Math 305 Review Questions

(Received 03 December 2010)

Q1: Calculate the following integrals. In each case the simple closed curve C is oriented counterclockwise.

- $I=\int_{C} \frac{\sin z}{z^{2}(z-4)} d z$. Here C is $|z|=2$.
(Answer: $I=-i \pi / 2$.)
- $I=\int_{C} \frac{e^{z t}}{z^{2}(z+1)} d z$. Here C is $|z|=2$.
- $I=\int_{C} z /\left(z^{3}-9\right) d z$. Here C is $|z|=4$.
- $I=\int_{C} e^{z} /((z-\pi) \tan (z)) d z$. Here C is $|z|=2$.
- $I=\int_{C} z^{-7}(1-\cos (z))^{2} d z$. Here C is $|z|=1$.
- $I=\int_{C} e^{1 / z} \sin (1 / z) d z$. Here C is $|z|=1$.
(Answer: $I=2 \pi i\left(e^{-t}+t-1\right)$.)
(Answer: $I=0$.)
(Answer: $I=-2 i$.)
(Answer: $I=-\pi i / 12$.)
(Answer: $I=2 \pi i$.)

Q2: Let $P(z)$ and $Q(z)$ be two polynomials in z, with $\operatorname{deg}(Q)=N \geq 2$. Assume that $\operatorname{deg}(P) \leq N-2$, and that $Q(z)$ has simple zeroes at distinct points z_{j} for $j=1, \ldots, N$. Let C be a simple closed curve oriented counterclockwise, and assume that z_{j} are all inside C. Prove that

$$
\sum_{j=1}^{N} \operatorname{Res}\left(\frac{P}{Q} ; z_{j}\right)=0
$$

(Hint: define $I=\int_{C} P(z) / Q(z) d z$. Then, $I=0$ by deforming to a large circle $|z|=R$, and letting $R \rightarrow \infty$. Then, use the residue theorem inside the curve.)

Q3: Let $P(z)$ be a polynomial of degree N with N distinct roots z_{j} for $j=1, \ldots, N$. Let C be a simple closed curve oriented counterclockwise, and assume that there are no roots of $P(z)=0$ on the curve C.

- Using the residue theorem, show that $I=(2 \pi i)^{-1} \int_{C} P^{\prime}(z) / P(z) d z=M$, where M is the number of zeroes of $P(z)$ inside C.
- Suppose that you can verify that for some choice of C that $I=1$ (I defined above). Then, what does the calculation of the integral $J=(2 \pi i)^{-1} \int_{C} z P^{\prime}(z) / P(z) d z$ tell you? (Hint:: again use the residue theorem) Answer: $J=z_{*}$ where z_{*} is the only root of $P(z)=0$ inside C. In other words, calculating J determines the root, since $I=1$ means that there is only one root inside C. In practice we would compute I and J as a line integral using a numerical quadrature, i.e. trapezoidal rule)

Q4: Define the function $f(z)$ by the infinite series

$$
f(z)=\sum_{k=0}^{\infty} k^{4} z^{k} /\left(2^{2 k}\right) .
$$

Let C be a simple closed curve oriented counterclockwise. Then, calculate the following two integrals:

- $I_{1}=\int_{C} \cos (i z) f(z) d z$ with C the curve $|z-1|=1$
- $I_{2}=\int_{C} z^{-3} f(z) d z$ with C the curve $|z|=\pi$.
(Answer for $I_{1}: I_{1}=0$. Using the ratio test, the series for $f(z)$ converges in $|z|<4$. The result must be analytic in $|z|<4$ (theorem in class). Thus, since $|z|<4$ contains the curve C, and the product of two analytic functions $\cos (i z)$ and $f(z)$ are analytic, we get by Cauchy-Goursat that $I_{1}=0$.) (Answer for $I_{2}: I_{2}=2 \pi i$ by simply identifing the residue term at $z=0$.)

Q5: Let $f(z)=e^{i z^{2}}$ calculate the maximum M of $|f(z)|$ over the closed disk $|z| \leq 4$. (Answer: by maximum modulus principle, and by evaluating on $z=4 e^{i \theta}$, we conclude that $M=e^{16}$, which is attained at two points on the boundary $|z|=4$.)

Q6: Find the roots of $z^{5}+4=0$. (Answer: $z=4^{1 / 5} e^{i \pi(1+2 k) / 5}$ for $k=0,1,2,3,4$.)
Q7: Describe the set of z for which $|z|+|z-2|=4$. (Answer: the ellipse $(x-1)^{2} / 4+y^{2} / 3=1$.)
Q8: Show that

$$
1+\cos \theta+\cos (2 \theta)+\cdots \cos (n \theta)=\frac{1}{2}+\frac{\sin [(n+1 / 2) \theta]}{2 \sin (\theta / 2)} .
$$

(Hint: start with a finite geometric series $1+w+\cdots w^{N-1}=\left(1-w^{N}\right) /(1-w)$, and set $w=e^{i \theta}$. Then, take the real part of both sides of the equation.)

Q9: Expand

$$
f(z)=\frac{1}{z(1-z)}
$$

in a Laurent series that converges in each of the following two regions:

- $0<|z|<1$
- $|z|>1$. Then, using the Laurent series, calculate $\int_{C} f(z) d z$, where C is the circle $|z|=4$ oriented counterclockwise.
(Answer: this is easy; see notes for similar example).
Q10: Show how to calculate the following integral $I=\int_{0}^{2 \pi}[\cos (\theta)]^{m} \cos (n \theta) d \theta$, by integrating

$$
J=(2 \pi i)^{-1} 2^{-m} \int_{C} z^{-n}\left(z+\frac{1}{z}\right)^{m} d z
$$

where C is $|z|=1$ oriented counterclockwise.
Q11: Using contour integration verify the results of the following integrals

- $\int_{-\infty}^{\infty} \frac{\cos (x)}{x^{2}+1} d x=\pi / e$.
- $I=\int_{0}^{\infty} \frac{\ln (x)}{1+x^{2}} d x=0$
- $I=\int_{0}^{\infty} \frac{[\ln (x)]^{2}}{1+x^{2}} d x=\pi^{3} / 8$.
- $I=\int_{-\infty}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{2}} d x=\pi / 2$
- $I=\int_{-\infty}^{\infty} \frac{\cos (2 x)}{x-i \pi} d x=i \pi e^{-2 \pi}$.
- $I=\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x=\pi / \sqrt{2}$
- $I=\int_{0}^{\infty} \frac{\ln (x)}{x^{2}+5 x+6} d x=\ln (3 / 2)$.
- $I=\int_{0}^{\infty} \frac{x^{1 / 3}}{(x+1)^{2}} d x=\frac{\pi}{3 \sin (\pi / 3)}$.

