subset \mathbb{R}_{+}$such that $\left|z_{*, 1}\left(t_{k}\right)\right| \geq \delta$ for all $k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty} t_{k}=\infty$. Then, there exists $k_{0} \in \mathbb{N}$ such that $t_{k_{0}}>T_{\varepsilon}$. Then, we see that $\left|z_{1}\left(t_{k_{0}}, \gamma\right)\right| \geq \delta / 2$ for sufficiently large $\gamma>0$. We choose $\varepsilon=\delta / 4$. It follows from (3.20) that $\left(z_{1}\left(\tau_{\varepsilon}+\frac{\gamma^{p}}{2}+\frac{p-1}{2} \log \gamma, \gamma\right), z_{2}\left(\tau_{\varepsilon}+\right.\right.$ $\left.\left.\frac{\gamma^{p}}{2}+\frac{p-1}{2} \log \gamma, \gamma\right)\right) \in \Gamma_{\varepsilon}$. By Lemma 3.4, we see that $\left(z_{1}(t, \gamma), z_{2}(t, \gamma)\right) \in \Gamma_{2 \varepsilon}=\Gamma_{\delta / 2}$ for $t \in\left(T_{\varepsilon}, \tau_{\varepsilon}+\frac{\gamma^{p}}{2}+\frac{p-1}{2} \log \gamma\right)$. We can take $\gamma>0$ sufficiently large so that $t_{k_{0}} \in$ $\left(T_{\varepsilon}, \tau_{\varepsilon}+\frac{\gamma^{p}}{2}+\frac{p-1}{2} \log \gamma\right)$, which is a contradiction. This completes the proof.

4 Infinitely many regular solutions in case of $3 \leq d \leq 9$

In this section, following Guo and Wei [8] and Miyamoto [14, 15], we shall give a proof of Theorem 1.3. More precisely, we count a intersection number of the singular solution and regular ones. Let I be an interval in \mathbb{R}. For a function $v(s)$ on I, we define a number of zeros of v by

$$
\mathcal{Z}_{I}[v(\cdot)]=\#\{s \in I \mid v(s)=0\} .
$$

Then the following result is known.
Proposition 4.1. Let $U(\rho)$ be a solution to (3.3). We define a function V by

$$
\begin{equation*}
V(\rho)=-2 \log \rho+\log \frac{2(d-2)}{p} . \tag{4.1}
\end{equation*}
$$

Then, in case of $3 \leq d \leq 9$, we have

$$
Z_{[0, \infty)}[U(\rho)-V(\rho)]=\infty .
$$

See Nagasaki and Suzuki [17] or Miyamoto [15] for a proof of Proposition 4.1.
Remark 4.1. We can easily check that V defined by (4.1) is a singular solution to the equation in (3.3).

We set

$$
\begin{equation*}
\widehat{W}_{p}(s)=\varphi^{\frac{1}{p}}(t)+\frac{\varphi^{-A_{p}}}{p}\left(\kappa+y_{\infty}(t)\right), \tag{4.2}
\end{equation*}
$$

where $t=-\log s$ and

$$
y_{\infty}(t)=p \varphi^{A_{p}}\left((\varphi+\kappa)^{\frac{1}{p}}-\varphi^{\frac{1}{p}}\right)+p \varphi^{A_{p}} \eta_{\infty}-\kappa .
$$

Here, η_{∞} is the solution to (2.3) given by Theorem 2.1. Then, it follows from Theorem 2.1 that $\lim _{t \rightarrow \infty} y_{\infty}(t)=0$. Thus, we see that \widehat{W}_{p} is a singular solution to (1.5) with $\lambda=\lambda_{p, \infty}$. Using Proposition 4.1, we shall show the following:

Lemma 4.2. Let $\widehat{u}(s, \gamma)$ be a regular solution to (1.5) with $\widehat{u}(0)=\gamma$. Then, we have

$$
\begin{equation*}
Z_{I_{\gamma}}\left[\widehat{u}(\cdot, \gamma)-\widehat{W}_{p}(\cdot)\right] \rightarrow \infty \quad \text { as } \gamma \rightarrow \infty \tag{4.3}
\end{equation*}
$$

where $I_{\gamma}=\left[0, \min \left\{\sqrt{\lambda_{p, \infty}}, \sqrt{\lambda(\gamma)}\right\}\right)$.
Proof. We put

$$
\begin{equation*}
\widetilde{u}_{*}(\rho, \gamma)=-p \gamma^{p}+p \gamma^{p-1} \widehat{W}_{p}(s), \quad \rho=\sqrt{\gamma^{p-1} \exp \left(\gamma^{p}\right)} s \tag{4.4}
\end{equation*}
$$

where \widehat{W}_{p} is defined by (4.2). We claim that

$$
\begin{equation*}
\widetilde{u}_{*}(\rho, \gamma) \rightarrow V(\rho) \quad \text { in } C_{\mathrm{loc}}^{1}([0, \infty)) \quad \text { as } \gamma \rightarrow \infty \tag{4.5}
\end{equation*}
$$

It follows from (4.2) and (4.4) that

$$
\widetilde{u}_{*}(\rho, \gamma)=-p \gamma^{p}+p \gamma^{p-1} \widehat{W}_{p}(s)=-p \gamma^{p}+p \gamma^{p-1} \varphi^{\frac{1}{p}}(t)+\gamma^{p-1} \varphi^{-A_{p}}(t)\left(\kappa+y_{\infty}(t)\right)
$$

We fix $\rho>0$. Then, it follows that

$$
t=-\log s=-\log \rho+\frac{\gamma^{p}}{2}+\frac{(p-1) \log \gamma}{2} \rightarrow \infty \quad \text { as } \gamma \rightarrow \infty
$$

This implies that

$$
\begin{equation*}
y_{\infty}(t) \rightarrow 0 \quad \text { as } \gamma \rightarrow \infty \tag{4.6}
\end{equation*}
$$

Similarly as in (3.14), (3.15) together with (4.6), we obtain

$$
\begin{aligned}
\widetilde{u}_{*}(\rho, \gamma) & =-p \gamma^{p}+p \gamma^{p-1} \varphi^{\frac{1}{p}}(t)+\gamma^{p-1} \varphi^{-A_{p}}(t)\left(\kappa+y_{\infty}(t)\right) \\
& \rightarrow-2 \log \rho+\log \frac{2(d-2)}{p}=V(\rho) \quad \text { as } \gamma \rightarrow \infty
\end{aligned}
$$

Therefore, (4.5) holds.
It follows from (3.1) and (4.4) that

$$
\begin{equation*}
Z_{I_{\gamma}}\left[\widehat{u}(s, \gamma)-\widehat{W}_{p}(s)\right]=Z_{J_{\gamma}}\left[\widetilde{u}(\rho, \gamma)-\widetilde{u}_{*}(\rho, \gamma)\right] \tag{4.7}
\end{equation*}
$$

where $J_{\gamma}=\left[0, \sqrt{\gamma^{p-1} \exp \left(\gamma^{p}\right) \min \left\{\sqrt{\lambda_{p, \infty}}, \sqrt{\lambda(\gamma)}\right\}}\right.$. Combining Lemma 3.1, Proposition 4.1 and (4.5), we find that

$$
\begin{equation*}
\lim _{\gamma \rightarrow \infty} Z_{J_{\gamma}}\left[\widetilde{u}(\rho, \gamma)-\widetilde{u}_{*}(\rho, \gamma)\right]=Z_{[0, \infty)}[U(\rho)-V(\rho)]=\infty \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8), we obtain the desired result.

Once we obtain Lemma 4.2, we can prove Theorem 1.3 by employing the same argument as Miyamoto [15, Lemma 5]. However, for the sake of reader's convenience, we shall give a proof.

Proof of Theorem 1.3. Let $\widehat{u}(s, \gamma)$ be a solution to (1.5) with $\widehat{u}(0)=\gamma$ and $\widehat{W}_{p}(s)$ be the singular solution defined by (4.2). We put $\widehat{v}(s, \gamma)=\widehat{u}(s, \gamma)-\widehat{W}_{p}(s)$. Then, $\widehat{v}(s, \gamma)$ satisfies the following ordinary differential equation:

$$
\widehat{v}_{s s}+\frac{d-1}{s} \widehat{v}_{s}+e^{\left(\widehat{v}+W_{p}\right)^{p}}-e^{W_{p}^{p}}=0, \quad 0<s<\widehat{\lambda}(\gamma)
$$

where $\widehat{\lambda}(\gamma)=\min \left\{\sqrt{\lambda_{p, \infty}}, \sqrt{\lambda(\gamma)}\right\}$. Then, if $\widehat{v}(s, \gamma)$ has a zero at s_{0}, we have

$$
\begin{equation*}
\widehat{v}\left(s_{0}, \gamma\right)=0, \quad \widehat{v}_{s}\left(s_{0}, \gamma\right) \neq 0 \tag{4.9}
\end{equation*}
$$

from the uniqueness of a solution. Moreover, for each $\gamma>0, \widehat{v}(s, \gamma)$ has at most finitely many zeros in $(0, \widehat{\lambda}(\gamma))$. Indeed, if it is not, there exist a sequence of $\left\{s_{n}\right\} \subset[0, \widehat{\lambda}(\gamma)]$ and $s_{*}>0$ such that $\lim _{n \rightarrow \infty} s_{n}=s_{*}$. Then, we see that $\widehat{v}\left(s_{*}, \gamma\right)=\widehat{v}_{s}\left(s_{*}, \gamma\right)=0$, which is a contradiction. In addition, it follows from (4.9) and the implicit function theorem that each zeros depends continuously on γ. Therefore, we find that the number of zeros of $\widehat{v}(s, \gamma)$ does not change unless another zero enters from the boundary of the interval $[0, \widehat{\lambda}(\gamma)]$. We note that $\widehat{v}(0, \gamma)=\widehat{u}(0, \gamma)-\widehat{W}_{p}(0)=-\infty$. From this, we find that zero of $\widehat{v}(s, \gamma)$ enter the interval $[0, \widehat{\lambda}(\gamma)]$ from $s=\widehat{\lambda}(\gamma)$ only.

In order to prove Theorem 1.3, it is enough to show that the function $\lambda(\gamma)$ oscillates infinitely many times around $\lambda_{p, \infty}$ as $\gamma \rightarrow \infty$. Suppose that there exists $\gamma_{0}>0$ such that $\lambda(\gamma)>\lambda_{p, \infty}$ for all $\gamma>\gamma_{0}$. Then, we have $\hat{\lambda}(\gamma)=\sqrt{\lambda_{p, \infty}}$ for all $\gamma>\gamma_{0}$. Then we see that $\widehat{v}\left(\sqrt{\lambda_{p, \infty}}\right)=\widehat{u}\left(\sqrt{\lambda_{p, \infty}}, \gamma\right)-W_{p}\left(\sqrt{\lambda_{p, \infty}}\right)=\widehat{u}\left(\sqrt{\lambda_{p, \infty}}, \gamma\right)>0$. This implies that the number of zeros cannot increase. This contradicts with (4.3). Next, suppose that there exists $\gamma_{1}>0$ such that $\lambda(\gamma)<\lambda_{p, \infty}$ for all $\gamma>\gamma_{1}$. By the same argument as above, we can derive a contradiction. These imply that the function $\lambda(\gamma)$ oscillates infinitely many times around $\lambda_{p, \infty}$.

5 Finiteness of the Morse index in case of $d \geq 11$

In this section, we investigate the Morse index of the singular solution in case of $d \geq 11$. It is enough to restrict ourselves to radially symmetric functions. Let \widehat{W}_{p} be the singular solution to (1.5). The following lemma is a key for the proof of Theorem 1.4.

Lemma 5.1. Assume that $d \geq 11$ and $p>0$. Then, there exists $\rho_{1}>0$ such that

$$
\begin{equation*}
p \widehat{W}_{p}^{p-1}(s) e^{\widehat{W}_{p}^{p}(s)}<\frac{(d-2)^{2}}{4 s^{2}} \quad \text { for } 0<s<\rho_{1} . \tag{5.1}
\end{equation*}
$$

Proof. We set $\bar{W}_{p}(t)=\widehat{W}_{p}(s)$ and $t=-\log s$. From the proof of Theorems 1.1 and 1.2, the singular solution $\bar{W}_{p}(t)$ can be written as follows:

$$
\bar{W}_{p}(t)=\varphi^{\frac{1}{p}}(t)+\frac{\varphi^{-A_{p}}(t)}{p}\left(\kappa+y_{*}(t)\right),
$$

where $\lim _{t \rightarrow \infty} y_{*}(t)=0$. Then, for any $\varepsilon>0$, there exists $t_{1}=t_{1}(\varepsilon)>0$ such that

$$
\bar{W}_{p}^{p}(t) \leq 2 t-A_{p} \log t+\kappa+\varepsilon, \quad \bar{W}_{p}^{p-1}(t) \leq(2 t)^{A_{p}}(1+\varepsilon) \quad \text { for } t \geq t_{1}
$$

This yields that

$$
\begin{aligned}
p \bar{W}_{p}^{p-1}(t) e^{\bar{W}_{p}^{p}(t)} \leq p(2 t)^{A_{p}}(1+\varepsilon) e^{2 t-A_{p} \log t+\kappa+\varepsilon} & =p 2^{A_{p}}(1+\varepsilon) e^{2 t} \frac{(d-2) 2^{\frac{1}{p}}}{p} e^{\varepsilon} \\
& =2(d-2)(1+\varepsilon) e^{\varepsilon} e^{2 t} .
\end{aligned}
$$

We note that $2(d-2)<(d-2)^{2} / 4$ if $d \geq 11$. Therefore, we can take $\varepsilon>0$ sufficiently small so that

$$
p \bar{W}_{p}^{p-1}(t) e^{\bar{W}_{p}^{p}(t)}<\frac{(d-2)^{2}}{4} e^{2 t} .
$$

Thus, we see that (5.1) holds for $0<s<\rho_{1}$ with $\rho_{1}=e^{-t_{1}}$.
We are now in a position to prove Theorem 1.4.
Proof of Theorem 1.4. It is enough to show that the number of negative eigenvalues of the operator L_{∞} on $H_{0, \text { rad }}^{1}\left(B_{\sqrt{\lambda_{*}}}\right)$ is finite, where $L_{\infty}=-\Delta-p \widehat{W}_{p}^{p-1}(s) e^{\widehat{W}_{p}^{p}}$. We define smooth functions χ_{1} and χ_{2} on $\left[0, \sqrt{\lambda_{*}}\right)$ by

$$
\chi_{1}(s)=\left\{\begin{array}{ll}
1 & \left(0 \leq s<\rho_{1} / 2\right), \\
0 & \left(\rho_{1}<s<\sqrt{\lambda_{*}}\right),
\end{array} \quad 0 \leq \chi_{1}(s) \leq 1 \quad\left(0 \leq s \leq \sqrt{\lambda_{*}}\right)\right.
$$

and $\chi_{2}(s)=1-\chi_{1}(s)$. For each $\widehat{\phi} \in H_{0, \text { rad }}^{1}\left(B_{\sqrt{\lambda_{*}}}\right)$, we have

$$
\begin{align*}
\left\langle L_{\infty} \widehat{\phi}, \widehat{\phi}\right\rangle= & \omega_{d-1} \int_{0}^{\sqrt{\lambda}}\left\{\left|\frac{d \widehat{\phi}}{d s}\right|^{2}-p \widehat{W}_{p}^{p-1} e^{\widehat{W}_{p}^{p}(s)}|\widehat{\phi}|^{2}\right\} s^{d-1} d s \\
= & \omega_{d-1} \int_{0}^{\sqrt{\lambda} *}\left\{\left|\frac{d \widehat{\phi}}{d s}\right|^{2}-p\left(\chi_{1}(s)+\chi_{2}(s)\right) \widehat{W}_{p}^{p-1} e^{\widehat{W}_{p}^{p}(s)}|\widehat{\phi}|^{2}\right\} s^{d-1} d s \tag{5.2}\\
\geq & \omega_{d-1} \int_{0}^{\rho_{1}}\left\{\left|\frac{d \widehat{\phi}}{d s}\right|^{2}-p \widehat{W}_{p}^{p-1} e^{\widehat{W}_{p}^{p}(s)}|\widehat{\phi}|^{2}\right\} s^{d-1} d s \\
& +\omega_{d-1} \int_{0}^{\sqrt{\lambda}}\left\{\left|\frac{d \widehat{\phi}}{d s}\right|^{2}-p \chi_{2}(s) \widehat{W}_{p}^{p-1} e^{\widehat{W}_{p}^{p}(s)}|\widehat{\phi}|^{2}\right\} s^{d-1} d s,
\end{align*}
$$

where ω_{d-1} is the volume of the unit ball in \mathbb{R}^{d-1}. By (5.1) and the Hardy inequality, we obtain

$$
\int_{0}^{\rho_{1}}\left\{\left|\frac{d \widehat{\phi}}{d s}\right|^{2}-p \widehat{W}_{p}^{p-1} e^{\widehat{W}_{p}^{p}(s)}|\widehat{\phi}|^{2}\right\} s^{d-1} d s \geq \int_{0}^{\rho_{1}}\left\{\left|\frac{d \widehat{\phi}}{d s}\right|^{2}-\frac{(d-2)^{2}}{4 s^{2}}|\widehat{\phi}|^{2}\right\} s^{d-1} d s \geq 0
$$

This together with (5.2) yields that

$$
\begin{equation*}
\langle\widehat{L} \widehat{\phi}, \widehat{\phi}\rangle \geq \omega_{d-1} \int_{0}^{\sqrt{\lambda}}\left\{\left|\frac{d \widehat{\phi}}{d s}\right|^{2}-p \chi_{2}(s) \widehat{W}_{p}^{p-1} e^{\widehat{W}_{p}^{p}(s)}|\widehat{\phi}|^{2}\right\} s^{d-1} d s \tag{5.3}
\end{equation*}
$$

We note that the potential $p \chi_{2}(s) \widehat{W}_{p}^{p-1} e^{\widehat{W}_{p}^{p}(s)}$ is bounded. Therefore, we find that

$$
\inf _{\phi \in H_{0, \mathrm{rad}}^{1}\left(B_{\sqrt{\lambda_{*}}}\right),\|\phi\|_{L^{2}}=1}\left\{\omega_{d-1} \int_{0}^{\sqrt{\lambda_{*}}}\left[\left|\frac{d \widehat{\phi}}{d s}\right|^{2}-p \chi_{2}(s) \widehat{W}_{p}^{p-1} e^{\widehat{W}_{p}^{p}(s)}|\widehat{\phi}|^{2}\right] s^{d-1} d s\right\}>-\infty
$$

This together with (5.3) implies that the number of the negative eigenvalues of the operator L_{∞} is finite. This completes the proof.

Acknowledgements

HK is partially supported by the Grant-in-Aid for Young Scientists (B) \# 00612277 of JSPS. JW is supported by NSERC of Canada.

References

[1] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $\Delta u=V(x) e^{u}$ in two dimensions. Comm. Partial Differential Equations 16 (1991), 1223-1253.
[2] E. N. Dancer, Infinitely many turning points for some supercritical problems. Ann. Mat. Pura Appl. 178 (2000), 225-233.
[3] E. N. Dancer, Finite Morse index solutions of exponential problems. Ann. Inst. H. Poincare Anal. Non Lineaire 25 (2008), 173-179.
[4] E. N. Dancer, Some bifurcation results for rapidly growing nonlinearities. Discrete Contin. Dyn. Syst. 33 (2013), 153-161.
[5] E. N. Dancer and A. Farina, On the classification of solutions of $\Delta u=e^{u}$ on \mathbb{R}^{N} : stability outside a compact set and applications. Proc. Amer. Math. Soc. 137 (2009), 1333-1338.
[6] M. I. Gel'fand, Some problems in the theory of quasilinear equations. Amer. Math. Soc. Transl. 29 (1963) 295-381.
[7] B. Gidas, Wei-Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209-243.
[8] Z. Guo and J. Wei, Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent. Trans. Amer. Math. Soc. 363 (2011), 4777-4799.
[9] J. Jacobsen and K. Schmitt, The Liouville-Bratu-Gelfand problem for radial operators. J. Differential Equations 184 (2002), 283-298.
[10] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal. 49 (1972/73), 241-269.
[11] H. Kielhofer, A bifurcation theorem for potential operators. J. Funct. Anal. 77 (1988), $1-8$.
[12] P. Korman, Solution curves for semilinear equations on a ball. Proc. Amer. Math. Soc. 125 (1997), 1997-2005.
[13] F. Merle and L. A. Peletier, Positive solutions of elliptic equations involving supercritical growth. Proceeding of the Royal Society of Edingburgh, 118A (1991), 49-62.
[14] Y. Miyamoto, Structure of the positive solutions for supercritical elliptic equations in a ball. J. Math. Pures Appl. 102 (2014), 672-701.
[15] Y. Miyamoto, Classification of bifurcation diagrams for elliptic equations with exponential growth in a ball. Ann. Mat. Pura Appl. 194 (2015), 931-952.
[16] K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities. Asymptotic Anal. 3 (1990), 173-188.
[17] K. Nagasaki and T. Suzuki, Spectral and related properties about the Emden-Fowler equation $\Delta u=\lambda e^{u}$ on circular domains. Math. Ann. 299 (1994), 1-15.

Hiroaki Kikuchi,
Department of Mathematics
Tsuda College
2-1-1 Tsuda-machi, Kodaira-shi, Tokyo 187-8577, JAPAN
E-mail: hiroaki@tsuda.ac.jp

Juncheng Wei,
Department of Mathematics
University of British Columbia

Vancouver V6T 1Z2, CANADA
E-mail: jcwei@math.ubc.ca

