SKYRMIONS IN GROSS-PITAEVSKII FUNCTIONALS*

Dedicated to Professor Wu Wenjun on the occasion of his 90th birthday
Fanghua Lin
Courant Institute of Mathematical Sciences, New York University, New York, USA
E-mail: linf@cims.nyu.edu
Taichia Lin
Department of Mathematics, National Taiwan University, Taipei, Taiwan 106; Taida Institute of Mathematical Sciences (TIMS), Taipei, Taiwan, China

E-mail : tclin@math.ntu.edu.tw
Juncheng Wei
Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
E-mail: wei@math.cuhk.edu.hk

Abstract

In Bose-Einstein condensates (BECs), skyrmions can be characterized by pairs of linking vortex rings coming from two-component wave functions. Here we construct skyrmions by studying critical points of Gross-Pitaevskii functionals with two-component wave functions. Using localized energy method, we rigorously prove the existence, and describe the configurations of skyrmions in such BECs.

Key words skyrmions; Bose-Einstein condensate; linked vortex rings; localized energy method
2000 MR Subject Classification 35J60; 35B38; 35B25

1 Introduction

Vortex rings formed in nature with various scales and composed of vortices whose core is an one-dimensional close loop in three space dimensions have fascinated scientists and mathematicians for a long time. They can also be observed in the trapped Bose-Einstein condensate (BEC) represented by one-component wave functions (cf. [1]). In a double condensate (a binary mixture of BECs with two different hyperfine states) described by two-component wave functions (cf. [13]), the skyrmion may be formed with a pair of linking vortex rings (cf. [7]). The skyrmion can be depicted as a quantized vortex ring in one component close to the core of which is confined the second component carrying quantized circulation around the ring.

[^0]The GP functional with two-component wave functions is a standard model to describe a double condensate. In [3], GP functionals can be mapped onto a version of the nonlinear sigma model having a similar form to the Skyrme model. Conventionally, the Skyrme model gives skyrmions which are topologically non-trivial maps from three-dimensional space to a target manifold in order to represent baryons in nuclear physics (cf. [5], [9], [10], [17]). It would be natural to believe that skyrmions can be found in GP functionals with two-component wave functions. Here we want to prove rigorously the existence of configuration of skyrmions by studying critical points of GP functionals with two-component wave functions.

Physically, the two-component GP functional can be written as

$$
\begin{equation*}
E\left[\Psi_{1}, \Psi_{2}\right]=\int_{\mathbb{R}^{3}} \sum_{i=1}^{2}\left(\frac{\hbar}{2 M}\left|\nabla \Psi_{i}\right|^{2}+V_{i}\left|\Psi_{i}\right|^{2}\right)+\sum_{i, j=1}^{2} U_{i j}\left|\Psi_{i}\right|^{2}\left|\Psi_{j}\right|^{2} \tag{1.1}
\end{equation*}
$$

under the following constraints:

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left|\Psi_{i}\right|^{2}=N_{i}, \quad i=1,2, \tag{1.2}
\end{equation*}
$$

where \hbar is the Planck constant, M is the atomic mass, and V_{i} is the i-th trap potential. The coefficients $U_{i j}$'s are determined by all mutual s-wave scattering lengths. Due to Feshbach resonance, $U_{i j}$'s can be tuned over a very large range by adjusting the externally applied magnetic field (cf. [8]). Besides, Ψ_{i} is the complex-valued wave function of the i-th component BEC, and N_{i} is a positive constant denoting the number of atoms of the i-th component BEC. By numerical simulations, a configuration with the topology of a skyrmion, i.e., a topological soliton of the $S^{3} \rightarrow S^{3}$ map (cf. [14]) can be imprinted in a double condensate (cf. [15]), where S^{3} is the unit sphere in \mathbb{R}^{4}. Furthermore, stable skyrmions may exist in a homogeneous two-component BEC under the condition that phase separation occurs due to strong intercomponent repulsion without the effect of trap potentials (cf. [2]). This motivates us to replace \mathbb{R}^{3} by S^{3} and to set $V_{i} \equiv 0$ for $i=1,2$ in (1.1) and (1.2).

Mathematically, we may compactify \mathbb{R}^{3} into S^{3} if $\left(\Psi_{1}, \Psi_{2}\right)$ approaches a constant vector at infinity of \mathbb{R}^{3}. Hence we may replace \mathbb{R}^{3} by S^{3} in (1.1) and (1.2), respectively. Let $V_{i} \equiv 0$ for $i=1,2$ and choose suitable scales on $U_{i j}$'s and N_{i} 's. Then we may transform the functional (1.1) and the condition (1.2) (up to constants) into

$$
\begin{equation*}
E_{\Lambda, \beta}(u, v)=\int_{S^{3}}|\nabla u|^{2}+|\nabla v|^{2}+\frac{\Lambda}{2}\left(1-|u|^{2}-|v|^{2}\right)^{2}+4 \beta|u|^{2}|v|^{2} \tag{1.3}
\end{equation*}
$$

for $u, v \in H^{1}\left(S^{3} ; \mathbb{C}\right)$ satisfying

$$
\begin{equation*}
\int_{S^{3}}|u|^{2}=c_{1, \Lambda}\left|S^{3}\right|, \quad \int_{S^{3}}|v|^{2}=c_{2, \Lambda}\left|S^{3}\right|, \tag{1.4}
\end{equation*}
$$

where $\left|S^{3}\right|=2 \pi^{2}, \Lambda$ and β are large parameters, and $c_{j, \Lambda}$'s are positive constants such that $c_{j, \Lambda} \rightarrow c_{j}$ as $\Lambda \uparrow \infty, 0<c_{1}, c_{2}<1$, and $c_{1}+c_{2}=1$. It is evident that the large parameter Λ forces the vector (u, v) to be close to S^{3} in order to get finite energy, and another large parameter β may provide strong inter-component repulsion to fulfill the condition of phase separation in the physical literature (cf. [18]). In this paper, we study critical points of the functional (1.3) with the constraint (1.4) in order to represent skyrmions in double condensates.

2 Problems and Results

For simplicity, we first assume $(u, v) \in S^{3}$ and

$$
\begin{equation*}
\binom{u}{v}=\binom{(\sin \lambda) \mathrm{e}^{i m \phi}}{(\cos \lambda) \mathrm{e}^{i n \theta}} \tag{2.1}
\end{equation*}
$$

where $\lambda=\lambda(r), \lambda(0)=0, \lambda\left(\frac{\pi}{2}\right)=\frac{\pi}{2}, m, n \in \mathbb{Z},(r, \phi, \theta)$ are standard Hopf (toroidal) coordinates of S^{3} defined by

$$
\begin{array}{cc}
x_{1}=\cos r \cos \theta, & x_{2}=\cos r \sin \theta \tag{2.2}\\
x_{3}=\sin r \cos \phi, & x_{4}=\sin r \sin \phi
\end{array}
$$

for $\left(x_{1}, \cdots, x_{4}\right) \in S^{3}=\left\{\left(x_{1}, \cdots, x_{4}\right): \sum_{j=1}^{4} x_{j}^{2}=1\right\}$, where $r \in\left[0, \frac{\pi}{2}\right], \theta$ and $\phi \in[0,2 \pi]$. For each fixed value of $r \in\left[0, \frac{\pi}{2}\right]$, the θ and ϕ coordinates sweep out a two-dimensional torus. Taken together, these tori almost fill S^{3}. The exceptions occur at the endpoints $r=0$ and $r=\frac{\pi}{2}$, where the stack of tori collapses to the circles $\Gamma_{1}=\left\{\left(x_{1}, x_{2}, 0,0\right): x_{1}^{2}+x_{2}^{2}=1\right\}$ and $\Gamma_{2}=\left\{\left(0,0, x_{3}, x_{4}\right): x_{3}^{2}+x_{4}^{2}=1\right\}$, respectively. It is obvious that Γ_{1} and Γ_{2} are linking circles in S^{3}. The coordinates r, θ and ϕ are everywhere orthogonal to each other. Thus, the metric on S^{3} may be written as

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+\cos ^{2} r \mathrm{~d} \theta^{2}+\sin ^{2} r \mathrm{~d} \phi^{2}
$$

Besides, the volume form is given by

$$
\mathrm{d} V=\sin r \cos r \mathrm{~d} r \wedge \mathrm{~d} \theta \wedge \mathrm{~d} \phi
$$

Consequently,

$$
\begin{equation*}
\int_{S^{3}}|\nabla w|^{2}=\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}}\left[(\sin 2 r)\left|\partial_{r} w\right|^{2}+\frac{\sin 2 r}{\cos ^{2} r}\left|\partial_{\theta} w\right|^{2}+\frac{\sin 2 r}{\sin ^{2} r}\left|\partial_{\phi} w\right|^{2}\right] \mathrm{d} r \mathrm{~d} \theta \mathrm{~d} \phi \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{S^{3}}|w|^{2}=\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)|w|^{2} \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \tag{2.4}
\end{equation*}
$$

for $w \in H^{1}\left(S^{3} ; \mathbb{C}\right)$.
By (2.1), (2.3) and (2.4), the energy functional (1.3) can be reduced to

$$
\begin{equation*}
\mathcal{E}_{\beta}(\lambda)=2 \pi^{2} \int_{0}^{\frac{\pi}{2}}\left[(\sin 2 r)\left|\lambda^{\prime}\right|^{2}+\frac{m^{2} \sin 2 r}{\sin ^{2} r} \sin ^{2} \lambda+\frac{n^{2} \sin 2 r}{\cos ^{2} r} \cos ^{2} \lambda+\beta(\sin 2 r) \sin ^{2} 2 \lambda\right] \mathrm{d} r \tag{2.5}
\end{equation*}
$$

under the constraint

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \sin ^{2} \lambda \mathrm{~d} r=c_{1} \in(0,1) \tag{2.6}
\end{equation*}
$$

which may come from (1.4) and (2.1). Let $\varepsilon=1 / \sqrt{\beta}$. Then the energy functional can be written as $\mathcal{E}_{\beta}=2 \pi^{2} \varepsilon^{-2} E_{\varepsilon}$, where $0<\varepsilon \ll 1$ is a small parameter, and

$$
\begin{equation*}
E_{\varepsilon}(\lambda)=\int_{0}^{\frac{\pi}{2}}\left\{\varepsilon^{2}\left[(\sin 2 r)\left|\lambda^{\prime}\right|^{2}+\frac{m^{2} \sin 2 r}{\sin ^{2} r} \sin ^{2} \lambda+\frac{n^{2} \sin 2 r}{\cos ^{2} r} \cos ^{2} \lambda\right]+(\sin 2 r) \sin ^{2} 2 \lambda\right\} \mathrm{d} r \tag{2.7}
\end{equation*}
$$

To find critical points of E_{ε} under the constraint (2.6), we study solutions (λ, μ) 's of the following problem:

$$
\left\{\begin{array}{l}
-\varepsilon^{2}\left[\lambda^{\prime \prime}+\frac{2 \cos 2 r}{\sin 2 r} \lambda^{\prime}-\frac{2}{\sin ^{2} 2 r}\left(m^{2} \cos ^{2} r-n^{2} \sin ^{2} r\right) \sin 2 \lambda\right]+\sin 4 \lambda \tag{2.8}\\
=\mu \varepsilon \sin 2 \lambda, \quad 0<r<\frac{\pi}{2} \\
\lambda(0)=0, \quad \lambda\left(\frac{\pi}{2}\right)=\frac{\pi}{2}
\end{array}\right.
$$

where μ is the associated Lagrange multiplier. Note that the conditions $\lambda(0)=0$ and $\lambda\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$ are crucial to let (u, v) (defined in (2.1)) form a smooth map from S^{3} to S^{3} with topological charge $m n$. Here topological charge means how many times the domain sphere S^{3} are wrapped on the image sphere S^{3}. Actually, we may find solutions of the equation in (2.8) satisfying another conditions e.g. $\lambda(0)=0$ and $\lambda\left(\frac{\pi}{2}\right)=0$ or π but the corresponding map (u, v) may become multi-valued and lose smoothness at $r=\pi / 2$, i.e., the circle Γ_{2}.

In this paper, we show the following result.
For each $\mu \in \mathbb{R}$, the problem (2.8) has a solution $\lambda=\lambda_{\varepsilon}(r)$ satisfying

$$
\lambda_{\varepsilon}(r) \rightarrow \begin{cases}0, & \forall 0 \leq r<t_{0} \tag{2.9}\\ \frac{\pi}{2}, & \forall t_{0}<r \leq \frac{\pi}{2}\end{cases}
$$

and

$$
\begin{equation*}
E_{\varepsilon}\left(\lambda_{\varepsilon}\right)=O(\varepsilon) \tag{2.10}
\end{equation*}
$$

as $\varepsilon \rightarrow 0+$, where $0<t_{0}<\frac{\pi}{2}$ depends on μ. As $\varepsilon>0$ sufficiently small, the profile of λ_{ε} having a sharp interface near t_{0} can be sketched in Figure 1 as follows:

Figure 1
Moreover, we may choose a suitable μ to fulfill the condition (2.6), and the associated solution can be proved as a local minimizer of the energy functional (2.7) under the constraint (2.6). This may give the linear stability of the solution.

To find critical points of $E_{\Lambda, \beta}$, we assume

$$
\begin{equation*}
\binom{u}{v}=\rho\binom{(\cos \lambda) \mathrm{e}^{i \phi}}{(\sin \lambda) \mathrm{e}^{i \theta}} \tag{2.11}
\end{equation*}
$$

where $\rho=\rho(r)$ and $\lambda=\lambda(r)$ satisfy the following boundary conditions:

$$
\left\{\begin{array}{l}
\rho(0)=\rho\left(\frac{\pi}{2}\right)=0, \tag{2.12}\\
\lambda(0)=0, \quad \lambda\left(\frac{\pi}{2}\right)=\frac{\pi}{2}
\end{array}\right.
$$

Here (r, ϕ, θ) are standard Hopf coordinates of S^{3}. It is remarkable that

$$
\binom{(\cos \lambda) \mathrm{e}^{i \phi}}{(\sin \lambda) \mathrm{e}^{i \theta}}=\binom{(\sin \widetilde{\lambda}) \mathrm{e}^{i \phi}}{(\cos \widetilde{\lambda}) \mathrm{e}^{i \theta}}, \quad \widetilde{\lambda}=\frac{\pi}{2}-\lambda
$$

has the same form as (2.1) with $m=n=1$. Then, by (1.3), (2.3), (2.4), and (2.11), the energy functional $E_{\Lambda, \beta}(u, v)$ can be written as

$$
\begin{align*}
\mathcal{E}_{\Lambda, \beta}= & \mathcal{E}_{\Lambda, \beta}(\rho, \lambda) \\
= & 2 \pi^{2} \int_{0}^{\frac{\pi}{2}}\left[(\sin 2 r) \rho^{2}\left|\lambda^{\prime}\right|^{2}+\beta(\sin 2 r) \rho^{4} \sin ^{2} 2 \lambda\right] \mathrm{d} r \\
& +2 \pi^{2} \int_{0}^{\frac{\pi}{2}}\left[(\sin 2 r)\left|\rho^{\prime}\right|^{2}+\left(\frac{\sin 2 r}{\sin ^{2} r} \cos ^{2} \lambda+\frac{\sin 2 r}{\cos ^{2} r} \sin ^{2} \lambda\right) \rho^{2}+(\sin 2 r) \frac{\Lambda}{2}\left(1-\rho^{2}\right)^{2}\right] \mathrm{d} r . \tag{2.13}
\end{align*}
$$

Besides, the constraint (1.4) becomes

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \rho^{2} \cos ^{2} \lambda \mathrm{~d} r=c_{1, \Lambda}, \quad \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \rho^{2} \sin ^{2} \lambda \mathrm{~d} r=c_{2, \Lambda} \tag{2.14}
\end{equation*}
$$

where $c_{j, \Lambda} \rightarrow c_{j}$ as $\Lambda \rightarrow \infty, 0<c_{1}, c_{2}<1$, and $c_{1}+c_{2}=1$.
Let $\delta=\sqrt{1 / \Lambda}$ and $\varepsilon=\sqrt{1 / \beta}$, where Λ and β are large parameters tending to infinity. Then the functional $\mathcal{E}_{\Lambda, \beta}=2 \pi^{2} \varepsilon^{-2} \widetilde{E}_{\delta, \varepsilon}$, where

$$
\begin{align*}
\widetilde{E}_{\delta, \varepsilon}(\lambda, \rho)= & \int_{0}^{\frac{\pi}{2}}\left[\varepsilon^{2}(\sin 2 r) \rho^{2}\left|\lambda^{\prime}\right|^{2}+(\sin 2 r) \rho^{4} \sin ^{2} 2 \lambda\right] \mathrm{d} r \\
& +\int_{0}^{\frac{\pi}{2}}\left\{\epsilon^{2}(\sin 2 r)\left|\rho^{\prime}\right|^{2}+\epsilon^{2}\left[\frac{\sin 2 r}{\sin ^{2} r} \cos ^{2} \lambda+\frac{\sin 2 r}{\cos ^{2} r} \sin ^{2} \lambda\right] \rho^{2}\right. \\
& \left.+\frac{\epsilon^{2}}{2 \delta^{2}}(\sin 2 r)\left(1-\rho^{2}\right)^{2}\right\} \mathrm{d} r \tag{2.15}
\end{align*}
$$

and the constraint (2.14) becomes

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \rho^{2} \cos ^{2} \lambda \mathrm{~d} r=c_{1, \delta}, \quad \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \rho^{2} \sin ^{2} \lambda \mathrm{~d} r=c_{2, \delta} \tag{2.16}
\end{equation*}
$$

where $c_{j, \delta} \rightarrow c_{j}$ as $\delta \rightarrow 0,0<c_{1}, c_{2}<1$, and $c_{1}+c_{2}=1$. Without loss of generality, we assume $\rho \rightarrow 1$ almost everywhere as $\delta \rightarrow 0$. Actually, such a hypothesis will be removed later. Then two conditions of (2.16) can be reduced to one condition as follows:

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \rho^{2} \sin ^{2} \lambda \mathrm{~d} r=c_{2, \delta} \tag{2.17}
\end{equation*}
$$

where $c_{2, \delta} \rightarrow c_{2}$ as $\delta \rightarrow 0$. Critical points of $\widetilde{E}_{\delta, \varepsilon}$ subject to (2.17) satisfy

$$
\begin{equation*}
-\frac{\varepsilon^{2}}{\sin 2 r}\left(\rho^{2} \lambda^{\prime} \sin 2 r\right)^{\prime}+\rho^{4} \sin 4 \lambda-\varepsilon^{2}\left(\frac{2 \cos 2 r}{\sin ^{2} 2 r}\right) \rho^{2} \sin 2 \lambda=\varepsilon \mu \rho^{2} \sin 2 \lambda, \quad \forall 0<r<\pi / 2 \tag{2.18}
\end{equation*}
$$

and

$$
\begin{align*}
& -\frac{\delta^{2}}{\sin 2 r}\left(\rho^{\prime} \sin 2 r\right)^{\prime}+\left(\rho^{2}-1\right) \rho+\delta^{2}\left(\left|\lambda^{\prime}\right|^{2}+\frac{\cos ^{2} \lambda}{\sin ^{2} r}+\frac{\sin ^{2} \lambda}{\cos ^{2} r}\right) \rho+\frac{2 \delta^{2}}{\varepsilon^{2}} \rho^{3} \sin ^{2} 2 \lambda \\
= & \delta \mu \rho \sin ^{2} \lambda, \quad \forall 0<r<\pi / 2 \tag{2.19}
\end{align*}
$$

with the conditions of (2.12), where μ is the Lagrange multiplier. Under the assumption

$$
\begin{equation*}
0<\varepsilon^{2} \ll \delta \ll \varepsilon \ll 1 \tag{2.20}
\end{equation*}
$$

we may show the following result.
For each $\mu \in \mathbb{R}$, there exists a solution $(\lambda, \rho)=\left(\lambda_{\delta, \varepsilon, \mu}, \rho_{\delta, \varepsilon, \mu}\right)$ to (2.18)-(2.19) such that

$$
\begin{align*}
& \lambda_{\delta, \varepsilon, \mu}(r) \rightarrow \begin{cases}0, & \forall 0 \leq r<t_{0} \\
\frac{\pi}{2}, & \forall t_{0}<r \leq \frac{\pi}{2}\end{cases} \tag{2.21}\\
& \rho_{\delta, \varepsilon, \mu}(r) \rightarrow \begin{cases}1, & \forall 0<r<\frac{\pi}{2} \\
0, & \text { if } r=0, \frac{\pi}{2}\end{cases} \tag{2.22}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{E}_{\delta, \varepsilon}\left(\lambda_{\delta, \varepsilon, \mu}, \rho_{\delta, \varepsilon, \mu}\right)=O(\varepsilon)+O\left(\varepsilon^{2} \log \frac{1}{\delta}\right) \tag{2.23}
\end{equation*}
$$

as $\varepsilon \rightarrow 0+$, where $0<t_{0}<\frac{\pi}{2}$ depends on μ. Moreover, we may find a suitable μ such that the condition (2.17) is fulfilled. When $\varepsilon>0$ is sufficiently small, the graph of $\lambda_{\delta, \varepsilon, \mu}$ has a sharp interface near t_{0}. Besides, the profile of $\rho_{\delta, \varepsilon, \mu}$ gives linking vortex rings around $r=0, \frac{\pi}{2}$, i.e., the circles $\Gamma_{j}, j=1,2$. Therefore, by (2.11), we may obtain skyrmions of GP functionals. We point out that, on one hand, one may regard $\widetilde{E}_{\delta, \varepsilon}$ as an approximation to E_{ε} when $0<\delta \ll \varepsilon \ll 1$. On the other hand, by (2.23), it is evident that $\widetilde{E}_{\delta, \varepsilon}$ is of $O(\varepsilon)$ which is same as E_{ε} in (2.10) if $\delta \gg \varepsilon^{2}>0$ holds. This provides one of the reasons for the technical condition (2.20) in the sense that certain restrictions may needed in order to accommodate phase-seperations and vortex-confinements. We use this technical assumption mainly for the purpose of simplifications of some proofs. We refer to Section 7 of the paper for details.

The rest of paper is organized as follows: In Section 3, we introduced the heteroclinic solution of Sine-Gordon equation. The heteroclinic solution can be used to approach solutions of (2.8) with (2.9) in Section 4. We study the spectrum of linearized operator and the local minimizer of E_{ε} in Section 5 and 6, respectively. In Section 7, we find solutions of (2.18)-(2.19) with (2.21)-(2.23).

3 Heteroclinic Solution

Let w denote the unique heteroclinic solution of Sine-Gordon equation given by

$$
\left\{\begin{array}{l}
-w^{\prime \prime}+\sin 4 w=0 \quad \text { in } \quad \mathbb{R} \tag{3.1}\\
w(-\infty)=0, \quad w(+\infty)=\frac{\pi}{2}
\end{array}\right.
$$

Note that the solution w can be written as

$$
\begin{equation*}
w(x)=\frac{\pi}{4}+\frac{1}{2} \arcsin [\tanh (2 x)], \quad \forall x \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

The following lemma plays an important role in our study.
Lemma 3.1 The eigenvalue problem

$$
\left\{\begin{array}{l}
-\phi^{\prime \prime}+4(\cos 4 w) \phi=\lambda \phi \quad \text { in } \quad \mathbb{R} \tag{3.3}\\
\phi(\pm \infty)=0
\end{array}\right.
$$

has the following set of eigenvalues

$$
\begin{equation*}
\lambda_{1}=0, \quad \phi_{1}=w^{\prime} ; \quad \lambda_{2}>0 \tag{3.4}
\end{equation*}
$$

where λ_{1} is the first eigenvalue, ϕ_{1} is the first eigenfunction and λ_{2} is the second eigenvalue.
Proof Using (3.2), the eigenvalue problem (3.3) becomes

$$
\begin{equation*}
-\phi^{\prime \prime}+4\left(1-2(\tanh (2 x))^{2}\right) \phi=\lambda \phi, \phi \in H^{1}(\mathbb{R}) \tag{3.5}
\end{equation*}
$$

Letting $y=2 x$, (3.5) becomes

$$
\begin{equation*}
-\phi^{\prime \prime}-\left(-1+2(\cosh (y))^{-2}\right) \phi=\lambda \phi \tag{3.6}
\end{equation*}
$$

In fact, (3.6) can be written as

$$
\begin{equation*}
-\phi^{\prime \prime}-\left(-1+w_{0}^{2}\right) \phi=\lambda \phi, \phi \in H^{1}(\mathbb{R}) \tag{3.7}
\end{equation*}
$$

where $w_{0}=\sqrt{2}(\cosh y)^{-1}$ is the unique ODE solution of

$$
w_{0}^{\prime \prime}-w_{0}+w_{0}^{3}=0, w_{0}>0
$$

It is well-known that the eigenvalues of (3.7) are given by $\lambda_{1}=0, \phi_{1}=c w_{0}=c \sqrt{2} \operatorname{sech} y ; \lambda_{2}>$ 0. See Lemma 4.1 of [19]. This proves the lemma.

As a consequence, we have

$$
\begin{equation*}
\int_{\mathbb{R}} \phi^{\prime 2}+4 \int_{\mathbb{R}}(\cos 4 w) \phi^{2} \geq 0, \forall \phi \in H^{1}(\mathbb{R}) \tag{3.8}
\end{equation*}
$$

It is also easy to see that

$$
\begin{cases}w(x)=O\left(\mathrm{e}^{-c_{1}|x|}\right) & \text { as } \quad x \rightarrow-\infty \tag{3.9}\\ w(x)=\frac{\pi}{2}+O\left(\mathrm{e}^{-c_{1}|x|}\right) & \text { as } \quad x \rightarrow+\infty\end{cases}
$$

where c_{1} is a positive constant. Fix $t \in\left(0, \frac{\pi}{2}\right)$, we define

$$
w_{t}(x)= \begin{cases}0, & 0<x<t-2 \delta_{0} \tag{3.10}\\ w\left(\frac{x-t}{\varepsilon}\right), & t-\delta_{0}<x<t+\delta_{0} \\ \frac{\pi}{2}, & t+2 \delta_{0}<x<\frac{\pi}{2}\end{cases}
$$

where $\delta_{0}>0$ is a small constant independent of ε. Because of (3.9), we may use smooth cut-off functions to define $w_{t}(x)$ for $x \in\left[t-2 \delta_{0}, t-\delta_{0}\right] \cup\left[t+\delta_{0}, t+2 \delta_{0}\right]$ such that

$$
\begin{equation*}
w_{t}(x)=w\left(\frac{x-t}{\varepsilon}\right)+O\left(\mathrm{e}^{-\frac{\delta_{0}}{\varepsilon}} \mathrm{e}^{-\frac{c_{2}|x-t|}{\varepsilon}}\right) \tag{3.11}
\end{equation*}
$$

where c_{2} is a positive constant.

4 Solutions of (2.8)

Let $\mu>0$ be a fixed number. We shall use localized energy method to find solutions of (2.8) with the following asymptotic behavior

$$
\lambda(r)=w_{t_{\varepsilon}, \varepsilon}(r)+\phi_{\varepsilon}(r), \quad\left\|\phi_{\varepsilon}\right\|_{L^{\infty}}=O(\varepsilon)
$$

For references on localized energy method, we refer to Section 2.3 of [21].
To this end, we divide our proof into two steps:
Step I For each $t \in\left(0, \frac{\pi}{2}\right)$, there exists a unique function $\phi_{\varepsilon, t}$ and a unique number $c_{\varepsilon}(t)$ such that $\lambda(r)=w_{t}(r)+\phi_{\varepsilon, t}(r)$ satisfying

$$
\left\{\begin{array}{l}
-\varepsilon^{2}\left[\lambda^{\prime \prime}+\frac{2 \cos 2 r}{\sin 2 r} \lambda^{\prime}-\frac{2}{\sin ^{2} 2 r}\left(m^{2} \cos ^{2} r-n^{2} \sin ^{2} r\right) \sin 2 \lambda\right] \tag{4.1}\\
+\sin 4 \lambda-\varepsilon \mu \sin 2 \lambda=c_{\varepsilon}(t) w^{\prime}\left(\frac{r-t}{\varepsilon}\right) \\
\int_{0}^{\frac{\pi}{2}} w^{\prime}\left(\frac{r-t}{\varepsilon}\right) \phi_{\varepsilon, t}(r) \mathrm{d} r=0, \quad \phi_{\varepsilon, t}(0)=\phi_{\varepsilon, t}\left(\frac{\pi}{2}\right)=0
\end{array}\right.
$$

Step II There exists a constant $t_{\varepsilon} \in\left(0, \frac{\pi}{2}\right)$ such that

$$
c_{\varepsilon}\left(t_{\varepsilon}\right)=0
$$

The proof of Step I relies on the following Lemma.
Lemma 4.1 Consider the following linearized problem

$$
\left\{\begin{array}{l}
-\varepsilon^{2}\left[\phi^{\prime \prime}+\frac{2 \cos 2 r}{\sin 2 r} \phi^{\prime}-\frac{4}{\sin ^{2} 2 r}\left(m^{2} \cos ^{2} r-n^{2} \sin ^{2} r\right)\left(\cos 2 w_{t}\right) \phi\right] \tag{4.2}\\
+4\left(\cos 4 w_{t}\right) \phi-2 \varepsilon \mu\left(\cos 2 w_{t}\right) \phi=h, \\
\int_{0}^{\frac{\pi}{2}} w^{\prime}\left(\frac{r-t}{\varepsilon}\right) \phi(r) \mathrm{d} r=0, \quad \phi(0)=0, \quad \phi\left(\frac{\pi}{2}\right)=0
\end{array}\right.
$$

Then

$$
\begin{equation*}
\|\phi\|_{L^{\infty}\left(0, \frac{\pi}{2}\right)} \leq c\|h\|_{L^{\infty}\left(0, \frac{\pi}{2}\right)} \tag{4.3}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
|\phi(r)| \leq C\|h\|_{*} \mathrm{e}^{-\sigma\left|\frac{r-t}{\varepsilon}\right|}, \quad \forall r \in\left(0, \frac{\pi}{2}\right) \tag{4.4}
\end{equation*}
$$

where $\sigma \in(0,1)$ is a small number, C is a positive constant independent of ε, and $\|\cdot\|_{*}$ is defined by

$$
\|h\|_{*}=\sup _{r \in\left(0, \frac{\pi}{2}\right)} \mathrm{e}^{\sigma\left|\frac{r-t}{\varepsilon}\right|}|h(r)|, \quad \forall h \in L^{\infty}\left(0, \frac{\pi}{2}\right)
$$

Proof First, we prove (4.3) by contradiction. Suppose that $\|h\|_{L^{\infty}\left(0, \frac{\pi}{2}\right)}=o_{\varepsilon}(1)$ and $\|\phi\|_{L^{\infty}\left(0, \frac{\pi}{2}\right)}=1$, where $o_{\varepsilon}(1)$ is a small quantity tending to zero as ε goes to zero. Let $r_{\varepsilon} \in\left(0, \frac{\pi}{2}\right)$ such that $\phi\left(r_{\varepsilon}\right)=\|\phi\|_{L^{\infty}\left(0, \frac{\pi}{2}\right)}=1$. If r_{ε} is close to zero, then

$$
\left\{\begin{array}{l}
\left.\phi^{\prime \prime}\left(r_{\varepsilon}\right)<0, \quad\left(m^{2} \cos ^{2} r_{\varepsilon}-n^{2} \sin ^{2} r_{\varepsilon}\right)\left(\cos 2 w_{t}\left(r_{\varepsilon}\right)\right) \phi\left(r_{\varepsilon}\right)\right)>0 \tag{4.5}\\
\phi^{\prime}\left(r_{\varepsilon}\right)=0
\end{array}\right.
$$

Consequently, by (4.5) and the equation of (4.2), we have

$$
4\left(\cos 4 w_{t}\left(r_{\varepsilon}\right)\right) \phi\left(r_{\varepsilon}\right)-2 \varepsilon \mu\left(\cos 2 w_{t}\left(r_{\varepsilon}\right)\right) \phi\left(r_{\varepsilon}\right) \leq h\left(r_{\varepsilon}\right)=o_{\varepsilon}(1)
$$

which is impossible. Similarly, if r_{ε} is close to $\frac{\pi}{2}$, we may also get a contradiction. Hence by (3.11), r_{ε} must be close to t. In fact, the same argument as above may show that

$$
\begin{equation*}
\left|r_{\varepsilon}-t\right| \leq c \varepsilon \tag{4.6}
\end{equation*}
$$

where c is a positive constant. Let $r_{\varepsilon}=t+\varepsilon y_{\varepsilon}$. Then (4.6) implies $\left|y_{\varepsilon}\right| \leq c$ so due to notation convenience, we may assume $y_{\varepsilon} \rightarrow y_{0}$ as $\varepsilon \rightarrow 0+$.

Now, we rescale the variable by setting $r=t+\varepsilon y$ and $\tilde{\phi}_{\varepsilon}(y):=\phi(t+\varepsilon y)$. Then by (4.2), we obtain $\tilde{\phi}_{\varepsilon}(y) \rightarrow \phi_{0}(y)$ as $\varepsilon \rightarrow 0+$, where ϕ_{0} satisfies

$$
\begin{equation*}
-\phi_{0}^{\prime \prime}+4(\cos 4 w) \phi_{0}=0 \quad \text { in } \mathbb{R} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}} \phi_{0} w^{\prime} \mathrm{d} y=0 \tag{4.8}
\end{equation*}
$$

By (4.7) and Lemma 3.1, we have $\phi_{0}(y)=c_{*} w^{\prime}(y)$ and hence by (4.8), $c_{*}=0$, i.e., $\phi_{0} \equiv 0$. However, $1=\phi\left(r_{\varepsilon}\right)=\tilde{\phi}_{\varepsilon}\left(y_{\varepsilon}\right) \rightarrow \phi_{0}\left(y_{0}\right)$, i.e., $\phi_{0}\left(y_{0}\right)=1$. Therefore, we get a contradiction and complete the proof of (4.3).

To prove (4.4), we notice that the function $\|h\|_{*} \mathrm{e}^{-\sigma\left|\frac{r-t}{\varepsilon}\right|}$ is a supersolution of (4.2) for $|r-t| \geq \varepsilon R$, provided $\sigma>0$ sufficiently small, where R is a positive constant independent of ε. Here we have used the fact that

$$
|h(r)| \leq\|h\|_{*} \mathrm{e}^{-\sigma\left|\frac{r-t}{\varepsilon}\right|}, \quad \forall r \in\left(0, \frac{\pi}{2}\right)
$$

Moreover, $C\|h\|_{*} \mathrm{e}^{-\sigma\left|\frac{r-t}{\varepsilon}\right|}$ is a supersolution of (4.2) for $0<r<\frac{\pi}{2}$, where C is a positive constant independent of ε. Then (4.4) follows from comparison principle.

Let us define

$$
\left\{\begin{array}{l}
\|\phi\|_{*}=\sup _{r \in\left(0, \frac{\pi}{2}\right)} \mathrm{e}^{\sigma\left|\frac{r-t}{\varepsilon}\right|}|\phi(r)| \tag{4.9}\\
\|h\|_{* *}=\sup _{r \in\left(0, \frac{\pi}{2}\right)} \mathrm{e}^{\sigma\left|\frac{r-t}{\varepsilon}\right|}|h(r)|
\end{array}\right.
$$

Then, by Lemma 4.1 and a contraction mapping principle (see our earlier papers Phy. D, JMP), we have

Proposition 4.2 For each $t \in\left(0, \frac{\pi}{2}\right)$, there exists $\left(\phi_{\varepsilon, t}, c_{\varepsilon}(t)\right)$ a unique solution of (4.1) such that

$$
\begin{equation*}
\left\|\phi_{\varepsilon, t}\right\|_{*} \leq K \varepsilon \tag{4.10}
\end{equation*}
$$

where K is a positive constant independent of ε. Moreover, the map $t \rightarrow \phi_{\varepsilon, t}$ is of C^{2}.
Now we proceed to Step II. We first expand $c_{\varepsilon}(t)$ as follows:
Lemma 4.3 As $\varepsilon \rightarrow 0+$, we have

$$
\begin{equation*}
\left(\int_{\mathbb{R}}\left(w^{\prime}(y)\right)^{2} \mathrm{~d} y\right) c_{\varepsilon}(t)=-2 \cot (2 t) \varepsilon \int_{\mathbb{R}}\left(w^{\prime}(y)\right)^{2} \mathrm{~d} y-\varepsilon \mu+O\left(\varepsilon^{2}\right) \tag{4.11}
\end{equation*}
$$

The proof of Lemma 4.3 is simple: we just multiply (4.1) by $w^{\prime}(y)$ and integrate it over \mathbb{R}. Using $r=t+\varepsilon y$ and integrate by parts, we may obtain (4.11).

By Proposition 4.2 and Lemma 4.3, we may derive the following main result of this section.
Theorem 4.4 For each $\mu \in \mathbb{R}$, there exists a solution $u_{\varepsilon, \mu}$ to (2.8) with the following properties

$$
\begin{equation*}
u_{\varepsilon, \mu}(r)=w\left(\frac{r-t_{\varepsilon, \mu}}{\varepsilon}\right)+O\left(\varepsilon \mathrm{e}^{-\sigma\left|\frac{r-t_{\varepsilon, \mu}}{\varepsilon}\right|}\right) \tag{4.12}
\end{equation*}
$$

and

$$
E_{\varepsilon}\left(u_{\varepsilon, \mu}\right)=O(\varepsilon)
$$

where

$$
\begin{equation*}
t_{\varepsilon, \mu}=t_{0}+O(\varepsilon) \tag{4.13}
\end{equation*}
$$

and $t_{0} \in(0, \pi / 2)$ satisfies

$$
\begin{equation*}
2 \cot \left(2 t_{0}\right) \int_{\mathbb{R}}\left(w^{\prime}(y)\right)^{2} \mathrm{~d} y=-\mu \tag{4.14}
\end{equation*}
$$

5 Spectrum Estimates

In this section, we estimate the spectrum of the following linearized problem

$$
\left\{\begin{array}{l}
-\varepsilon^{2}\left[\phi^{\prime \prime}+\frac{2 \cos 2 r}{\sin 2 r} \phi^{\prime}-\frac{4}{\sin ^{2} 2 r}\left(m^{2} \cos ^{2} r-n^{2} \sin ^{2} r\right)\left(\cos 2 u_{\varepsilon, \mu}\right) \phi\right] \tag{5.1}\\
+4\left(\cos 4 u_{\varepsilon, \mu}\right) \phi-2 \varepsilon \mu\left(\cos 2 u_{\varepsilon, \mu}\right) \phi=\lambda_{\varepsilon} \phi, \quad \forall r \in(0, \pi / 2) \\
\phi(0)=0, \quad \phi\left(\frac{\pi}{2}\right)=0
\end{array}\right.
$$

where $u_{\varepsilon, \mu}$ is the solution (defined in Theorem 4.4) of (2.8) satisfying (4.12) and (4.14). Our main result is the following.

Theorem 5.1 For ε sufficiently small, $\lambda_{\varepsilon, j}, j=1,2$, the first and the second eigenvalues of (5.1) satisfy

$$
\lambda_{\varepsilon, 1}=-4 \varepsilon^{2} \csc ^{2}\left(2 t_{0}\right)+o\left(\varepsilon^{2}\right), \quad \lambda_{\varepsilon, 2} \geq \delta_{0}>0
$$

where t_{0} and δ_{0} are positive constants.
Proof Without loss of generality, we may assume $\lambda_{\varepsilon} \rightarrow \lambda_{0}$ as $\varepsilon \rightarrow 0$ for $j=1,2$. Then, by (4.12) and (5.1), λ_{0} 's satisfy

$$
\begin{equation*}
-\phi_{0}^{\prime \prime}+4(\cos 4 w) \phi_{0}=\lambda_{0} \phi_{0} \quad \text { in } \mathbb{R} \tag{5.2}
\end{equation*}
$$

where $\phi_{0}(y)=\lim _{\varepsilon \rightarrow 0} \phi\left(t_{\varepsilon, \mu}+\varepsilon y\right)$ for $y \in \mathbb{R}$. Hence (5.2) and Lemma 3.1 imply that either $\lambda_{0}=0$ having the associated eigenfunction $\phi_{0}=c w^{\prime}$ or $\lambda_{0} \geq 2 \delta_{0}>0$, where $\delta_{0}>0$ and c are suitable constants.

To complete the proof, we only need to concentrate on the eigenvalues λ_{ε} 's with $\lambda_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Let us decompose

$$
\begin{equation*}
\phi(r)=w^{\prime}(y)+\phi^{\perp}(r), \quad \forall r=t_{\varepsilon, \mu}+\varepsilon y \in(0, \pi / 2) \tag{5.3}
\end{equation*}
$$

where ϕ^{\perp} satisfies

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \phi^{\perp}(r) w^{\prime}\left(\frac{r-t_{\varepsilon, \mu}}{\varepsilon}\right) \mathrm{d} r=0 \tag{5.4}
\end{equation*}
$$

Then (5.1) and (5.3) give

$$
\begin{align*}
& -\varepsilon^{2}\left[\phi^{\perp^{\prime \prime}}+\frac{2 \cos 2 r}{\sin 2 r} \phi^{\perp^{\prime}}-\frac{4}{\sin ^{2} 2 r}\left(m^{2} \cos ^{2} r-n^{2} \sin ^{2} r\right)\left(\cos 2 u_{\varepsilon, \mu}\right) \phi^{\perp}\right] \\
& +4\left(\cos 4 u_{\varepsilon, \mu}\right) \phi^{\perp}-2 \varepsilon \mu\left(\cos 2 u_{\varepsilon, \mu}\right) \phi^{\perp}-\lambda_{\varepsilon} \phi^{\perp}=E_{\varepsilon} \tag{5.5}
\end{align*}
$$

where

$$
\begin{align*}
E_{\varepsilon}= & w^{\prime \prime \prime}+\varepsilon \frac{2 \cos 2 r}{\sin 2 r} w^{\prime \prime}-\frac{4 \varepsilon^{2}}{\sin ^{2} 2 r}\left(m^{2} \cos ^{2} r-n^{2} \sin ^{2} r\right)\left(\cos 2 u_{\varepsilon, \mu}\right) w^{\prime} \\
& -4\left(\cos 4 u_{\varepsilon, \mu}\right) w^{\prime}+2 \varepsilon \mu\left(\cos 2 u_{\varepsilon, \mu}\right) w^{\prime}+\lambda_{\varepsilon} w^{\prime} \tag{5.6}
\end{align*}
$$

Setting $r=t_{\varepsilon, \mu}+\varepsilon y$ and using (3.1) and (4.12), it is easy to get the following estimate

$$
\begin{equation*}
E_{\varepsilon}=O\left(\left(\varepsilon+\left|\lambda_{\varepsilon}\right|\right) \mathrm{e}^{-2 \sigma\left|\frac{r-t_{\varepsilon, \mu}}{\varepsilon}\right|}\right) \tag{5.7}
\end{equation*}
$$

where σ is a positive constant independent of ε. By the same proof as in Lemma 4.1, we have

$$
\begin{equation*}
\phi^{\perp}=O\left(\left(\varepsilon+\left|\lambda_{\varepsilon}\right|\right) \mathrm{e}^{-\sigma\left|\frac{r-t_{\varepsilon, \mu}}{\varepsilon}\right|}\right) \tag{5.8}
\end{equation*}
$$

Now we expand $\phi_{\varepsilon, t_{\varepsilon, \mu}}(r)=u_{\varepsilon, \mu}(r)-w\left(\frac{r-t_{\varepsilon, \mu}}{\varepsilon}\right)$. By Theorem 4.4, it is easy to see that

$$
\phi_{\varepsilon, t_{\varepsilon, \mu}}(r)=\varepsilon \phi_{1}\left(\frac{r-t_{\varepsilon, \mu}}{\varepsilon}\right)+O\left(\varepsilon^{2}\right)
$$

where $\phi_{1}=\phi_{1}(y)$ satisfies

$$
\left\{\begin{array}{l}
-\phi_{1}^{\prime \prime}+4(\cos 4 w) \phi_{1}-2\left(\cot 2 t_{0}\right) w^{\prime}-\mu \sin 2 w=0, \quad \forall y \in \mathbb{R} \tag{5.9}\\
\phi_{1}(\pm \infty)=0
\end{array}\right.
$$

Note that $\sin 2 w$ and w^{\prime} are even functions. So ϕ_{1} is also even. Consequently,

$$
\begin{gather*}
\int_{\mathbb{R}} \phi_{1}^{\prime} w^{\prime} \mathrm{d} y=0 \tag{5.10}\\
\int_{\mathbb{R}}(\cos 2 w) \phi_{1} w^{\prime} \mathrm{d} y=0 \tag{5.11}
\end{gather*}
$$

We may multiply (4.1) (with $t=t_{\varepsilon, \mu}$) by w^{\prime} and integrate to y-variable. Then by (5.10) and (5.11), we obtain

$$
\begin{align*}
& -2 \varepsilon \int_{\mathbb{R}}(\cot 2 r) w^{\prime 2} \mathrm{~d} y-2 \varepsilon^{2} \int_{\mathbb{R}}(\cot 2 r) \phi_{1}^{\prime} w^{\prime} \mathrm{d} y \\
& +\int_{\mathbb{R}} \frac{2 \varepsilon^{2}}{\sin ^{2} 2 r}\left(m^{2} \cos ^{2} r-n^{2} \sin ^{2} r\right)(\sin 2 w) w^{\prime} \mathrm{d} y \\
& -\varepsilon \mu \int_{\mathbb{R}}\left(\sin \left(2 w+2 \varepsilon \phi_{1}\right)\right) w^{\prime} \mathrm{d} y+o\left(\varepsilon^{2}\right)=0 \tag{5.12}
\end{align*}
$$

where $r=t_{\varepsilon, \mu}+\varepsilon y$. Here we have used the fact that $c_{\varepsilon}\left(t_{\varepsilon, \mu}\right)=0$. Note that

$$
\begin{equation*}
\int_{\mathbb{R}}(\sin 2 w) w^{\prime} \mathrm{d} y=-\left.\frac{1}{2} \cos 2 w\right|_{-\infty} ^{+\infty}=\frac{1}{2} \cos 0-\frac{1}{2} \cos 2 \cdot \frac{\pi}{2}=1 \tag{5.13}
\end{equation*}
$$

Hence (5.10)-(5.13) give

$$
\begin{equation*}
-2\left(\cot 2 t_{\varepsilon, \mu}\right) \int_{\mathbb{R}} w^{\prime 2} \mathrm{~d} y-\mu+\frac{2 \varepsilon}{\sin ^{2}\left(2 t_{\varepsilon, \mu}\right)}\left(m^{2} \cos ^{2} t_{\varepsilon, \mu}-n^{2} \sin ^{2} t_{\varepsilon, \mu}\right)+o(\varepsilon)=0 \tag{5.14}
\end{equation*}
$$

Let $t_{\varepsilon, \mu}=t_{0}+\varepsilon t_{1}+o(\varepsilon)$. Then by (4.14) and Taylor expansion on (5.14), we have

$$
\begin{equation*}
\left(4 \csc ^{2} 2 t_{0}\right) t_{1} \int_{\mathbb{R}} w^{\prime 2} \mathrm{~d} y=\frac{2}{\sin ^{2} 2 t_{0}}\left(m^{2} \cos ^{2} t_{0}-n^{2} \sin ^{2} t_{0}\right) \tag{5.15}
\end{equation*}
$$

It is clear to see that

$$
\begin{align*}
& 2\left(\cot 2\left(t_{\varepsilon, \mu}+\varepsilon y\right)\right)\left(w^{\prime}+\varepsilon \phi_{1}^{\prime}\right) \\
= & 2\left(\cot 2 t_{\varepsilon, \mu}\right) w^{\prime}+2 \varepsilon\left(\cot 2 t_{0}\right) \phi_{1}^{\prime}-4 \varepsilon\left(\csc ^{2} 2 t_{0}\right) y w^{\prime}+o(\varepsilon) \\
= & 2\left(\cot 2 t_{0}\right) w^{\prime}-4 \varepsilon\left(\csc ^{2} 2 t_{0}\right) x_{1} w^{\prime}+2 \varepsilon\left(\cot 2 t_{0}\right) \phi_{1}^{\prime}-4 \varepsilon\left(\csc ^{2} 2 x_{0}\right) y w^{\prime}+o(\varepsilon) . \tag{5.16}
\end{align*}
$$

Let $\phi_{\varepsilon, t_{\varepsilon, \mu}}(r)=\varepsilon \phi_{1}(y)+\varepsilon^{2} \phi_{2}(y)+O\left(\varepsilon^{3}\right)$, where $y=\frac{r-t_{\varepsilon, \mu}}{\varepsilon}$. Then by (4.1) with $t=t_{\varepsilon, \mu}$, (5.9) and (5.16), ϕ_{2} satisfies

$$
\left\{\begin{array}{l}
-\phi_{2}^{\prime \prime}+4(\cos 4 w) \phi_{2}+4\left(\csc ^{2} 2 t_{0}\right) t_{1} w^{\prime}+4\left(\csc ^{2} 2 t_{0}\right) y w^{\prime} \tag{5.17}\\
+\frac{2}{\sin ^{2} 2 t_{0}}\left(m^{2} \cos ^{2} t_{0}-n^{2} \sin ^{2} t_{0}\right) \sin 2 w \\
-8(\sin 4 w) \phi_{1}^{2}-2 \mu(\cos 2 w) \phi_{1}-2\left(\cot 2 t_{0}\right) \phi_{1}^{\prime}=0 \quad \text { in } \mathbb{R}
\end{array}\right.
$$

Here we have used the fact that $c_{\varepsilon}\left(t_{\varepsilon, \mu}\right)=0$. Since w^{\prime} solves $\phi^{\prime \prime}=4(\cos 4 w) \phi$ in \mathbb{R}, then we may assume

$$
\begin{equation*}
\int_{\mathbb{R}} \phi_{2} w^{\prime} \mathrm{d} y=0 \tag{5.18}
\end{equation*}
$$

Similarly, we may expand

$$
\begin{equation*}
\phi^{\perp}(r)=\varepsilon \phi_{1}^{\perp}(y)+\varepsilon^{2} \phi_{2}^{\perp}(y)+o\left(\varepsilon^{2}\right) \tag{5.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\varepsilon}=\varepsilon \lambda_{1}+\varepsilon^{2} \lambda_{0}+o\left(\varepsilon^{2}\right) \tag{5.20}
\end{equation*}
$$

where λ_{j} 's are constants and ϕ_{j}^{\perp} 's are functions independent of ε such that

$$
\begin{equation*}
\int_{\mathbb{R}} \phi_{j}^{\perp} w^{\prime} \mathrm{d} y=0, \quad j=1,2 \tag{5.21}
\end{equation*}
$$

Here $\phi_{1}^{\perp}=\phi_{1}^{\perp}(y)$ satisfies

$$
\left\{\begin{array}{l}
-\phi_{1}^{\perp^{\prime \prime}}+4(\cos 4 w) \phi_{1}^{\perp}=2\left(\cot 2 t_{0}\right) w^{\prime \prime}+2 \mu(\cos 2 w) w^{\prime}+16(\sin 4 w) w^{\prime} \phi_{1}+\lambda_{1} w^{\prime} \quad \text { in } \mathbb{R} \tag{5.22}\\
\phi_{1}^{\perp}(\pm \infty)=0
\end{array}\right.
$$

Since $\int_{\mathbb{R}} \phi_{1}^{\perp} w^{\prime} \mathrm{d} y=0$ and w^{\prime} solves $-\phi^{\prime \prime}+4(\cos 4 w) \phi=0$ in \mathbb{R}, then by (5.22), we have $\lambda_{1}=0$. Consequently, (5.21) becomes

$$
\begin{equation*}
\lambda_{\varepsilon}=\varepsilon^{2} \lambda_{0}+o\left(\varepsilon^{2}\right) \tag{5.23}
\end{equation*}
$$

and (5.22) becomes

$$
\left\{\begin{array}{l}
-\phi_{1}^{\perp^{\prime \prime}}+4(\cos 4 w) \phi_{1}^{\perp}=2\left(\cot 2 t_{0}\right) w^{\prime \prime}+2 \mu(\cos 2 w) w^{\prime}+16(\sin 4 w) w^{\prime} \phi_{1} \quad \text { in } \mathbb{R} \tag{5.24}\\
\phi_{1}^{\perp}(\pm \infty)=0
\end{array}\right.
$$

By (5.9), it is easy to check that $\phi_{1}^{\prime}(y)$ satisfies (5.24). Thus ϕ_{1}^{\perp} can be written as

$$
\begin{equation*}
\phi_{1}^{\perp}=\phi_{1}^{\prime}+c w^{\prime} \tag{5.25}
\end{equation*}
$$

where $c=-\frac{\int_{\mathbb{R}} \phi_{1}^{\prime} w^{\prime} \mathrm{d} y}{\int_{\mathbb{R}} w^{\prime 2} \mathrm{~d} y}$. Since w^{\prime} and ϕ_{1} are even functions, then $\int_{\mathbb{R}} \phi_{1}^{\prime} w^{\prime} \mathrm{d} y=0$, i.e., $c=0$. Consequently, (5.25) becomes

$$
\begin{equation*}
\phi_{1}^{\perp}=\phi_{1}^{\prime} . \tag{5.26}
\end{equation*}
$$

Substituting (5.19) and (5.23) into (5.5), we have

$$
\begin{equation*}
-\phi_{2}^{\perp^{\prime \prime}}+4(\cos 4 w) \phi_{2}^{\perp}=E_{\varepsilon}+E_{\varepsilon, 2} \tag{5.27}
\end{equation*}
$$

where

$$
\begin{align*}
&-E_{\varepsilon, 2}= \varepsilon^{-1}\left[-\left({\left.\phi_{1}^{\perp^{\prime \prime}}+2 \varepsilon(\cot 2 r) \phi_{1}^{\perp^{\prime}}-\frac{4 \varepsilon^{2}}{\sin ^{2} 2 r}\left(m^{2} \cos ^{2} r-n^{2} \sin ^{2} r\right)\left(\cos 2 u_{\varepsilon, \mu}\right) \phi_{1}^{\perp}\right)}+\right.\right. \\
&\left.+4\left(\cos 4\left(w+\varepsilon \phi_{1}\right)\right) \phi_{1}^{\perp}-2 \varepsilon \mu\left(\cos 2\left(w+\varepsilon \phi_{1}\right)\right) \phi_{1}^{\perp}\right]+o(1) \\
&=-2\left(\cot 2 t_{0}\right){\phi_{1}^{\perp^{\prime}}-16(\sin 4 w) \phi_{1} \phi_{1}^{\perp}-2 \mu(\cos 2 w) \phi_{1}^{\perp}+o(1)}_{E_{\varepsilon}=}- \tag{5.28}\\
&-4\left(\csc ^{2} 2 t_{0}\right)\left(t_{1}+y\right) w^{\prime \prime}-\frac{4}{\sin ^{2} 2 t_{0}}\left(m^{2} \cos ^{2} t_{0}-n^{2} \sin ^{2} t_{0}\right)(\cos 2 w) w^{\prime} \\
&+32(\cos 4 w) \phi_{1}^{2} w^{\prime}-4 \mu(\sin 2 w) \phi_{1} w^{\prime}+\lambda_{0} w^{\prime}+16(\sin 4 w) \phi_{2} w^{\prime}+o(1) \tag{5.29}
\end{align*}
$$

Multiply (5.27) by w^{\prime} and integrate it over \mathbb{R}. Then we obtain

$$
\begin{align*}
& \lambda_{0} \int_{\mathbb{R}} w^{\prime 2}-4 \mu \int_{\mathbb{R}}(\sin 2 w) \phi_{1} w^{\prime 2}+32 \int_{\mathbb{R}}(\cos 4 w) \phi_{1}^{2} w^{\prime 2}+16 \int_{\mathbb{R}}(\sin 4 w) \phi_{2} w^{\prime 2} \\
& -4 \csc ^{2} 2 t_{0} \int_{\mathbb{R}} y w^{\prime \prime} w^{\prime}-\frac{4}{\sin ^{2} 2 x_{0}}\left(m^{2} \cos ^{2} t_{0}-n^{2} \sin ^{2} t_{0}\right) \int_{\mathbb{R}}(\cos 2 w) w^{\prime 2} \\
& +2 \cot 2 t_{0} \int_{\mathbb{R}} w^{\prime} \phi_{1}^{\perp^{\prime}}+16 \int_{\mathbb{R}}(\sin 4 w) \phi_{1} \phi_{1}^{\perp} w^{\prime}+2 \mu \int_{\mathbb{R}}(\cos 2 w) \phi_{1}^{\perp} w^{\prime}=0 . \tag{5.30}
\end{align*}
$$

Here we have used integrating by parts. Since $\cos 2 w$ is odd and w^{\prime} is even, then

$$
\begin{equation*}
\int_{\mathbb{R}}(\cos 2 w){w^{\prime}}^{2}=\int_{\mathbb{R}}(\sin 2 w) w^{\prime \prime}=0 \tag{5.31}
\end{equation*}
$$

Using integration by part, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}} y w^{\prime \prime} w^{\prime}=-\frac{1}{2} \int_{\mathbb{R}} w^{\prime 2} \tag{5.32}
\end{equation*}
$$

By (5.26) and integration by part, we have

$$
\begin{align*}
16 \int(\sin 4 w) \phi_{1} \phi_{1}^{\perp} w^{\prime}+32 \int(\cos 4 w) \phi_{1}^{2} w^{\prime 2} & =16 \int(\sin 4 w) \phi_{1} \phi_{1}^{\prime} w^{\prime}+32 \int(\cos 4 w) \phi_{1}^{2} w^{\prime 2} \\
& =8 \int(\sin 4 w)\left(\phi_{1}^{2}\right)^{\prime} w^{\prime}+32 \int(\cos 4 w) \phi_{1}^{2} w^{\prime 2} \\
& =-8 \int(\sin 4 w) \phi_{1}^{2} w^{\prime \prime} \tag{5.33}
\end{align*}
$$

Since $w^{\prime \prime}=\sin 4 w$ in \mathbb{R}, then

$$
\begin{equation*}
-w^{(4)}+4(\cos 4 w) w^{\prime \prime}-16(\sin 4 w) w^{\prime 2}=0 \quad \text { in } \quad \mathbb{R} \tag{5.34}
\end{equation*}
$$

Multiplying (5.34) by ϕ_{2}, we may use (5.17) and integration by part to get

$$
\begin{align*}
-16 \int_{\mathbb{R}}(\sin 4 w) w^{\prime 2} \phi_{2}= & 4\left(\csc ^{2} 2 t_{0}\right) \int_{\mathbb{R}} y w^{\prime} w^{\prime \prime}+\frac{2}{\sin ^{2} 2 t_{0}}\left(m^{2} \cos ^{2} t_{0}-n^{2} \sin ^{2} t_{0}\right) \int_{\mathbb{R}}(\sin 2 w) w^{\prime \prime} \\
& -8 \int_{\mathbb{R}}(\sin 4 w) \phi_{1}^{2} w^{\prime \prime}-2 \mu \int_{\mathbb{R}}(\cos 2 w) \phi_{1} w^{\prime \prime}-2\left(\cot 2 t_{0}\right) \int_{\mathbb{R}} \phi_{1}^{\prime} w^{\prime \prime} \tag{5.35}
\end{align*}
$$

Substituting (5.31)-(5.33) and (5.35) into (5.30), we obtain

$$
\begin{align*}
& \lambda_{0} \int_{\mathbb{R}} w^{\prime 2}-4 \mu \int_{\mathbb{R}}(\sin 2 w) \phi_{1} w^{\prime 2}+4\left(\csc ^{2} 2 t_{0}\right) \int_{\mathbb{R}} w^{\prime 2}+2\left(\cot 2 t_{0}\right) \int_{\mathbb{R}} w^{\prime} \phi_{1}^{\perp^{\prime}} \\
& +2 \mu \int_{\mathbb{R}}(\cos 2 w) \phi_{1}^{\perp} w^{\prime}+2\left(\cot 2 t_{0}\right) \int_{\mathbb{R}} \phi_{1}^{\prime} w^{\prime \prime}+2 \mu \int_{\mathbb{R}}(\cos 2 w) \phi_{1} w^{\prime \prime}=0 \tag{5.36}
\end{align*}
$$

On the other hand, using integration by part, it is obvious that

$$
\begin{equation*}
2 \mu \int_{\mathbb{R}}(\cos 2 w) \phi_{1} w^{\prime \prime}=4 \mu \int_{\mathbb{R}}(\sin 2 w) \phi_{1} w^{\prime 2}-2 \mu \int_{\mathbb{R}}(\cos 2 w) \phi_{1}^{\prime} w^{\prime} \tag{5.37}
\end{equation*}
$$

Thus, by (5.26), (5.36) and (5.37), we have

$$
\begin{aligned}
\lambda_{0} \int_{\mathbb{R}} w^{\prime 2} & =-4\left(\csc ^{2} 2 t_{0}\right) \int_{\mathbb{R}} w^{\prime 2}-2\left(\cot 2 t_{0}\right) \int_{\mathbb{R}} w^{\prime} \phi_{1}^{\prime \prime}-2\left(\cot 2 t_{0}\right) \int_{\mathbb{R}} \phi_{1}^{\prime} w^{\prime \prime} \\
& =-4\left(\csc ^{2} 2 t_{0}\right) \int_{\mathbb{R}} w^{\prime 2}-2\left(\cot 2 t_{0}\right) \int_{\mathbb{R}}\left(\phi_{1}^{\prime} w^{\prime}\right)^{\prime}=-4\left(\csc ^{2} 2 t_{0}\right) \int_{\mathbb{R}} w^{\prime 2}
\end{aligned}
$$

i.e., $\lambda_{0}=-4 \csc ^{2} 2 t_{0}$. Therefore we may complete the proof of Theorem 5.1.

6 Local Minimizers of $\boldsymbol{E}_{\varepsilon}$

Let $\mu \in \mathbb{R}$ and $u_{\varepsilon, \mu}$ be the solution constructed in Section 4 (see Theorem 4.4). We first have

Lemma 6.1 For ε sufficiently small, $u_{\varepsilon, \mu}$ is locally unique and nondegenerate. As a result, $u_{\varepsilon, \mu}$ is continuous in μ.

Proof Since the spectrum of the linearized problem (5.1) with respect to $u_{\varepsilon, \mu}$ is non-zero, then the uniqueness follows from the same proof in [20]. Moreover, $u_{\varepsilon, \mu}$ is locally unique, i.e., if there exists another solution $\hat{u}_{\varepsilon, \mu} \sim w\left(\frac{x-\hat{t}_{\varepsilon, \mu}}{\varepsilon}\right), \hat{t}_{\varepsilon, \mu}=t_{0}+o(1)$, then

$$
\hat{u}_{\varepsilon, \mu} \equiv u_{\varepsilon, \mu} .
$$

The continuity follows from the uniqueness.
By (4.12), (4.13), and (4.14), we may obtain

$$
\begin{aligned}
\rho(\mu) & :=\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \sin ^{2} u_{\varepsilon, \mu} \mathrm{d} r \\
& =\int_{0}^{t_{\varepsilon, \mu}}(\sin 2 r) \sin ^{2} u_{\varepsilon, \mu} \mathrm{d} r+\int_{t_{\varepsilon, \mu}}^{\frac{\pi}{2}}(\sin 2 r)\left(\sin ^{2} u_{\varepsilon, \mu}-1\right) \mathrm{d} r+\int_{t_{\varepsilon, \mu}}^{\frac{\pi}{2}} \sin 2 r \mathrm{~d} r \\
& =\int_{0}^{t_{\varepsilon, \mu}}(\sin 2 r) \sin ^{2} u_{\varepsilon, \mu} \mathrm{d} r+\int_{t_{\varepsilon, \mu}}^{\frac{\pi}{2}}(\sin 2 r)\left(\sin ^{2} u_{\varepsilon, \mu}-1\right) \mathrm{d} r+\left.\left(-\frac{1}{2} \cos 2 r\right)\right|_{t_{\varepsilon, \mu}} ^{\frac{\pi}{2}} \\
& =\frac{1}{2}\left(1+\cos 2 t_{0}\right)+O(\varepsilon),
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\rho(\mu)=\frac{1}{2}\left(1+\cos 2 t_{0}\right)+O(\varepsilon) \tag{6.1}
\end{equation*}
$$

where $2\left(\cot 2 t_{0}\right) \int_{\mathbb{R}} w^{\prime 2}=-\mu$. Due to the continuity of $u_{\varepsilon, \mu}$ in $\mu, \rho(\mu)$ is continuous in μ. Furthermore, by Mean-Value Theorem, there exists $\mu_{\varepsilon} \in \mathbb{R}$ such that $\rho\left(\mu_{\varepsilon}\right)=c_{1} \in(0,1)$, i.e., (2.6) holds, provided $\lambda=u_{\varepsilon, \mu_{\varepsilon}}$ and

$$
\begin{equation*}
\frac{1}{2}\left(1+\cos 2 t_{0}\right)=c_{1} \tag{6.2}
\end{equation*}
$$

Hence $u_{\varepsilon, \mu_{\varepsilon}}$ is a critical point of the energy functional $E_{\varepsilon}(\cdot)$ under the constraint (2.6).
Now, we want to show that $u_{\varepsilon, \mu_{\varepsilon}}$ is a local minimizer of the energy functional $E_{\varepsilon}(\cdot)$ under the constraint (2.6). We consider the associated quadratic form as follows:

$$
\begin{align*}
Q[\psi]:= & E_{\varepsilon}^{\prime \prime}\left(u_{\varepsilon, \mu_{\varepsilon}}\right)[\psi] \\
= & \int_{0}^{\frac{\pi}{2}}\left[\varepsilon^{2}(\sin 2 r)\left|\psi^{\prime}\right|^{2}+\varepsilon^{2} \frac{m^{2} \sin 2 r}{\sin ^{2} r}\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi^{2}\right. \\
& \left.+\varepsilon^{2} \frac{n^{2} \sin 2 r}{\cos ^{2} r}\left(-\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi^{2}+(\sin 2 r)\left(4 \cos 4 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi^{2}\right] \mathrm{d} r, \tag{6.3}
\end{align*}
$$

for $\psi \in H_{0}^{1}((0, \pi / 2))$ with the following constraint

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\sin 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi \mathrm{d} r=0 \tag{6.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
\tilde{Q}[\psi]=Q[\psi]-2 \varepsilon \mu_{\varepsilon} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi^{2} \mathrm{~d} r \tag{6.5}
\end{equation*}
$$

and let

$$
\begin{equation*}
\psi=c_{1} \psi_{1}(r)+\psi_{2}(r), \quad \psi_{j} \in H_{0}^{1}((0, \pi / 2)), \quad j=1,2 \tag{6.6}
\end{equation*}
$$

such that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{1} \psi_{2} \mathrm{~d} r=0 \tag{6.7}
\end{equation*}
$$

where $c_{1} \in \mathbb{R}$ is a constant and ψ_{1} is the eigenfunction corresponding to the first eigenvalue $\lambda_{\varepsilon, 1}$ defined in Theorem 5.1. Then using (5.1), (6.5), (6.7) and integration by parts, we have

$$
\begin{equation*}
\tilde{Q}[\psi]=c_{1}^{2} \tilde{Q}\left[\psi_{1}\right]+\tilde{Q}\left[\psi_{2}\right]=c_{1}^{2} \lambda_{\varepsilon, 1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{1}^{2} \mathrm{~d} r+\tilde{Q}\left[\psi_{2}\right] \tag{6.8}
\end{equation*}
$$

On the other hand, (6.4) and (6.6) imply

$$
\begin{equation*}
c_{1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\sin 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi_{1} \mathrm{~d} r+\int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\sin 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi_{2} \mathrm{~d} r=0 \tag{6.9}
\end{equation*}
$$

From the proof of Theorem 5.1, we obtain

$$
\begin{equation*}
\psi_{1}(r)=w^{\prime}(y)+O(\varepsilon), \quad u_{\varepsilon, \mu_{\varepsilon}}=w(y)+O(\varepsilon), \quad r=t_{\varepsilon, \mu_{\varepsilon}}+\varepsilon y \tag{6.10}
\end{equation*}
$$

Hence (6.9) and (6.10) give

$$
\begin{equation*}
c_{1}=O\left(\varepsilon^{-1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left|\psi_{2}\right| \mathrm{d} r\right) \tag{6.11}
\end{equation*}
$$

Moreover, by (6.10), (6.11) and Hölder inequality, we obtain

$$
\begin{equation*}
\left|c_{1}^{2} \varepsilon^{2} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{1}^{2} \mathrm{~d} r\right| \leq C \varepsilon \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r \tag{6.12}
\end{equation*}
$$

where C is a positive constant independent of ε. Besides, (6.6) and (6.10) imply

$$
\begin{aligned}
& \varepsilon \mu_{\varepsilon} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi^{2} \mathrm{~d} r \\
= & \varepsilon \mu_{\varepsilon} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right)\left(c_{1}^{2} \psi_{1}^{2}+2 c_{1} \psi_{1} \psi_{2}+\psi_{2}^{2}\right) \mathrm{d} r \\
= & 2 \varepsilon \mu_{\varepsilon} c_{1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi_{1} \psi_{2} \mathrm{~d} r+\varepsilon \mu_{\varepsilon} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right)\left(c_{1}^{2} \psi_{1}^{2}+\psi_{2}^{2}\right) \mathrm{d} r \\
= & 2 \varepsilon \mu_{\varepsilon} c_{1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi_{1} \psi_{2} \mathrm{~d} r+O\left(\varepsilon \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r\right),
\end{aligned}
$$

i.e.,

$$
\begin{align*}
\varepsilon \mu_{\varepsilon} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi^{2} \mathrm{~d} r= & 2 \varepsilon \mu_{\varepsilon} c_{1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi_{1} \psi_{2} \mathrm{~d} r \\
& +O\left(\varepsilon \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r\right) \tag{6.13}
\end{align*}
$$

Here we have used (6.11) and the fact that

$$
\int_{\mathbb{R}}(\cos 2 w){w^{\prime}}^{2} \mathrm{~d} y=0
$$

By (6.10), (6.11) and Hölder inequality, we obtain

$$
\begin{aligned}
& \left|\varepsilon \mu_{\varepsilon} c_{1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi_{1} \psi_{2} \mathrm{~d} r\right| \\
\leq & \left|\mu_{\varepsilon}\right|\left|\varepsilon c_{1}\right|\left(\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{1}^{2} \mathrm{~d} r\right)^{\frac{1}{2}}\left(\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r\right)^{\frac{1}{2}} \\
\leq & C\left(\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{1}^{2} \mathrm{~d} r\right)^{\frac{1}{2}} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r \\
\leq & C \sqrt{\varepsilon} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r,
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left|\varepsilon \mu_{\varepsilon} c_{1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(\cos 2 u_{\varepsilon, \mu_{\varepsilon}}\right) \psi_{1} \psi_{2} \mathrm{~d} r\right| \leq C \sqrt{\varepsilon} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r \tag{6.14}
\end{equation*}
$$

where C is a positive constant independent of ε. Thus, by (6.5), (6.8), (6.13), and (6.14), we have

$$
\begin{equation*}
Q[\psi] \geq c_{1}^{2} \lambda_{\varepsilon, 1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{1}^{2} \mathrm{~d} r+\tilde{Q}\left[\psi_{2}\right]-C \sqrt{\varepsilon} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r \tag{6.15}
\end{equation*}
$$

Consequently, (6.12), (6.15) and Theorem 5.1 imply

$$
\begin{equation*}
Q[\psi] \geq\left(\delta_{0}-C \sqrt{\varepsilon}\right) \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r \geq C^{-1} \frac{\delta_{0}}{2} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r \tag{6.16}
\end{equation*}
$$

provided $\varepsilon>0$ is sufficiently small. Since $\phi=c_{1} \phi_{1}+\phi_{2}$, then by (6.7) and (6.12), we obtain

$$
\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi^{2} \mathrm{~d} r=\int_{0}^{\frac{\pi}{2}}(\sin 2 r)\left(c_{1} \psi_{1}+\psi_{2}\right)^{2} \mathrm{~d} r \leq C_{\varepsilon} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi_{2}^{2} \mathrm{~d} r
$$

So (6.16) becomes

$$
Q[\psi] \geq C_{\varepsilon}^{-1} \int_{0}^{\frac{\pi}{2}}(\sin 2 r) \psi^{2} \mathrm{~d} r
$$

where C_{ε} is a positive constant which may depend on ε. We may summarize what have been proved as follows:

Theorem 6.2 There exists $u_{\varepsilon, \mu_{\varepsilon}}$ a local minimizer of $E_{\varepsilon}[\cdot]$ under the constraint (2.6).

7 Critical Points of $\widetilde{\boldsymbol{E}}_{\delta, \varepsilon}$

In this section, we study critical points of the functional $\widetilde{E}_{\delta, \varepsilon}$ (defined in (2.15)) by solving equations (2.18) and (2.19). Now, we want to simplify these equations. Let $S_{0}=S_{0}(t)$ be the unique solution of

$$
\left\{\begin{array}{l}
S_{0}^{\prime \prime}+\frac{1}{t} S_{0}^{\prime}-\frac{S_{0}}{t^{2}}+S_{0}-S_{0}^{3}=0, \quad \forall t>0 \tag{7.1}\\
S_{0}(0)=0, \quad S_{0}(+\infty)=1
\end{array}\right.
$$

It is well known that

$$
\begin{gather*}
S_{0}(t)=t+O\left(t^{3}\right) \quad \text { for } t>0 \text { small } \tag{7.2}\\
S_{0}(t)=1-\frac{1}{2 t^{2}}+O\left(\frac{1}{t^{4}}\right) \quad \text { for } t \text { large. } \tag{7.3}
\end{gather*}
$$

One may refer to [4] and [6] for the solution S_{0}. Let (ρ, λ) be a solution of (2.18) and (2.19), where

$$
\rho=s(r) \hat{\rho}
$$

and s is a smooth function defined by

$$
s(r)= \begin{cases}S_{0}\left(\frac{r}{\delta}\right) & \text { if } \quad 0 \leq r \leq \varepsilon \tag{7.4}\\ S_{0}\left(\frac{\frac{\pi}{2}-r}{\delta}\right) & \text { if } \quad \frac{\pi}{2}-\varepsilon \leq r \leq \frac{\pi}{2} \\ 1 & \text { if } \quad 2 \varepsilon \leq r \leq \frac{\pi}{2}-2 \varepsilon \\ \eta_{1}(r) & \text { if } \quad \varepsilon<r<2 \varepsilon \text { or } \frac{\pi}{2}-2 \varepsilon<r<\frac{\pi}{2}-\varepsilon\end{cases}
$$

Here we assume that

$$
\begin{equation*}
0<\varepsilon^{2} \ll \delta \ll \varepsilon \ll 1 \tag{7.5}
\end{equation*}
$$

and $\eta_{1}(r) \sim 1$ as $\delta \rightarrow 0$. It is clear that $s(0)=s\left(\frac{\pi}{2}\right)=0$ so $\rho(0)=\rho\left(\frac{\pi}{2}\right)=0$. Then (2.18) and (2.19) become

$$
\begin{align*}
S_{1}[\lambda, \hat{\rho}]:= & -\varepsilon^{2}\left[\lambda^{\prime \prime}+\left(\frac{2 \cos 2 r}{\sin 2 r}+\frac{2 s^{\prime}}{s}+\frac{2 \hat{\rho}^{\prime}}{\hat{\rho}}\right) \lambda^{\prime}\right] \\
& +s^{2} \hat{\rho}^{2} \sin 4 \lambda-\varepsilon^{2}\left(\frac{2 \cos 2 r}{\sin ^{2} 2 r}\right) \sin 2 \lambda-\varepsilon \mu \sin 2 \lambda=0 \tag{7.6}
\end{align*}
$$

and

$$
\begin{align*}
S_{2}[\lambda, \hat{\rho}]:= & -\delta^{2}\left(\hat{\rho}^{\prime \prime}+\frac{2 s^{\prime}}{s} \hat{\rho}^{\prime}+\frac{2 \cos 2 r}{\sin 2 r} \hat{\rho}^{\prime}\right)-\delta^{2}\left(\frac{2 \cos 2 r}{\sin 2 r}-\frac{1}{r}\right) \frac{s^{\prime}}{s} \hat{\rho} \\
& +(1-\hat{\rho}) s^{2}+\left(\hat{\rho}^{3}-1\right) s^{2}+\delta^{2} \hat{\rho}\left[\left|\lambda^{\prime}\right|^{2}+\left(\frac{\cos ^{2} \lambda}{\sin ^{2} r}-\frac{1}{r^{2}}\right)+\frac{\sin ^{2} \lambda}{\cos ^{2} r}\right] \\
& +\frac{2 \delta^{2}}{\varepsilon^{2}} s^{2} \hat{\rho}^{3} \sin 2 \lambda-\delta \mu \hat{\rho} \sin ^{2} \lambda=0 \tag{7.7}
\end{align*}
$$

Here we have used the fact

$$
\begin{aligned}
& \rho^{\prime}=s^{\prime} \hat{\rho}+s \hat{\rho}^{\prime} \\
& \frac{\rho^{\prime}}{\rho}=\frac{s^{\prime}}{s}+\frac{\hat{\rho}^{\prime}}{\hat{\rho}} \\
& \rho^{\prime \prime}=s^{\prime \prime} \hat{\rho}+2 s^{\prime} \hat{\rho}^{\prime}+s \hat{\rho}^{\prime \prime}
\end{aligned}
$$

To fulfill (2.12), we require the boundary conditions as follows:

$$
\begin{cases}\lambda(0)=0, & \lambda\left(\frac{\pi}{2}\right)=\frac{\pi}{2} \tag{7.8}\\ \hat{\rho}^{\prime}(0)=0, & \hat{\rho}\left(\frac{\pi}{2}\right)=1\end{cases}
$$

As for (4.14) and (6.2), we may assume that

$$
\begin{equation*}
2\left(\cot 2 t_{0}\right) \int_{\mathbb{R}} w^{\prime 2}(y) \mathrm{d} y=-\mu \tag{7.9}
\end{equation*}
$$

and t_{0} is the unique solution of

$$
\begin{equation*}
\frac{1}{2}\left(1+\cos 2 t_{0}\right)=c_{2} \tag{7.10}
\end{equation*}
$$

We need the following lemma.
Lemma 7.1 The linear problem

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}+\frac{1}{t} \phi^{\prime}-\frac{1}{t^{2}} \phi+\phi-3 S_{0}^{2} \phi=0, \quad \forall t>0 \tag{7.11}\\
\phi(0)=0, \quad|\phi| \leq C t, \quad \forall t>0
\end{array}\right.
$$

admits only zero solution, where C is a positive constant independent of t. Furthermore, the linear problem

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}+\frac{1}{t} \phi^{\prime}-\frac{1}{t^{2}} \phi-2 S_{0}^{2} \phi=0, \quad \forall t>0 \tag{7.12}\\
\phi(0)=0, \quad|\phi| \leq C t, \quad \forall t>0
\end{array}\right.
$$

also admits only zero solution.
Proof Setting $\phi=t \psi$, then ψ satisfies

$$
\left\{\begin{array}{l}
\psi^{\prime \prime}+\frac{3}{t} \psi^{\prime}+\left(1-3 S_{0}^{2}\right) \psi=0, \quad \forall t>0 \tag{7.13}\\
\psi^{\prime}(0)=0, \quad|\psi| \leq C, \quad \forall t>0
\end{array}\right.
$$

Since $S_{0}(t) \rightarrow 1$ as $t \rightarrow+\infty$, we may use comparison principle on (7.13) to derive that

$$
|\psi| \leq C \mathrm{e}^{-t} \quad \text { for } t \text { large },
$$

which in turn implies that

$$
\left\{\begin{array}{l}
|\phi| \leq C, \quad \forall t>0 \tag{7.14}\\
|\phi| \leq C \mathrm{e}^{-t / 2} \quad \text { for } t \text { large }
\end{array}\right.
$$

Hence by (7.11), (7.14) and the result of [11] and [12], we obtain $\phi \equiv 0$. Similarly, letting ϕ satisfy (7.12) and $\psi=t \phi$, then ψ satisfies

$$
\left\{\begin{array}{l}
\psi^{\prime \prime}+\frac{3}{t} \psi^{\prime}-2 S_{0}^{2} \psi=0, \quad \forall t>0 \tag{7.15}\\
\psi^{\prime}(0)=0, \quad|\psi| \leq C, \quad \forall t>0
\end{array}\right.
$$

By Maximum Principle, we conclude that (7.12) also has only zero solution. Therefore, we may complete the proof.

For $t>0$, we define norms

$$
\begin{equation*}
\|\phi\|_{*, \varepsilon}=\sup _{r \in\left(0, \frac{\pi}{2}\right)} \mathrm{e}^{\sigma\left|\frac{r-t}{\varepsilon}\right|}\left(|\phi(r)|+\varepsilon\left|\phi^{\prime}(r)\right|\right) \tag{7.16}
\end{equation*}
$$

$$
\begin{equation*}
\|\psi\|_{*, \delta}=\sup _{r \in\left(0, \frac{\pi}{2}\right)}\left(|\psi(r)|+\delta\left|\psi^{\prime}(r)\right|\right) \tag{7.17}
\end{equation*}
$$

where σ is a small constant, and

$$
\begin{gather*}
\|h\|_{* *, \varepsilon}=\sup _{r \in\left(0, \frac{\pi}{2}\right)} \mathrm{e}^{\sigma\left|\frac{r-t}{\varepsilon}\right|}|h(r)|, \tag{7.18}\\
\|h\|_{* *}=\sup _{r \in\left(0, \frac{\pi}{2}\right)}|h(r)| \tag{7.19}
\end{gather*}
$$

As for the proof in Section 4, we may choose

$$
\left\{\begin{array}{l}
\lambda(r)=w_{t}(r)+\phi(r) \tag{7.20}\\
\hat{\rho}(r)=1+\psi(r)
\end{array}\right.
$$

for $t \in\left(t_{0}-\delta_{1}, t_{0}+\delta_{1}\right)$ and $r \in(0, \pi / 2)$, where w_{t} is defined in (3.10) and δ_{1} is a positive constant independent of ε and δ.

Now we follow three steps.
Step I For each $t \in\left(t_{0}-\delta_{1}, t_{0}+\delta_{1}\right)$, we find a unique pair $(\phi, \psi)=\left(\phi_{t}, \psi_{t}\right)$ such that

$$
\begin{gather*}
S_{1}\left[w_{t}+\phi_{t}, 1+\psi_{t}\right]=c_{\varepsilon}(t) w^{\prime}\left(\frac{r-t}{\varepsilon}\right) \tag{7.21}\\
S_{2}\left[w_{t}+\phi_{t}, 1+\psi_{t}\right]=0 \tag{7.22}
\end{gather*}
$$

with

$$
\begin{gather*}
\left\|\phi_{t}\right\|_{*, \varepsilon} \leq C \varepsilon \tag{7.23}\\
\left\|\psi_{t}\right\|_{*, \delta} \leq C\left(\frac{\delta^{2}}{\varepsilon^{2}}+\delta\right) \tag{7.24}
\end{gather*}
$$

Step II There exists $t_{\varepsilon}=t_{0}+O(\varepsilon)$ such that

$$
\begin{equation*}
c_{\varepsilon}\left(t_{\varepsilon}\right)=0 \tag{7.25}
\end{equation*}
$$

Step III We show that as $\varepsilon \rightarrow 0$ and $\delta / \varepsilon \rightarrow 0$,

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \rho^{2} \sin ^{2} \lambda \mathrm{~d} r \rightarrow c_{2} \tag{7.26}
\end{equation*}
$$

As in Section 4, the proof of Step I relies on the following lemma.
Lemma 7.2 Consider the following linearized equations

$$
\begin{align*}
L_{1}[\phi, \psi]:= & -\varepsilon^{2}\left[\phi^{\prime \prime}+\left(\frac{2 \cos 2 r}{\sin 2 r}+\frac{2 s^{\prime}}{s}\right) \phi^{\prime}\right]-2 \varepsilon^{2} \psi^{\prime} w_{t}^{\prime}+2\left(\sin 4 w_{t}\right) s^{2} \psi \\
& +4\left(\cos 4 w_{t}\right) s^{2} \phi-\frac{4 \varepsilon^{2} \cos 2 r}{\sin ^{2} 2 r}\left(\cos 2 w_{t}\right) \phi-2 \varepsilon \mu\left(\cos 2 w_{t}\right) \phi=h_{1} \tag{7.27}
\end{align*}
$$

and

$$
\begin{align*}
L_{2}[\phi, \psi]:= & -\delta^{2}\left[\psi^{\prime \prime}+\left(\frac{2 s^{\prime}}{s}+\frac{2 \cos 2 r}{\sin 2 r}\right) \psi^{\prime}\right]-\delta^{2}\left(\frac{2 \cos 2 r}{\sin 2 r}-\frac{1}{r}\right) \frac{s^{\prime}}{s} \psi \\
& +2 s^{2} \psi+\delta^{2} \psi\left[\left(w_{t}^{\prime}\right)^{2}+\left(\frac{\cos ^{2} w_{t}}{\sin ^{2} r}-\frac{1}{r^{2}}\right)+\frac{\sin ^{2} w_{t}}{\cos ^{2} r}\right] \tag{7.28}\\
& +\frac{6 \delta^{2}}{\varepsilon^{2}}\left(\sin 2 w_{t}\right) s^{2} \psi-\delta \mu\left(\sin ^{2} w_{t}\right) \psi+2 \delta^{2} w_{t}^{\prime} \phi^{\prime} \\
& +\left[-\delta^{2} \frac{\sin 2 w_{t}}{\sin ^{2} r}+\delta^{2} \frac{\sin 2 w_{t}}{\cos ^{2} r}+4 \frac{\delta^{2}}{\varepsilon^{2}}\left(\cos 2 w_{t}\right) s^{2}-\delta \mu\left(\sin 2 w_{t}\right)\right] \phi=h_{2} \tag{7.29}
\end{align*}
$$

where

$$
\int_{0}^{\frac{\pi}{2}} w^{\prime}\left(\frac{r-t}{\delta}\right) \phi(r) \mathrm{d} r=0, \quad \phi(0)=\phi\left(\frac{\pi}{2}\right)=0
$$

and

$$
\psi(0)=\psi\left(\frac{\pi}{2}\right)=0
$$

For any h_{1} and $h_{2} \not \equiv 0$, there exists (ϕ, ψ) a unique solution to (7.27) and (7.28) such that

$$
\begin{align*}
\|\phi\|_{*, \varepsilon} & \leq C\left\|h_{1}\right\|_{* *, \varepsilon}+C \frac{\varepsilon}{\delta}\left\|h_{2}\right\|_{* *} \tag{7.30}\\
\|\psi\|_{*, \delta} & \leq C\left\|h_{2}\right\|_{* *}+C \frac{\delta^{2}}{\varepsilon^{2}}\left\|h_{1}\right\|_{* *, \varepsilon} \tag{7.31}
\end{align*}
$$

provided the assumption (7.5) holds, where C is a positive constant independent of ε and δ.
Proof Let

$$
\left\{\begin{array}{l}
\tilde{h}_{1}=h_{1}+2 \varepsilon^{2} w_{t}^{\prime} \psi^{\prime}-2\left(\sin 4 w_{t}\right) s^{2} \psi \tag{7.32}\\
\tilde{h}_{2}=h_{2}-2 \delta^{2} w_{t}^{\prime} \phi^{\prime}-\left[-\delta^{2} \frac{\sin 2 w_{t}}{\sin ^{2} r}+\delta^{2} \frac{\sin 2 w_{t}}{\cos ^{2} r}+4 \frac{\delta^{2}}{\varepsilon^{2}}\left(\cos 2 w_{t}\right) s^{2}-\delta \mu\left(\sin 2 w_{t}\right)\right] \phi
\end{array}\right.
$$

Firstly, we may follow the proof of Lemma 4.1 to get

$$
\begin{equation*}
\|\phi\|_{L^{\infty}} \leq C\left\|\tilde{h}_{1}\right\|_{L^{\infty}} \tag{7.33}
\end{equation*}
$$

Next, we prove that

$$
\begin{equation*}
\|\psi\|_{L^{\infty}} \leq C\left\|\tilde{h}_{2}\right\|_{L^{\infty}} \tag{7.34}
\end{equation*}
$$

Suppose (7.34) fails. Then we may assume that $\left\|\tilde{h}_{2}\right\|_{L^{\infty}}=o(1)$ but $\|\psi\|_{L^{\infty}}=\psi\left(r_{\delta}\right)=1$, where $0<r_{\delta}<\frac{\pi}{2}$. If $r_{\delta} \leq \frac{\pi}{2}-2 \varepsilon$ and $\frac{r_{\delta}}{\delta} \rightarrow+\infty$ as $\delta \rightarrow 0$, then $s^{2}\left(r_{\delta}\right) \rightarrow 1$ as $\delta \rightarrow 0$. Hence we may consider the equation (7.28) at $r=r_{\delta}$ and obtain that

$$
\psi\left(r_{\delta}\right) \leq C\left\|\tilde{h}_{2}\right\|_{L^{\infty}}=o(1)
$$

which contradicts with $\psi\left(r_{\delta}\right)=1$. Here we have used the facts that

$$
\begin{gather*}
\left|\left(\frac{2 \cos 2 r}{\sin 2 r}-\frac{1}{r}\right) \frac{s^{\prime}}{s}\right| \leq \frac{C}{\delta} \tag{7.35}\\
\left|\frac{\cos ^{2} w_{t}}{\sin ^{2} r}-\frac{1}{r^{2}}\right| \leq C, \quad \forall r \in\left(0, \frac{\pi}{2}\right), \tag{7.36}
\end{gather*}
$$

where C is a positive constant independent of ε and δ. Similarly, for the case that $r_{\delta}>\frac{\pi}{2}-2 \varepsilon$ and $\frac{\frac{\pi}{2}-r_{\delta}}{\delta} \rightarrow+\infty$, we may also get a contradiction. On the other hand, suppose $\frac{r_{\delta}}{\delta} \rightarrow r_{0}>0$ as $\delta \rightarrow 0$ (up to a subsequence). Let $\widetilde{\psi}_{\delta}(t)=\psi\left(\frac{r}{\delta}\right)$ and $t=\frac{r}{\delta}$. Then $\widetilde{\psi}_{\delta}$'s approach to a solution of

$$
\left\{\begin{array}{l}
\psi^{\prime \prime}+\frac{3}{t} \psi^{\prime}-2 S_{0}^{2} \psi=0, \quad \forall t>0 \\
\psi \leq 1, \quad \psi\left(r_{0}\right)=1, \quad \psi^{\prime}(0)=0
\end{array}\right.
$$

Thus, by the proof of Lemma 7.1, we have $\psi \equiv 0$ which gives a contradiction. Similarly, we may also get a contradiction, provided $\frac{\frac{\pi}{2}-r_{\delta}}{\delta} \rightarrow r_{1}>0$ as $\delta \rightarrow 0$ (up to a subsequence). Therefore, (7.34) is proved.

Now we prove the gradient estimate

$$
\begin{equation*}
\left\|\delta \psi^{\prime}\right\|_{L^{\infty}} \leq C\left\|\tilde{h}_{2}\right\|_{L^{\infty}} \tag{7.37}
\end{equation*}
$$

It is clear that (7.28) can be regarded as a linear second-order problem on S^{3} given by

$$
\begin{equation*}
-\delta^{2} \triangle_{S^{3}} \psi+\left[2 s^{2}+O\left(\frac{\delta^{2}}{\varepsilon^{2}}+\delta\right)\right] \psi=\tilde{h}_{2} \quad \text { in } S^{3} \tag{7.38}
\end{equation*}
$$

Then by (7.34) and the standard L^{p}-estimate for (7.38), we obtain (7.37). Similarly, we can prove

$$
\begin{equation*}
\left\|\varepsilon \phi^{\prime}\right\|_{L^{\infty}} \leq C\left\|\tilde{h}_{1}\right\|_{L^{\infty}} \tag{7.39}
\end{equation*}
$$

By comparison principle, we have

$$
\begin{equation*}
\left|\mathrm{e}^{\sigma \frac{|r-t|}{\varepsilon}} \phi(r)\right| \leq C\left\|\tilde{h}_{1}\right\|_{* *, \varepsilon}, \quad \forall r \in\left(0, \frac{\pi}{2}\right), \tag{7.40}
\end{equation*}
$$

provided $\sigma>0$ is sufficiently small. Here as for the proof of Lemma 4.1, we have used the fact that the function $C\left\|\tilde{h}_{1}\right\|_{* *, \varepsilon} \mathrm{e}^{-\sigma\left|\frac{r-t}{\varepsilon}\right|}$ is a supersolution of (7.27) for $0<r<\frac{\pi}{2}$, where C is a positive constant independent of ε.

To obtain a gradient estimate as in (7.40), we use the transformation

$$
\begin{equation*}
\hat{\phi}=\mathrm{e}^{\sigma \frac{|x-t|}{\varepsilon}} \phi \tag{7.41}
\end{equation*}
$$

Then $\hat{\phi}$ satisfies

$$
\begin{equation*}
-\varepsilon^{2} \triangle_{S^{3}} \hat{\phi}+\left[4\left(\cos 4 w_{t}\right)-\sigma^{2}+O(\varepsilon)\right] \hat{\phi}=\mathrm{e}^{\sigma \frac{|r-t|}{\varepsilon}} \tilde{h}_{1} \quad \text { in } S^{3} \quad \text { with }|r-t| \geq c \varepsilon \tag{7.42}
\end{equation*}
$$

Hence by (7.39) and elliptic regularity estimates of (7.42), we obtain

$$
\begin{equation*}
\left|\mathrm{e}^{\sigma \frac{|r-t|}{\varepsilon}} \varepsilon \phi^{\prime}\right| \leq C\left\|\tilde{h}_{1}\right\|_{* *, \varepsilon}, \quad \forall r \in\left(0, \frac{\pi}{2}\right) \tag{7.43}
\end{equation*}
$$

Here we have used the fact that

$$
\varepsilon \hat{\phi}^{\prime}=\mathrm{e}^{\sigma \frac{|r-t|}{\varepsilon}} \varepsilon \phi^{\prime}+O\left(\sigma \mathrm{e}^{\sigma \frac{|r-t|}{\varepsilon}}\right) \phi .
$$

Thus (7.34), (7.37), (7.40), and (7.43) may give

$$
\begin{equation*}
\|\phi\|_{*, \varepsilon} \leq C\left\|\tilde{h}_{1}\right\|_{* *, \varepsilon}, \quad\|\psi\|_{*, \delta} \leq C\left\|\tilde{h}_{2}\right\|_{* *} \tag{7.44}
\end{equation*}
$$

By (7.5) and (7.16)-(7.19), it is easy to get that

$$
\left\{\begin{array}{l}
\left\|\varepsilon^{2} \psi^{\prime} w_{t}^{\prime}\right\|_{* *, \varepsilon}+\left\|\left(\sin 4 w_{t}\right) s^{2} \psi\right\|_{* *, \varepsilon} \leq C \frac{\varepsilon}{\delta}\|\psi\|_{*, \delta} \tag{7.45}\\
\left\|2 \delta^{2} w_{t}^{\prime} \phi^{\prime}+\left[-\delta^{2} \frac{\sin 2 w_{t}}{\sin ^{2} r}+\delta^{2} \frac{\sin 2 w_{t}}{\cos ^{2} r}+4 \frac{\delta^{2}}{\varepsilon^{2}}\left(\cos 2 w_{t}\right) s^{2}-\delta \mu\left(\sin 2 w_{t}\right)\right] \phi\right\|_{* *} \\
\leq C \frac{\delta^{2}}{\varepsilon^{2}}\|\phi\|_{*, \varepsilon}
\end{array}\right.
$$

provided $\sigma>0$ is sufficiently small, where $o(1)$ is a small quantity tending to zero as goes to zero. Here we have used the assumption (7.5). Hence (7.44) and (7.45) imply

$$
\|\phi\|_{*, \varepsilon} \leq C\left\|\tilde{h}_{1}\right\|_{* *, \varepsilon} \leq C\left\|h_{1}\right\|_{* *, \varepsilon}+C \frac{\varepsilon}{\delta}\|\psi\|_{*, \delta} \leq C\left\|h_{1}\right\|_{* *, \varepsilon}+C \frac{\varepsilon}{\delta}\left\|h_{2}\right\|_{* *}+C \frac{\delta}{\varepsilon}\|\phi\|_{*, \varepsilon}
$$

Consequently,

$$
\begin{equation*}
\|\phi\|_{*, \varepsilon} \leq C\left\|h_{1}\right\|_{* *, \varepsilon}+C \frac{\varepsilon}{\delta}\left\|h_{2}\right\|_{* *} \tag{7.46}
\end{equation*}
$$

Here we have used $\delta \ll \varepsilon$ from the assumption (2.20). Similarly, we obtain

$$
\begin{equation*}
\|\psi\|_{*, \delta} \leq C\left\|h_{2}\right\|_{* *}+C \frac{\delta^{2}}{\varepsilon^{2}}\left\|h_{1}\right\|_{* *, \varepsilon} \tag{7.47}
\end{equation*}
$$

Therefore, by (7.46) and (7.47), we may complete the proof of Lemma 7.2.
To finish Step I, we expand

$$
\begin{equation*}
S_{1}\left[w_{t}+\phi, 1+\psi\right]=S_{1}\left[w_{t}, 1\right]+L_{1}[\phi, \psi]+N_{1}[\phi, \psi] \tag{7.48}
\end{equation*}
$$

where $L_{1}[\phi, \psi]$ is given by (7.27) and $N_{1}[\phi, \psi]$ is the higher-order term which can be estimated as follows:

$$
\begin{equation*}
N_{1}[\phi, \psi]=O\left(|\phi|^{2}+\left|\sin 4 w_{t}\right||\psi|^{2}+|\phi||\psi|+\varepsilon^{2}\left|\psi^{\prime}\right||\psi|\left|w_{t}^{\prime}\right|\right) \tag{7.49}
\end{equation*}
$$

We calculate

$$
\begin{align*}
& S_{1}\left[w_{t}, 1\right] \\
= & -\varepsilon^{2}\left(w_{t}^{\prime \prime}+\left(\frac{2 \cos 2 r}{\sin 2 r}+\frac{2 s^{\prime}}{s}\right) w_{t}^{\prime}\right)+\left(\sin 4 w_{t}\right) s^{2}-\varepsilon^{2}\left(\frac{2 \cos 2 r}{\sin ^{2} 2 r}\right) \sin 2 w_{t}-\varepsilon \mu \sin 2 w_{t} \\
= & -\varepsilon^{2}\left(\frac{2 \cos 2 r}{\sin 2 r}+\frac{2 s^{\prime}}{s}\right) w_{t}^{\prime}+\left(\sin 4 w_{t}\right)\left(s^{2}-1\right)-\varepsilon^{2}\left(\frac{2 \cos 2 r}{\sin ^{2} 2 r}\right) \sin 2 w_{t}-\varepsilon \mu \sin 2 w_{t} . \tag{7.50}
\end{align*}
$$

Note that $w_{t}(r)=0$ for $0<r<t-2 \delta_{0}$ and $w_{t}(r)=\pi / 2$ for $t+2 \delta_{0}<r<\pi / 2$. It is easy to see that

$$
\begin{equation*}
\left\|S_{1}\left[w_{t}, 1\right]\right\|_{* *, \varepsilon} \leq C \varepsilon \tag{7.51}
\end{equation*}
$$

Similarly, we expand

$$
S_{2}\left[w_{t_{\varepsilon}}+\phi, 1+\psi\right]=S_{2}\left[w_{t}, 1\right]+L_{2}[\phi, \psi]+N_{2}[\phi, \psi]
$$

where $L_{2}[\phi, \psi]$ is given by (7.28) and $N_{2}[\phi, \psi]$ is the higher-order term:

$$
\begin{align*}
N_{2}[\phi, \psi]= & O\left(|\psi|^{2}+\frac{\delta^{2}}{\epsilon^{2}}\left(|\phi||\psi|+\phi^{2}\right)+\delta^{2}|\psi|\left|\phi^{\prime}\right|^{2}+\delta^{2}\left|w_{t}^{\prime}\right|\left|\phi^{\prime}\right||\psi|\right) \\
& +O\left(\delta^{2}\left(\frac{\phi^{2}}{\sin ^{2} r}+\frac{\phi^{2}}{\cos ^{2} r}\right)\right) \tag{7.52}
\end{align*}
$$

Suppose $\phi(0)=\phi(\pi / 2)=0$ and $\phi \in C^{1}([0, \pi / 2])$. Then

$$
\left|\frac{\phi(r)}{\sin r}\right|+\left|\frac{\phi(r)}{\cos r}\right| \leq \frac{C}{\varepsilon}\|\phi\|_{*, \varepsilon}, \quad \forall 0<r<\frac{\pi}{2}
$$

Consequently, (7.52) becomes

$$
\begin{equation*}
N_{2}[\phi, \psi]=O\left(|\psi|^{2}+\frac{\delta^{2}}{\varepsilon^{2}}\left(|\phi||\psi|+\phi^{2}\right)+\delta^{2}|\psi|\left|\phi^{\prime}\right|^{2}+\delta^{2}\left|w_{t}^{\prime}\right|\left|\phi^{\prime}\right||\psi|+\frac{\delta^{2}}{\varepsilon^{2}}\|\phi\|_{*, \varepsilon}^{2}\right) . \tag{7.53}
\end{equation*}
$$

We estimate $S_{2}\left[w_{t}, 1\right]$ as follows:

$$
\begin{align*}
S_{2}\left[w_{t}, 1\right]= & -\delta^{2}\left(\frac{2 \cos 2 r}{\sin 2 r}-\frac{1}{r}\right) \frac{s^{\prime}}{s}+\delta^{2}\left[\left(w_{t}^{\prime}\right)^{2}+\left(\frac{\cos ^{2} w_{t}}{\sin ^{2} r}-\frac{1}{r^{2}}\right)+\frac{\sin ^{2} w_{t}}{\cos ^{2} r}\right] \\
& +\frac{2 \delta^{2}}{\varepsilon^{2}} s^{2} \sin 2 w_{t}-\delta \mu \sin ^{2} w_{t} \tag{7.54}
\end{align*}
$$

Noting that

$$
\left(w_{t}^{\prime}\right)^{2}=O\left(\frac{1}{\varepsilon^{2}}\right)
$$

and $w_{t}^{\prime}(r)=0$ for $0<r<t-2 \delta_{0}$ and $t+2 \delta<r<\frac{\pi}{2}$. It is easy to see that

$$
\begin{equation*}
\left\|S_{2}\left[w_{t}, 1\right]\right\|_{* *} \leq C\left(\frac{\delta^{2}}{\varepsilon^{2}}+\delta\right) \leq C \frac{\delta^{2}}{\varepsilon^{2}} \tag{7.55}
\end{equation*}
$$

Here we have used the assumption (7.5). Set

$$
\mathcal{B}=\left\{(\phi, \psi) \in\left(C^{1}([0, \pi / 2])\right)^{2}:\|\phi\|_{*, \varepsilon} \leq C \frac{\delta}{\varepsilon},\|\psi\|_{*, \delta} \leq\left(\frac{\delta}{\varepsilon}\right)^{1+\sigma}, \phi(0)=\phi(\pi / 2)=0\right\}
$$

where $0<\sigma<\frac{1}{2}$ is a small constant. Let us denote the map from $\left(h_{1}, h_{2}\right)$ to (ϕ, ψ) be $\mathcal{T}=\left(\mathcal{I}_{1}, \mathcal{I}_{2}\right)$. Namely, $\phi=\mathcal{T}_{1}\left(h_{1}, h_{2}\right), \psi=\mathcal{T}_{2}\left(h_{1}, h_{2}\right)$. By Lemma 7.2, we have

$$
\begin{equation*}
\left\|\mathcal{T}_{1}\left(h_{1}, h_{2}\right)\right\|_{*, \varepsilon} \leq C\left\|h_{1}\right\|_{* *, \varepsilon}+C \frac{\varepsilon}{\delta}\left\|h_{2}\right\|_{* *}, \quad\left\|\mathcal{T}_{2}\left(h_{1}, h_{2}\right)\right\|_{*, \delta} \leq C\left\|h_{2}\right\|_{* *}+C \frac{\delta^{2}}{\varepsilon^{2}}\left\|h_{1}\right\|_{* *, \varepsilon} \tag{7.56}
\end{equation*}
$$

It is easy to see that

$$
S_{1}\left[w_{t}+\phi, 1+\psi\right]=0, \quad S_{2}\left[w_{t}+\phi, 1+\psi\right]=0
$$

is equivalent to

$$
\begin{equation*}
(\phi, \psi)=\mathcal{T}\left(-S_{1}\left[w_{t}, 1\right]-N_{1},-S_{2}\left[w_{t}, 1\right]-N_{2}\right):=\mathcal{G}(\phi, \psi) \tag{7.57}
\end{equation*}
$$

Then by (7.49), (7.53), and (7.56), we obtain that

$$
\begin{align*}
& \left\|\mathcal{T}_{1}\left(-S_{1}\left[w_{t}, 1\right]-N_{1},-S_{2}\left[w_{t}, 1\right]-N_{2}\right)\right\|_{*, \varepsilon} \\
\leq & C\left\|S_{1}\left[w_{t}, 1\right]+N_{1}\right\|_{* *, \varepsilon}+C \frac{\varepsilon}{\delta}\left(\left\|S_{2}\left[w_{t}, 1\right]\right\|_{* *}+\left\|N_{2}\right\|_{* *}\right) \\
\leq & C \varepsilon+C\left(\frac{\delta}{\varepsilon}\right)^{2}+C \frac{\varepsilon}{\delta}\|\psi\|_{* *}^{2} \leq C \varepsilon+C\left(\frac{\delta}{\varepsilon}\right)^{2}+C\left(\frac{\delta}{\varepsilon}\right)^{1+2 \sigma} \leq C \frac{\delta}{\varepsilon} \tag{7.58}
\end{align*}
$$

Here we have used $\varepsilon^{2} \ll \delta$ from the assumption (2.20). Similarly we have

$$
\begin{align*}
\left\|\mathcal{T}_{2}\left(-S_{1}\left[w_{t}, 1\right]-N_{1},-S_{2}\left[w_{t}, 1\right]-N_{2}\right)\right\|_{*, \delta} & \leq C\left\|S_{2}\left[w_{t}, 1\right]+N_{2}\right\|_{* *}+C \frac{\delta^{2}}{\varepsilon^{2}}\left\|S_{1}\left[w_{t}, 1\right]+N_{1}\right\|_{* *, \varepsilon} \\
& \leq C\left(\frac{\delta}{\varepsilon}\right)^{2}+C\left(\frac{\delta}{\varepsilon}\right)^{1+\sigma}+C \frac{\delta^{2}}{\varepsilon} \\
& \leq C\left(\frac{\delta}{\varepsilon}\right)^{1+\sigma} \tag{7.59}
\end{align*}
$$

Here we have used $0<\sigma<1 / 2$ and $\frac{\delta^{2}}{\varepsilon} \ll\left(\frac{\delta}{\varepsilon}\right)^{1+\sigma}$ from $\delta \ll \varepsilon \ll 1$ as another part of (2.20). Thus the $\operatorname{map} \mathcal{G}$ is a map from \mathcal{B} to \mathcal{B}. Similarly, we can show that \mathcal{G} is a contraction map.

Then as for the proof of Proposition 4.2 of Section 4, we may prove Step I using contraction mapping principle.

For Step II, we can use the same argument as Lemma 4.3 to get

$$
\begin{equation*}
\left(\int_{\mathbb{R}}\left(w^{\prime}(y)\right)^{2} \mathrm{~d} y\right) c_{\varepsilon}(t)=-2(\cot 2 t) \varepsilon \int_{\mathbb{R}}\left(w^{\prime}(y)\right)^{2} \mathrm{~d} y+\varepsilon \mu+O\left(\varepsilon^{2}\right) \tag{7.60}
\end{equation*}
$$

and hence there exists t_{ε} such that

$$
\begin{equation*}
c_{\varepsilon}\left(t_{\varepsilon}\right)=0 \tag{7.61}
\end{equation*}
$$

Thus we have obtained the following theorem.
Theorem 7.3 Under the condition (7.5), there exists a solution $\left(\lambda_{\delta, \varepsilon, \mu}, \rho_{\delta, \varepsilon, \mu}\right)$ to (2.18)(2.19) with the following properties

$$
\begin{gather*}
\lambda_{\delta, \varepsilon, \mu}(r)=w\left(\frac{r-t_{\varepsilon, \mu}}{\varepsilon}\right)+O\left(\varepsilon \mathrm{e}^{-\sigma\left|\frac{r-t_{\varepsilon, \mu}}{\varepsilon}\right|}\right) \tag{7.62}\\
\rho_{\delta, \varepsilon, \mu}(r)=s\left(\frac{r}{\delta}\right)\left(1+O\left(\frac{\delta}{\varepsilon}\right)\right) \tag{7.63}
\end{gather*}
$$

and

$$
\widetilde{E}_{\delta, \varepsilon, \mu}\left(\lambda_{\delta, \varepsilon, \mu}, \rho_{\delta, \varepsilon, \mu}\right)=O(\varepsilon)+O\left(\varepsilon^{2} \log \frac{1}{\delta}\right)
$$

for each $\mu \in \mathbb{R}$, where $t_{\varepsilon, \mu}=t_{0}+O(\varepsilon)$ and t_{0} satisfies

$$
2\left(\cot 2 t_{0}\right) \int_{\mathbb{R}}\left(w^{\prime}(y)\right)^{2} \mathrm{~d} y=\mu
$$

For Step III, we can use (7.62) and (7.63) to compute

$$
\int_{0}^{\frac{\pi}{2}}(\sin 2 r) \rho_{\delta, \varepsilon, \mu} \sin ^{2} \lambda_{\delta, \varepsilon, \mu} \mathrm{d} r \rightarrow \int_{t_{0}}^{\frac{\pi}{2}} \sin 2 r \mathrm{~d} r=\frac{1}{2}\left(1+\cos 2 t_{0}\right)
$$

as $\varepsilon, \delta \rightarrow 0$. Therefore, we may choose t_{0} suitably such that

$$
\frac{1}{2}\left(1+\cos 2 t_{0}\right)=c_{2} \in(0,1), \quad 0<t_{0}<\frac{\pi}{2}
$$

and then we complete the proof of Step III.

References

[1] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys Rev Lett, 2001, 86: 2926
[2] Battye R A, Cooper N R, Sutcliffe P M. Stable skyrmions in two-component Bose-Einstein condensates. Phys Rev Lett, 2002, 88: 080401(1-4)
[3] Babaev E, Faddeev L D, Niemi A J. Hidden symmetry and knot solitons in a charged two-condensate Bose system. Phys Rev B, 2002, 65: 100512(1-4)
[4] Chen X, Elliott C M, Qi T. Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc Roy Soc Edinburgh Sect A, 1994, 124: 1075-1088
[5] Esteban M. A direct variational approach to Skyrme's model for meson fields. Commun Math Phys, 1986, 105: 571-591; Erratum to: "A direct variational approach to Skyrme's model for meson fields". Comm Math Phys, 2004, 251(1): 209-210
[6] Hervé R M, Hervé M. Étude qualitative des solutions réelles d'une équation différentielle liée à l‘équation de Ginzburg-Landau. Ann Inst H Poincaré Anal Non Linéaire, 1994, 11: 427-440
[7] Khawaja U A, Stoof H. Skyrmions in a ferromagnetic Bose-Einstein condensate. Nature, 2001, 411: 918-920
[8] Leggett A J. Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev Mod Phys, 2001, 73: 307-356
[9] Lin F, Yang Y. Existence of two-dimensional skyrmions via the concentration-compactness method. Comm Pure Appl Math, 2004, 57(10): 1332-1351
[10] Lin Fanghua, Yang Yisong. Energy splitting, substantial inequality, and minimization for the Faddeev and Skyrme models. Comm Math Phys, 2007, 269 (1): 137-152
[11] Lin T C. The stability of the radial solution to the Ginzburg-Landau equation. Communication in Partial Differential Equations, 1997, 22(3/4): 619-632
[12] Frank Pacard, Tristan Riviere. Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, 39. Boston, MA: Birkhauser Boston, Inc, 2000
[13] Pitaevskii L, Stringari S. Bose-Einstein Condensation. Oxford: Oxford University Press, 2003
[14] Rajaraman R. Solitons and Instantons. Amsterdam: North-Holland, 1989
[15] Ruostekoski J, Anglin J R. Creating vortex rings and three-dimensional skyrmions in Bose-Einstein condensates. Phys Rev Lett, 2001, 86: 3934(1-4)
[16] Savage C M, Ruostekoski J. Energetically stable particlelike skyrmions in a trapped Bose-Einstein condensate. Phys Rev Lett, 2003, 91: 010403(1-4)
[17] Skyrme T H R. A nonlinear-field theory. Proc R Soc London A, 1961, 260: 127-138
[18] Timmermans E. Phase separation of Bose-Einstein condensates. Phys Rev Lett, 1998, 81: 5718-5721
[19] Wei J. On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem. J Diff Eqns, 1996, 129: 315-333
[20] Wei J. On interior spike layer solutions for some sin gilar perturbation problems. Proc Royal Soc Edinburgh Section A, 1998, 128: 849-974
[21] Wei J. Existence and stability of spikes for the Gierer-Meinhardt system//Chipot M, ed. Handbook of Differential Equations: Stationary Partial Differential Equations, Volume 5. Elsevier, 2008: 487-585

[^0]: *Received December 26, 2008. The research of FHL is partially supported by the NSF grant under DMS 0700517, TCL is partially supported by a research Grant from NSC and NCTS (National Center of Theoretical Sciences) of Taiwan, and JCW is partially supported by a General Research Fund from RGC of Hong Kong.

