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VANISHING ESTIMATES FOR LIOUVILLE EQUATION WITH
QUANTIZED SINGULARITIES

JUNCHENG WEI AND LEI ZHANG

ABSTRACT. In this article we continue with the research initiated in our previ-
ous work on singular Liouville equations with quantized singularity. The main
goal of this article is to prove that as long as the bubbling solutions violate the
spherical Harnack inequality near a singular source, the first derivatives of coef-
ficient functions must tend to zero.

1. INTRODUCTION

In this article we study bubbling solutions of

(1.1) ∆u+H(x)eu = 4παδ0 in Ω⊂ R2

where Ω is an open, bounded subset of R2 that contains the origin, α > −1 is a
constant and δ0 is the Dirac mass at 0, H is a positive and smooth function. Since

∆(
1

2π
log |x|) = δ0,

One can use the logarithmic function 2πα log |x| to remove the singular source
from the equation: let u1(x) = u(x)−2α log |x|, then u1 satisfies

(1.2) ∆u1 + |x|2αH(x)eu1 = 0, in Ω.

If a sequence of solutions {uk}∞
k=1 of (1.2) satisfies

lim
k→∞

uk(xk) = ∞, for some x̄ ∈ Bτ and xk→ x̄.

we say uk is a sequence of bubbling solutions or blowup solutions, x̄ is called a
blowup point. For many reasons in applications it is most interesting to consider
α ∈N (the set of natural numbers) and when 0 is the only blowup point of uk. Our
set-up of bubbling solutions is as follows: Let uk be a sequence of solutions of

(1.3) ∆uk(x)+ |x|2NHk(x)euk = 0, in Bτ

for some τ > 0 independent of k. Bτ is the ball centered at the origin with radius
τ . In addition we postulate the usual assumptions on uk and Hk: For a positive
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constant C independent of k, the following holds:

(1.4)


‖Hk‖C3(B̄τ ) ≤C, 1

C ≤ Hk(x)≤C, x ∈ B̄τ ,∫
Bτ

Hkeuk ≤C,

|uk(x)−uk(y)| ≤C, ∀x,y ∈ ∂Bτ ,

and since we study the asymptotic behavior of blowup solutions around the singular
source, we assume that there is no blowup point except at the origin:

(1.5) max
K⊂⊂Bτ\{0}

uk ≤C(K).

Also, we use the value of uk on ∂Bτ to define a harmonic function φk(x):

(1.6)


∆φk(x) = 0, in Bτ ,

φk(x) = uk(x)− 1
2πτ

∫
∂Bτ

ukdS, x ∈ ∂Bτ .

Clearly the mean value property of harmonic functions implies φk(0)= 0 and the fi-
nite oscillation of uk on ∂Bτ means that all derivatives of φk are uniformly bounded
in Bτ/2. In this article we consider the case that:

(1.7) max
x∈Bτ

uk(x)+2(1+N) log |x| → ∞,

which is equivalent to saying that the spherical Harnack inequality does not hold
for uk. It is also mentioned in literature ( see [14, 19] ) that 0 is called an non-simple
blowup point. The main result of this article is

Theorem 1.1. Let {uk} be a sequence of solutions of (1.3) such that (1.4),(1.5) and
(1.7) hold. Then

∇(logHk +φk)(0) = o(1), as k→ ∞,

where φk is defined in (1.6).

When bubbling solutions satisfy (1.7), they are called non-simple blowup so-
lutions ( see [14]). Theorem 1.1 is a compliment of Theorem 1.1 of [19], which
asserts that under certain conditions (see Theorem A below) ∇(logHk + φ k

i )(0)
tends to zero. Theorem 1.1 removes the restrictions in [19]. In other words, the
combination of Theorem A and Theorem 1.1 proves that ∇(logHk + φk)(0)→ 0
as long as the non-simple blowup situation occurs. Besides the advancement of
analytical understanding, this conclusion is particularly important in application.
Theorem 1.1 can be applied to situations beyond single equations. For certain sys-
tems of equations such as Toda systems, the bubble accumulations can be described
by a sequence of bubbling solutions with quantized singular source. Theorem 1.1
is very useful to rule out complicated bubbling accumulation pictures in Toda sys-
tems.

It remains an open question whether or not ∇(logHk + φk)(0) tends to 0 if the
bubbling solutions satisfy the spherical Harnack inequality around the origin. We
tend to believe one can construct a sequence of bubbling solutions that satisfy
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spherical Harnack inequality with nonzero first derivatives of the coefficients func-
tions. In particular the works of Del Pino-Esposito-Musso [8, 9] on two dimen-
sional Euler flows seem to suggest that for simple blowup solutions with quantized
singular sources, the first derivatives of the coefficient functions may not tend to
zero at singular sources. Instead the (N + 1)-th derivatives should vanish. Our
result, together with [8, 9], demonstrates a striking contrast between simple and
non-simple bubblings.

The non-simple bubbling situation and vanishing theorems have profound im-
pact to problems in geometry and physics. For example for the following mean
field equation defined on a Riemann surface (M,g):

(1.8) ∆gu+ρ(
h(x)eu(x)∫

M heu −
1

Volg(M)
) = 4π ∑

j
α j(δp j −

1
Volg(M)

),

the solution u represents a conformal metric with prescribed conic singularities
(see [10, 17, 18]) . In particular if the singular source is quantized, the Liouville
equation has close ties with Algebraic geometry, integrable system, number the-
ory and complex Monge-Ampere equations (see [7]). In Physics the understand-
ing of non-simple blowup phenomenon would be extremely useful for the study
of mean field limits of point vortices in the Euler flow [4, 5] and models in the
Chern-Simons-Higgs theory [13] and in the electroweak theory [1], etc. It is also
remarkable that non-simple bubbling solutions also occur in systems. In [12], the
non-simple blowup solutions are studied for singular Liouville systems. Finally we
remark that when the blowup point is a location of a singular source, whether or
not this point has to be a critical point of coefficient functions has intrigued people
for years. Our previous result [19] is the first result for singular Liouville equation,
the second author proved a surprising vanishing theorem for singular Toda systems
in [22].

The organization of this paper is as follows. In section two we review a few fun-
damental tools for the proof of the main theorem and invoke several key estimates
established in our pervious work [19]. Then in section three we use a sequence
of global solutions to approximate our blowup solutions. The point-wise estimates
proved in this section are more precise than what is established in [19] and are
important for our argument. In section four we prove a crucial estimate on the
difference between blowup solution and the global solutions as the first term in
the approximation. As a consequence of section four, we move to section five to
complete the proof of the main theorem. The proof in section five is similar to the
proof of uniqueness theorems for bubbling solutions in [20], [2], [15], etc.

Notation: We will use B(x0,r) to denote a ball centered at x0 with radius r. If
x0 is the origin we use Br. C represents a positive constant that may change from
place to place.

2. PRELIMINARY DISCUSSIONS

For simple notation we set

(2.1) uk(x) = uk(x)−φk(x), and
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(2.2) hk(x) = Hk(x)eφk(x).

to write the equation of uk as

(2.3) ∆uk(x)+ |x|2Nhk(x)euk = 0, in Bτ

Without loss of generality we assume

(2.4) lim
k→∞

hk(0) = 1.

Obviously (1.7) is equivalent to

(2.5) max
x∈Bτ

uk(x)+2(1+N) log |x| → ∞,

It is well known [14, 3] that uk exhibits a non-simple blowup profile. It is estab-
lished in [14, 3] that there are N+1 local maximum points of uk: pk

0,....,pk
N and they

are evenly distributed on S1 after scaling according to their magnitude: Suppose
along a subsequence

lim
k→∞

pk
0/|pk

0|= eiθ0 ,

then

lim
k→∞

pk
l

|pk
0|

= ei(θ0+
2πl

N+1 ), l = 1, ...,N.

For many reasons it is convenient to denote |pk
0| as δk and define µk as follows:

(2.6) δk = |pk
0| and µk = uk(pk

0)+2(1+N) logδk.

Since pk
l ’s are evenly distributed around ∂Bδk , standard results for Liouville

equations around a regular blowup point can be applied to have uk(pk
l ) = uk(pk

0)+
o(1). Also, (1.7) gives µk → ∞. The interested readers may look into [14, 3] for
more detailed information.

In our previous work [19] we prove the following vanishing type estimates for
the first derivatives of the coefficient function loghk:

Theorem A: Let uk, φk, hk, δk, µk be defined by (2.3), (1.6), (2.2), (2.6) respec-
tively. Then

(2.7) |∇ loghk(0)|= O(δk)+O(δ−1
k e−µk µk).

Here we observe that if µke−µk = o(δk), we already have ∇hk(0) = o(1), which
is equivalent to ∇(Hkeφk)(0) = o(1). Thus throughout the paper we assume

(2.8) δk ≤Cµke−µk .

Finally we shall use E to denote a frequently appearing error term of the size
O(δ 2

k )+O(µke−µk). Because of (2.8),

E = O(µke−µk).
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3. APPROXIMATING BUBBLING SOLUTIONS BY GLOBAL SOLUTIONS

First we recall that |pk
0|= δk, so we write pk

0 as pk
0 = δkeiθk and define vk as

(3.1) vk(y) = uk(δkyeiθk)+2(N +1) logδk, |y|< τδ
−1
k .

If we write out each component, (3.1) is

vk(y1,y2) = uk(δk(y1 cosθk− y2 sinθk),δk(y1 sinθk + y2 cosθk))+2(1+N) logδk.

Then it is standard to verify that vk solves

(3.2) ∆vk(y)+ |y|2Nhk(δky)evk(y) = 0, |y|< τ/δk,

where

(3.3) hk(x) = hk(xeiθk), |x|< τ.

Thus the image of pk
0 after scaling is Qk

1 = e1 = (1,0). Let Qk
1, Qk

2,...,Qk
N be the

images of pk
i (i = 1, ...,N) after the scaling:

Qk
l =

pk
l

δk
e−iθk , l = 1, ...,N.

It is established by Kuo-Lin in [14] and independently by Bartolucci-Tarantello in
[3] that

(3.4) lim
k→∞

Qk
l = lim

k→∞

pk
l /δk = e

2lπi
N+1 , l = 0, ....,N.

Then in our previous work [19] we obtained ( see (3.13) in [19])

(3.5) Qk
l − e

2πli
N+1 = E.

Choosing 3ε > 0 small and independent of k, we can make disks centered at Qk
l

with radius 3ε (denoted as B(Qk
l ,3ε)) mutually disjoint. Let

(3.6) µk = max
B(Qk

0,ε)
vk.

Since Qk
l are evenly distributed around ∂B1, it is easy to use standard estimates for

single Liouville equations ([21, 11, 6]) to obtain

max
B(Qk

l ,ε)
vk = µk +o(1), l = 1, ...,N.

Let

(3.7) Vk(x) = log
eµk

(1+ eµkhk(δke1)
8(1+N)2 |yN+1− e1|2)2

.

Clearly Vk is a solution of

(3.8) ∆Vk +hk(δke1)|y|2NeVk = 0, in R2, Vk(e1) = µk.

This expression is based on the classification theorem of Prajapat-Tarantello [16].
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The estimate of vk(x)−Vk(x) is important for the main theorem of this article.
For convenience we use

βl =
2πl

N +1
, so e1 = eiβ0 = Qk

0, eiβl = Qk
l +E, for l = 1, ...,N.

Proposition 3.1. Let l = 0, ...,N and δ be small so that B(eiβl ,δ )∩B(eiβs ,δ ) = /0
for l 6= s. In each B(eiβl ,δ )

(3.9) |vk(x)−Vk(x)| ≤


Cµke−µk/2, |x− eiβl | ≤Ce−µk/2,

C µke−µk

|x−eiβl | +O(µ2
k e−µk), Ce−µk/2 ≤ |x− eiβl | ≤ δ .

Remark 3.1. Once (3.9) is established. We shall use a re-scaled version of Propo-
sition 3.1. Let εk = e−

1
2 µk , we have

(3.10) |vk(eiβl + εky)−Vk(eiβl + εky)| ≤Cµ
2
k εk(1+ |y|)−1, 0 < |y|< δ0ε

−1
k .

Proof of Proposition 3.1: The main idea of the proof is as follows. First from the
Green’s representation of vk we obtain a rather precise estimate of vk in B3 away
from bubbling disks. On the other hand around each Qk

m we invoke a standard
pointwise estimate in [6, 21, 11] for Liouville equation around a blowup point,
which provides a precise description of vk in a neighborhood of Qk

m. The compari-
son of these two estimates gives an accurate estimate of the maximum of vk around
each local maximum point.

Fixing the neighborhood of one Qk
m, we first cite a result of Gluck [11] (Appen-

dix B of [19]) to write vk as

(3.11) vk(y) = log
eµk,m

(1+ eµk,m |Q̃k
m|2Nhk(δkQ̃k

m)
8 |y− Q̃k

m|2)2
+φ

k
m(y)+O(µ2

k e−µk)

where µk,m = vk(Q̃k
m), φ k

m is the harmonic function taking 0 at Qk
m that makes vk−

φ k
m = constant on ∂B(Qk

m,δ ). Q̃k
m is where vk− φ k

m takes its local maximum in a
neighborhood of Qk

m. The difference between Q̃k
m and Qk

m is O(e−µk). First we
claim that

(3.12) µk,m−µk = E.

From the Green’s representation formula for vk, we have, for y away from bub-
bling areas and |y| ∼ 1,

vk(y) = vk|∂Ωk +
∫

Ωk

G(y,η)hk(η)|η |2Nevk dη ,

= vk|∂Ωk +
N

∑
l=0

G(y,Qk
l )
∫

B(Qk
l ,ε)
|η |2Nhk(δkη)evk dη

+∑
l

∫
B(Qk

l ,ε)
(G(y,η)−G(y,Qk

l ))|η |2Nhk(δkη)evk dη +E,

= vk|∂Ωk +8π ∑
l

G(y,Qk
l )+E
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where Ωk = B(0,τδ
−1
k ). Note that we use two standard estimates. First the inte-

gration outside bubbling disk is E because

vk(x)≤−µk− (4(N +1)−o(1)) log |x|+C, 3 < |x|< τδ
−1
k .

Second, in the evaluation of the integral terms above we use standard bubble ex-
pansion formula (see Gluck [11], for example) and symmetry properties. This part
is mentioned in Lemma 2.1 and Appendix B of [19]. It is important to point out that
the second estimate does not depend on m. In particular if we consider y located at
|y−Qk

m|= ε , the expression of vk can be written as

vk(y) = vk|∂Ωk −4log |y−Qk
m|+φ

k
m(3.13)

−4
N

∑
l=0,l 6=m

log |Qk
m−Qk

l |+8π

N

∑
l=0

H(Qk
m,Q

k
l )+E,

where

(3.14) φ
k
m =

N

∑
l=0,l 6=m

(−4) log
|y−Qk

l |
|Qk

m−Qk
l |
+8π

N

∑
l=0

(H(y,Qk
l )−H(Qk

m,Q
k
l ))

is the harmonic function that takes 0 at Qk
m and eliminates the oscillation of vk on

∂B(Qk
m,ε). On the other hand from (3.11) we have

(3.15) vk(y) =−µk,m−2log
|Q̃k

m|2Nhk(δkQ̃k
m)

8
−4log |y−Qk

m|+φ
k
m+O(µ2

k e−µk).

Comparing (3.15) and (3.13) on |y−Qk
m|= ε we have

−µm,k−2log
|Q̃k

m|2Nhk(δkQ̃k
m)

8
(3.16)

=−4
N

∑
l=0,l 6=m

log |Qk
m−Qk

l |+8π

N

∑
l=0

H(Qk
m,Q

k
l )+ vk|∂Ωk +O(µ2

k e−µk).

To evaluate terms in (3.16) we observe that (see (3.5))

|Q̃k
m|2N = 1+E, hk(δkQ̃k

m) = 1+E,

Qk
m = eiβm +E, Q̃k

m = Qk
m +O(e−µk),

and by the expression of Hk(y,η):

Hk(y,η) =
1

2π
log(

|η |
τδ
−1
k

|
τ2δ

−2
k η

|η |2
− y|)

=
1

2π
log(τδ

−1
k )+

1
2π

log | η

|η |
− |η |

τ2 δ
2
k y|

we have
Hk(Qk

m,Q
k
l ) =

1
2π

log(τδ
−1
k )+E.

Thus two terms in (3.16) are

(3.17) 8π

N

∑
l=0

H(Qk
m,Q

k
l ) = 4(N +1) log(τδ

−1
k )+E
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N

∑
l=0,l 6=m

log |Qk
m−Qk

l |=
N

∑
l=0,l 6=m

log |eiβm− eiβl |+E(3.18)

= log(N +1)+E.

Using (3.17) and (3.18) in (3.16) we have

vk|∂Ωk =−µm,k−2log
hk(δke1)

8
+4log(1+N)−4(1+N) log(τδ

−1
k )(3.19)

+O(µ2
k e−µk), m = 0,1, ...,N.

The value vk|∂Ωk is independent of m. In particular µ0,k = µk. Thus the comparison
of µm,k in (3.19) proves (3.12). Next we observe that around Qk

l

(3.20) Vk(y) = log
eµk

(1+ |Q̃
k
l |2Nhk(δke1)eµk

8 |y− Q̃k
l |2)2

+ φ̃
k
l (y)+O(µ2

k e−µk),

where y ∈ B(eiβl ,δ0), Q̃k
l = eiβl +O(e−µk),

(3.21) φ̃
k
l (x) =

N

∑
m=0,m6=l

(−4) log
|y− eiβm|

|eiβm− eiβl |
,

δ0 is a small positive number independent of k. The way to prove (3.20), by direct
computation from the expression of Vk, is as follows: It is easy to see that

Vk(y) =−
1

2π

∫
R2

log |y−η |hk(δke1)|η |2NeVk(η)dη +C, y ∈ R2.

Then hk(δke1)eVk |y|2N weakly converges to 8πδeiβl in a small neighborhood of eiβl .
For y ∈ ∂B(eiβl ,δ ) we have

Vk(y) =−
N

∑
l=0

4log |y− eiβl |+Ck +O(µke−µk).

From there we know that harmonic function around eiβl that equals 0 at eiβl is φ k
l

in (3.21). On the other hand the equation of vk around eiβl is (3.8). The standard
expansion (see [11]) for blowup solution leads to (3.20).

Since Qk
m− eiβm = E, we can replace φ̃ k

l by φ k
l and have

Vk(x) = log
eµk

(1+ hk(δke1)eµk

8 |y− eiβl |2)2
+φ

k
l +O(µ2

k e−µk)

in B(Qk
l ,e
−µk/2). Thus in the region B(Qk

l ,e
−µk/2), the comparison between vk and

Vk boils down to the evaluation of:

(3.22) log
eµl,k

(1+ hk(δke1)e
µl,k

8 |y− eiβl − pk|2)2
− log

eµk

(1+ hk(δke1)eµk

8 |y− eiβl |2)2
,

for |pk| = E. By elementary computation we see that the difference between the
two terms in (3.22) is O(µke−µk/2) if |y− eiβl | ≤Ce−µk/2. On the other hand, for
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Ce−µk/2 < |y− eiβl | < ε/2, the comparison of expressions of vk and Uk gives the
difference upper bound as

O(e−µk)|y− eiβl |−1 +O(µ2
k e−µk), Ce−µk/2 ≤ |y− eiβl |< ε.

Moreover

(3.23) vk−Vk = O(µ2
k e−µk) on ∂B(Qk

l ,ε), l = 0, ...,N.

Also we observe from the expression of Vk that

(3.24) Vk(x) =−µk−2log
hk(δke1)

8
+4log(N +1)−4(1+N) log(τδ

−1
k )+E,

for x ∈ ∂Ωk, thus
vk−Vk = O(µ2

k e−µk) on ∂Ωk.

Then the closeness of vk and Vk on Ωk \ (∪lB(Qk
l ,ε)) can be obtained by a standard

maximum principle argument: If we use wk to denote vk−Vk:

wk(z) = (vk−Vk)(z),

then it is easy to see wk satisfies

|∆wk(z)| ≤Ce−µk |z|−4−2N , Ωk \B2, |wk| ≤Cµ
2
k e−µk on ∂B2∪∂Ωk,

Then |wk| can be majorized by Q(µ2
k e−µk − e−µk r−1−2N) for a large Q > 1, which

yields the smallness of vk −Vk on Ωk \B2 as a consequence. Proposition 3.1 is
established. �

4. FIRST CRUCIAL BOUND FOR vk−Vk

In this section we establish the first major estimate of vk−Vk. The main result
in this section is

Proposition 4.1. Let wk = vk−Vk, then

|wk(y)| ≤Cδk, y ∈Ωk := B(0,τδ
−1
k ).

Proof of Proposition 4.1:
First we recall the equation for vk is (3.2), vk = constant on ∂B(0,τδ

−1
k ). More-

over vk(e1) = µk. Recall that Vk defined in (3.7) satisfies

∆Vk +hk(δke1)|y|2NeVk = 0, in R2,
∫
R2
|y|2NeVk < ∞,

Vk has its local maximums at eiβl for l = 0, ...,N and Vk(e1) = µk. For |y| ∼ δ
−1
k ,

Vk(y) =−µk−4(N +1) logδ
−1
k +C+O(δ N+1

k )+O(e−µk).

Let Ωk = B(0,τδ
−1
k ), we shall derive a precise, point-wise estimate of wk in

B3 \∪N
l=1B(Qk

l ,λ ) where λ > 0 is a small number independent of k. Here we note
that among N + 1 local maximum points, we already have e1 as a common local
maximum point for both vk and Vk and we shall prove that wk is very small in B3 if
we exclude all bubbling disks except the one around e1. Before we carry out more
specific computation we emphasize the importance of

(4.1) wk(e1) = |∇wk(e1)|= 0.
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Now we write the equation of wk as

(4.2) ∆wk +hk(δky)|y|2Neξk wk = (hk(δke1)−hk(δky))|y|2NeVk

in Ωk, where ξk is obtained from the mean value theorem:

eξk(x) =


evk(x)−eVk(x)

vk(x)−Vk(x)
, if vk(x) 6=Vk(x),

eVk(x), if vk(x) =Vk(x).

An equivalent form is

(4.3) eξk(x) =
∫ 1

0

d
dt

etvk(x)+(1−t)Vk(x)dt = eVk(x)
(
1+

1
2

wk(x)+O(wk(x)2)
)
.

For convenience we write the equation for wk as

(4.4) ∆wk +hk(δky)|y|2Neξk wk = δk∇hk(δke1) · (e1− y)|y|2NeVk +E1

where
E1 = O(δ 2

k )|y− e1|2|y|2NeVk , y ∈Ωk.

Let Mk =maxx∈Ω̄k
|wk(x)|. We shall get a contradiction by assuming Mk/δk→∞

at this moment. Set
w̃k(y) = wk(y)/Mk, x ∈Ωk.

Clearly maxx∈Ωk |w̃k(x)|= 1. The equation for w̃k is

(4.5) ∆w̃k(y)+ |y|2Nhk(δke1)eξk w̃k(y) =
δk

Mk
∇hk(δke1) · (e1− y)|y|2NeVk + Ẽ1,

in Ωk, where

(4.6) Ẽ1 = o(δk)|y− e1|2|y|2NeVk , y ∈Ωk.

Now we give a more precise estimate of eξk . By Proposition 3.1

(4.7) ξk(y) =Vk(y)+

 O(µke−µk/2), |y− e1| ≤ e−µk/2,

O(µ2
k e−µk)|y− e1|−1, e−µk/2 ≤ |y− e1| ≤ δ0.

Since Vk is not exactly symmetric around e1, we shall replace the re-scaled version
of Vk around e1 by a radial function. Let Uk be solutions of

∆Uk +hk(δke1)eUk = 0, in R2, Uk(0) = max
R2

Uk = 0.

Then we have

Uk(z) = log
1

(1+ hk(δke1)
8 |z|2)2

and

(4.8) Vk(e1 + εkz)+2logεk =Uk(z)+O(εk)|z|+O(µ2
k ε

2
k ).

Also we observe that

(4.9) log |e1 + εky|= O(εk)|y|.
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Thus, the combination of (4.7), (4.8) and (4.9) gives

2N log |e1 + εkz|+ξk(e1 + εkz)+2logεk−Uk(z)(4.10)

=O(µ2
k εk)(1+ |z|) 0≤ |z|< δ0ε

−1
k .

Since we shall use the re-scaled version, based on (4.10) we have

(4.11) ε
2
k |e1 + εkz|2Neξk(e1+εkz) = eUk(z)+O(µ2

k εk)(1+ |z|)−3

Here we note that the estimate in (4.10) is not optimal.
The first key estimate is

Lemma 4.1.

(4.12) w̃k(y) = o(1), ∇w̃k = o(1) in B(e1,δ )\B(e1,δ/8)

where B(e1,3δ ) does not include other blowup points.

Proof of Lemma 4.1:
If (4.12) is not true, we have, without loss of generality that w̃k → c > 0. Note

that w̃k tends to a global harmonic function with removable singularity. So w̃k tends
to constant. Here we assume c > 0 but the argument for c < 0 is the same. Let

Wk(z) = w̃k(e1 + εkz), εk = e−
1
2 µk ,

then if we use W to denote the limit of Wk, we have

∆W + eUW = 0, R2, |W | ≤ 1,

and U is a solution of ∆U + eU = 0 in R2 with
∫
R2 eU < ∞. Since 0 is the local

maximum of U ,

U(x) = log
1

(1+ 1
8 |x|2)2

.

Here we further claim that W ≡ 0 in R2 because W (0) = |∇W (0)|= 0, a fact well
known based on the classification of the kernel of the linearized operator. Going
back to Wk, we have

Wk(x) = o(1), |x| ≤ Rk for some Rk→ ∞.

Based on the expression of w̃k, (4.8) and (4.11) we write the equation of Wk as

(4.13) ∆Wk(z)+hk(δke1)eUk(z)Wk(z) =−
δk

Mk
∇hk(δke1) · zεkeUk(z)+Ek

2 ,

for |z|< δ0ε
−1
k where

Ek
2(z) = o(1)µ2

k εk(1+ |z|)−3.

Let

(4.14) gk
0(r) =

1
2π

∫ 2π

0
Wk(r,θ)dθ .
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Then clearly gk
0(r)→ c > 0 for r ∼ ε

−1
k . The equation for gk

0 is

d2

dr2 gk
0(r)+

1
r

d
dr

gk
0(r)+hk(δke1)eUk(r)gk

0(r) = Ẽk
0(r)

gk
0(0) =

d
dr

gk
0(0) = 0.

where Ẽk
0(r) has the same upper bound as that of Ek

2(r):

|Ẽk
0(r)| ≤Cµ

2
k εk(1+ r)−3.

For the homogeneous equation, the two fundamental solutions are known: g01,
g02, where

g01 =
1− c1r2

1+ c1r2 , c1 =
hk(δke1)

8
.

By the standard reduction of order process, g02(r) = O(logr) for r > 1. Then it is
easy to obtain, assuming |Wk(z)| ≤ 1, that

|g0(r)| ≤C|g01(r)|
∫ r

0
s|Ẽk

0(s)g02(s)|ds+C|g02(r)|
∫ r

0
s|g01(s)Ẽk

0(s)|ds.

After evaluation we have

|g0(r)| ≤Cµ
2
k εk log(2+ r). 0 < r < δ0ε

−1
k .

Clearly this is a contradiction to (4.14). We have proved c = 0, which means
w̃k = o(1) in B(e1,δ0)\B(e1,δ0/8). Then it is easy to use the equation for w̃k and
standard Harnack inequality to prove ∇w̃k = o(1) in the same region. Lemma 4.1
is established. �

Remark 4.1. From Lemma 4.1 one obtains easily that wk = o(1) in B(e1,ε) for
ε > 0 small. Indeed, using the same notation Wk in the proof of Lemma 4.1 we
already have Wk = o(1) in BRk for some Rk→ ∞. Then by the smallness for Wk(y)
for |y| ∼ ε

−1
k , it is easy to majorize Wk in B(0,εε

−1
k )\BRk based on the fast decay

of eUk . This part is omitted because it is similar to the last part of the proof of
Proposition 3.1.

The smallness of w̃k around e1 can be used to obtain the following second key
estimate:

Lemma 4.2.

(4.15) w̃k = o(1) in B(eiβl ,δ ) l = 1, ..,N.

Proof of Lemma 4.2: We abuse the notation Wk by defining it as

Wk(z) = w̃k(eiβl + εkz), |z|< δ0ε
−1
k .

First because of the smallness of δk (see 2.8), which implies that ε
−1
k |Qk

l −eiβl |→ 0.
So the scaling around eiβl or Qk

l does not affect the limit function.

|eiβl + εkz|2Nhk(δke1)eξk(eiβl+εkz)→ eU(z)
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where U(z) is a solution of

∆U + eU = 0, in R2,
∫
R2

eU < ∞.

Here we recall that limk→∞ hk(δke1) = 1. Since Wk converges to a solution of the
linearized equation:

∆W + eUW = 0, in R2.

W can be written as a linear combination of three functions:

W (x) = c0φ0 + c1φ1 + c2φ2,

where

φ0 =
1− 1

8 |x|
2

1+ 1
8 |x|2

φ1 =
x1

1+ 1
8 |x|2

, φ2 =
x2

1+ 1
8 |x|2

.

First we claim that c0 = 0. Let Ωl,k = B(0,δ0ε
−1
k ),

Hk
l (z) = |eiβl + εkz|2Nhk(δke1),

Uk(z) = ξk(eiβl + εkz)+2logεk, clearly Uk→U.

Here we note that U is radial. Based on (4.5) we write the equation for Wk as

(4.16) ∆Wk(z)+Hk
l (z)e

UkWk = Ek
l (z)

where
Ek

l (z) = o(1)(1+ |z|)−4, |z|< δ0ε
−1
k .

Integrating both sides of (4.16), we have∫
∂Ωl,k

∂νWk +
∫

Ωl,k

Hk
l eUkWk =

∫
Ωl,k

Ek
l dz.

Based on the estimate of ∇w̃k away from bubbling disks, we see that the first term
and the third term above are both tending to 0, the second term tends to Λc0 for
some Λ > 0. Thus c0 = 0.

To prove c1 = c2 = 0, we consider the Pohozaev identity of Wk:∫
∂Ωl,k

(
(∂νWk)

2− 1
2
|∇Wk|2 +

1
2

Hk
l eUkWk

)
δ0ε
−1
k(4.17)

−1
2

∫
Ωl,k

W 2
k (2HkeUk + zi∂i(Hk

l eUk))−
∫

Ωl,k

Ek
l zi∂iWk = 0.

It is easy to see that the first term and the third term are o(1). To evaluate the
second term, we first observe that the integration outside BRk for any Rk → ∞ is
o(1). So we only need to evaluate∫

B(0,Rk)
W 2

k (2HkeUk + zi∂i(Hk
l eUk)).
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Direct computation shows that

2HkeUk + zi∂i(Hk
l eUk)→ 2

1− c|z|2

(1+ c|z|2)3 in C2
loc(R2),

W 2(z) =
c2

1z2
1

(1+ c|z|2)2 +
c2

2z2
2

(1+ c|z|2)2 +
2c1c2z1z2

(1+ c|z|2)2 , in C2
loc(R2), c = 1/8.

Using these two facts and direct computation we have∫
B(0,Rk)

W 2
k (2HkeUk + zi∂i(Hk

l eUk)) = D(c2
1 + c2

2)+o(1)

for some D 6= 0. Thus c1 = c2 = 0. Lemma 4.2 is established. �

We have proved that w̃k = o(1) in B3, which also immediately implies w̃k = o(1)
in BR for any fixed R >> 1. Outside BR, a crude estimate of vk is

vk(y)≤−µk−4(N +1) log |y|+C, 3 < |y|< τδ
−1
k .

Using this and the Green’s representation of wk we can first observe that the oscil-
lation on each ∂Br is o(1) (R< r < τδ

−1
k /2) and then by the Green’s representation

of w̃k and fast decay rate of eVk we obtain w̃k = o(1) in B(0,τδ
−1
k ). A contradiction

to max |w̃k|= 1. Proposition 4.1 is established. �.

5. PROOF OF THEOREM 1.1

Let ŵk = wk/δk. Then the equation for ŵk is

(5.1) ∆ŵk + |y|2Neξk ŵk = ∇hk(0) · (e1− y)|y|2NeVk +O(δk)eVk |y− e1|2,

in Ωk. By Proposition 4.1, |ŵk(y)| ≤C. Before we carry out the remaining part of
the proof we observe that ŵk converges to a harmonic function in R2 minus finite
singular points. Since ŵk is bounded, all these singularities are removable. Thus
ŵk converges to a constant. Based on the information around e1, we shall prove
that this constant is 0. However, looking at the right hand side the equation,

∇hk(0) · (e1− y)|y|2NeVk ⇀
N

∑
l=1

8π∇hk(0) · (e1− eiβl )δeiβl .

If ∇hk(0) 6= 0 we would get a contradiction by comparing the Pohozaev identities
of vk and Vk.

Now we use the notation Wk again and use Proposition 4.1 to rewrite the equation
for Wk. Let

Wk(z) = ŵk(e1 + εkz), |z|< δ0ε
−1
k

for δ0 > 0 small. Then from Proposition 4.1 we have

(5.2) hk(δky) = hk(δke1)+δk∇hk(δke1)(y− e1)+O(δ 2
k )|y− e1|2,

(5.3) |y|2N = |e1 + εkz|2N = 1+O(εk)|z|,

(5.4) Vk(e1 + εkz)+2logεk =Uk(z)+O(εk)|z|+O(ε2
k )(log(1+ |z|))2
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and

(5.5) ξk(e1 + εkz)+2logεk =Uk(z)+O(εk)(1+ |z|).

Using (5.2),(5.3),(5.4) and (5.5) in (5.1) we write the equation of Wk as

(5.6) ∆Wk +hk(δke1)eUk(z)Wk =−εk∇hk(0) · zeUk(z)+Ew, 0 < |z|< δ0ε
−1
k

where

(5.7) Ew = O(δk)(1+ |z|)−4 +O(εk)(1+ |z|)−3Wk(z), |z|< δ0ε
−1
k .

At this moment we use |Wk(z)| ≤C and a rough estimate of Ew is

(5.8) Ew(z) = O(εk)(1+ |z|)−3, |z|< δ0ε
−1
k .

Since ŵk obviously converges to a global harmonic function with removable
singularity, we have ŵk→ c̄ for some c̄ ∈ R. Then we claim that

Lemma 5.1. c̄ = 0.

Proof of Lemma 5.1:
If c̄1 6= 0, we use Wk(z) = c̄+ o(1) on B(0,δ0ε

−1
k ) \B(0, 1

2 δ0ε
−1
k ) and consider

the projection of Wk on 1:

g0(r) =
1

2π

∫ 2π

0
Wk(reiθ )dθ .

If we use F0 to denote the projection to 1 of the right hand side we have, using the
rough estimate of Ew in (5.8)

g′′0(r)+
1
r

g′0(r)+hk(δke1)eUk(r)g0(r) = F0, 0 < r < δ0ε
−1
k

where
F0(r) = O(εk)(1+ |z|)−3.

In addition we also have

lim
k→∞

g0(δ0ε
−1
k ) = c̄1 +o(1).

Here the O(δk)(1+ |z|)−4 is absorbed because of the smallness of δ . For simplicity
we omit k in some notations. By the same argument as in Lemma 4.1, we have

g0(r) = O(εk)(log(2+ r))2, 0 < r < δ0ε
−1
k .

Thus c̄1 = 0. Lemma 5.1 is established. �

Based on Lemma 5.1 and standard Harnack inequality for elliptic equations we
have

(5.9) w̃k(x) = o(1), ∇w̃k(x) = o(1), x ∈ B3 \ (∪N
l=1(B(e

iβl ,δ0)\B(eiβl ,δ0/8))).

Equation (5.9) is equivalent to wk = o(δk) and ∇wk = o(δk) in the same region.

Proof of Theorem 1.1:
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For s= 1, ...,N we consider the Pohozaev identity around Qk
s . Let Ωs,k =B(Qk

s ,r)
for small r > 0. For vk we have∫

Ωs,k

∂ξ (|y|2Nhk(δky))evk −
∫

∂Ωs,k

evk |y|2Nhk(δky)(ξ ·ν)(5.10)

=
∫

∂Ωs,k

(∂νvk∂ξ vk−
1
2
|∇vk|2(ξ ·ν))dS.

where ξ is an arbitrary unit vector. Correspondingly the Pohozaev identity for Vk
is

∫
Ωs,k

∂ξ (|y|2Nhk(δke1))eVk −
∫

∂Ωs,k

eVk |y|2Nhk(δke1)(ξ ·ν)(5.11)

=
∫

∂Ωs,k

(∂νVk∂ξVk−
1
2
|∇Vk|2(ξ ·ν))dS.

Using wk = vk−Vk and |wk(y)| ≤Cδk we have∫
∂Ωs,k

(∂νvk∂ξ vk−
1
2
|∇vk|2(ξ ·ν))dS

=
∫

∂Ωs,k

(∂νVk∂ξVk−
1
2
|∇Vk|2(ξ ·ν))dS

+
∫

∂Ωs,k

(∂νVk∂ξ wk +∂νwk∂ξVk− (∇Vk ·∇wk)(ξ ·ν))dS+O(δ 2
k ).

If we just use crude estimate: ∇wk = o(δk), then∫
∂Ωs,k

(∂νvk∂ξ vk−
1
2
|∇vk|2(ξ ·ν))dS−

∫
∂Ωs,k

(∂νVk∂ξVk−
1
2
|∇Vk|2(ξ ·ν))dS= o(δk).

The difference on the second terms is minor:∫
∂Ωs,k

evk |y|2Nhk(δky)(ξ ·ν)−
∫

∂Ωs,k

eVk |y|2Nhk(δke1)(ξ ·ν) = O(δkε
2
k ).

To evaluate the first term, we use

∂ξ (|y|2Nhk(δky))evk

(5.12)

=∂ξ (|y|2Nhk(δke1)+ |y|2N
δk∇hk(δke1)(y− e1)+O(δ 2

k ))e
Vk(1+wk +O(δ 2

k ))

=∂ξ (|y|2N)hk(δke1)eVk +δk∂ξ (|y|2N
∇hk(δke1)(y− e1))eVk

+∂ξ (|y|2Nhk(δke1))eVk wk +O(δ 2
k )e

Vk .

For the third term on the right hand side of (5.12) we use the equation for wk:

∆wk +hk(δke1)eVk |y|2Nwk =−δk∇hk(δke1) · (y− e1)|y|2NeVk +O(δ 2
k )e

Vk |y|2N .
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From integration by parts we have∫
Ωs,k

∂ξ (|y|2N)hk(δke1)eVk wk

=2N
∫

Ωs,k

|y|2N−2yξhk(δke1)eVk wk

=2N
∫

Ωs,k

yξ

|y|2
(−∆wk−δk∇hk(δke1)(y− e1)|y|2NeVk +O(δ 2

k )e
Vk)

=−2Nδk

∫
Ωs,k

yξ

|y|2
∇hk(δke1)(y− e1)|y|2NeVk

+2N
∫

∂Ωs,k

(∂ν(
yξ

|y|2
)wk−∂νwk

yξ

|y|2
)+O(δ 2

k )

=−16Nδkπ(eiβs ·ξ )∇hk(δke1)(eiβs− e1)+o(δk),(5.13)

where we have used ∇wk,wk = o(δk) on ∂Ωs,k. For the second term on the right
hand side of (5.12), we have∫

Ωs,k

δk∂ξ (|y|2N
∇hk(δke1)(y− e1))eVk(5.14)

=2Nδk

∫
Ωs,k

yξ |y|2N−2
∇hk(δke1)(y− e1)eVk +δk

∫
Ωs,k

|y|2N
∂ξhk(δke1)eVk

=16Nπδk(eiβs ·ξ )∇hk(δke1)(eiβs− e1)+8πδk∂ξhk(δke1)+o(δk).

Using (5.13) and (5.14) in the difference between (5.10) and (5.11), we have

δk∂ξhk(δke1) = o(δk).

Thus ∇hk(δke1) = o(1). Theorem 1.1 is established. �
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