
ON ANISOTROPIC CURVATURE FLOW EQUATIONS
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Abstract. We study the anisotropic flow V = bkσ where b > 0.

We prove that if 1
3 < σ ≤ 1, only type I blow up occurs and

if 0 < σ < 1
3 Type II blow up occurs. We also establish a prior

estimates and existence of stationary solutions of self-similar curves

and the existence of “ Abresch-Langer” type curves.

1. Introduction

In this paper, we consider the following generalized anisotropic cur-

vature flow equations

(1.1) V = b(θ)kσ

where V be the inward velocity of embedded closed curves Γt of R
2 in

the direction of its unit inward normal vector

n(θ) = (cos θ, sin θ),

k is the inward curvature of Γt, 0 < σ ≤ 1 and b(θ) is a positive

2π-periodic functions.

Problem has two significant interpretations. When b = 1, σ = 1,

equation (1.1) is the well-known curve shortening problem and has

been studied extensively, see [11], [12], [14]. Equation (1.1) can be seen

as the generalization of the curve shortening problem to Minkowski
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geometry. It can also be regarded as a simplified model of the motion

of the interface of a metal crystal as it melts , see [3], [11].

Note that when σ = 1
3
, problem (1.1) arises in the image processing,

see [17]. It also arises in affine geometry, see [2].

The case when σ = 1, b ̸= 1 has been studied by Gage [11] and

Gage and Y. Li [13]. The first author and Taniyama in [16] considered

the isotropic case b = 1, 0 < σ ≤ 1. In this paper, we consider the

anisotropic case, namely, 0 < σ ≤ 1, b ̸= 1. To introduce our results,

we first give some definitions.

If k > 0, then (1.1) is equivalent to the following

(1.2) vt = σb(θ)−
1
σ v1+

1
σ (vθθ + v)

with v = bkσ.

It is well-known that starting from a convex curve, solutions of (1.1)

will shrink to a point in a finite time T <∞. To study the asymptotic

behavior of the curves as t → T , we introduce the following rescaled

function

u(θ, τ) = (T − t)
σ

1+σ v(θ, t), τ = log(
1

T − t
)

We have that u satisfies

(1.3) uτ = σb−
1
σu1+

1
σ (uθθ + u− 1

1 + σ
b

1
σu−

1
σ )

Let a = 1
1+σ

b
1
σ . Then a stationary solution of (1.3) is the following

(1.4) uθθ + u− a

uα
= 0, θ ∈ R/(2πZ)

with α = 1
σ
.

We call the following equation as (1.4)k

uθθ + u− a

uα
= 0, θ ∈ R/(2kπZ)

We give the following definition.

Definition: Equation (1.1) has a type I blow up if solution of (1.3)

remains bounded as τ → ∞ and has a type II blow up if solutions of

(1.3) becomes bounded as τ → ∞.
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One of the main results of this paper is the following classification

of singularities theorem.

Theorem 1.1. Let b > 0 be a smooth 2π periodic function. If 1
3
<

σ ≤ 1, then only Type I blow up occurs. More precisely, every convex

curve which evolves by equation (1.1) evolves to a point in finite time

and the renormalized curve has a convergent sequence which converges

to the shape of a self-similar solution.

If 0 < σ < 1
3
, then there exists Type II blow up.

Remark: For 1
3
< σ ≤ 1, Theorem 1.1 can be reinterpreted as follows

Corollary 1.1. Every positive, smooth function b(θ) defined on the

circle can be written as

(1.5) b(θ) = h
1
σ (hθθ + h) =

h
1
σ

k

where h is the support function of a convex set, 1
3
< σ ≤ 1 and k =

(hθθ + h)−1 is the curvature of its boundary.

The case σ = 1
3
is more complicated. Note that when b = 1, only

Type I blow up occurs by results of [16]. But for general b, it is unclear.

The following interesting result shows the difference between isotropic

and anisotropic flows.

Theorem 1.2. Let σ = 1
3
, a(θ) = 1

1+σ
b

1
σ . If a

′
sin(2θ − θ0) doesnot

change sign for some θ0, then only Type II blow up occurs.

Examples of a satisfying conditions in Theorem 1.2 are a(θ) = 1 +

ϵ cos2k−1(2θ − θ0)(0 < ϵ < 1, k ∈ Z, k ≥ 1).

Note that for σ = 1 Theorem 1.1 gives a new proof of results in [13].

The proof of Theorem 1.1 relies on some monotonicity arguments

and a detailed study of equation (1.4) as well as equation (1.4)k.

We first prove a prior estimates for solutions of (1.4)k. Let α = 1
σ

and a(θ) = 1
1+σ

b
1
σ .
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Theorem 1.3. Assume that a > 0 is a continuous function and 1 ≤
α ̸= 3. Then for any k ∈ N , there exist 0 < mk < Mk < ∞ depending

on a(x) only such that for any solution of (1.4)k, we have

mk ≤ u(x) ≤Mk

Theorem 1.3 covers the results of [6] for α < 2 and k = 1. However,

our result is more general and the proof is much simpler.

From Theorem 1.3, we have the following result which is an extension

of Corollary 1.1.

Corollary 1.2. Let 1
8
< σ ≤ 1 and σ ̸= 1

3
. Then every positive, smooth

function b(θ) defined on the circle can be written as

(1.6) b(θ) = h
1
σ (hθθ + h) =

h
1
σ

k

where h is the support function of a convex set, and k = (hθθ + h)−1 is

the curvature of its boundary.

The next two theorems address the question of the existence of large

solutions (or so-called subharmonic solutions in the literature) of (1.4)k

which is used to prove Theorem 1.1. Abresch and Langer in [4] first

studied this kind of solutions for the isotropic case: σ = 1, b = 1.

Theorem 1.4. Assume that α < 3 and a > 0 is smooth. Then there

exists a sequence of solutions uk of (1.4)wk
with minimal period 2wkπ

such that uk has exactly pk local maximum points, y1, ..., ypk . Moreover,

2wk > pk,
2wk

pk
→ 1, wk → ∞, u(yi) → ∞, i = 1, ..., pk as k → ∞.

Theorem 1.5. Assume that α > 3 and a > 0 is smooth. Then there

exists a sequence of solutions uk of (1.4)wk
with minimal period 2wkπ

such that uk has exactly pk local maximum points, y1, ..., ypk . Moreover,

2wk < pk,
2wk

pk
→ π,wk → ∞, u(yi) → ∞, i = 1, ..., pk as k → ∞.

Remarks: 1. For the existence of subharmonic solutions, there are

many results, see [7], [10], etc. Problem (1.4)k is not included in all the

previous results on subharmonic solutions since our nonlinearity has a

linear growth at infinity.
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2. When σ = 1
3
, partial results on the existence of self similar solu-

tions to (1.1) has been obtained in [5].

This paper is organized as follows: In Section 2, we prove Theorems

1.1 and 1.2 by some monotonicity arguments and the use of Theorem

1.3, 1.4 and 1.5. In Section 3, we discuss the intial value problem asso-

ciated with (1.4) and obtain some basic estimates. We prove Theorem

1.3 in Section 4 and Theorems 1.4 and 1.5 in Section 5.

Throughout this paper, the constant C, c, c1, c2, c0, etc. will denote

various constants which depend on b only. B = O(A) means |B| ≤ CA

and B = o(A) means |B|/|A| → 0. A ∼ B means there exist two

generic constants C1 > 0, C2 > 0 such that C1A ≤ B ≤ C2A.

Acknowledgement: We would like to thank Professor K.S. Chou for

stimulating discussions. The research of the second author is supported

by an Earmarked Grant from RGC of Hong Kong.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We shall follow the main lines

in [16].

Let γ(0) be a convex curve and γ(t) be the solution of (1.1). Since

γ(t) shrinks to a point in time T . We assume that γ(t) → x0 as t→ T .

We rescale γ as follows:

γ̃(τ) = (T − t)−
1

1+σ (γ(t)− x0), τ = log(
1

T − t
)

Let k̃(τ) be the curvature of γ̃(τ).

We begin with the following Proposition.

Proposition 2.1. The following two statements are equivalent

(a) γ̃(τ) remains bounded as τ → ∞.

(b) k̃(τ) remains bounded as τ → ∞.

To prove Proposition 2.1, we introduce some notations first. We first

introduce the so-called generalized “ Catenary” or “ Grim Reaper”.
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Notation: A curve satisfying

k =M(b−1(θ)cos(θ − θ0))
1
σ , θ ∈ (θ0 −

π

2
, θ0 +

π

2
)

with vertex at P will be denoted by γ∗M,θ0,P
. Let D∗

M,θ0,P
denote the

region occupied by γ∗M,θ0,P
.

For σ = 1, b = 1, it is called Grim Reaper. For σ = 1
2
, b = 1, this

is Catenoid. For any σ ∈ (0, 1], D∗
M,θ0,P

is contained in the sector with

angle αM and vertex Q where Q lies on the line θ = θ0 and |PQ| = 1.

Note that αM → 0 as M → ∞.

We now state some technical lemmas.

Lemma 2.2. Any line passing through the origin intersects γ̃(τ) for

τ ≥ τ0 for some τ0 ≥ 0.

Proof: The proof is easy since a line is solution to (1.1). See [16]. �

Lemma 2.3. If γ̃(τ) remains bounded as τ → ∞, then there exists

δ > 0 such that

Bδ(0) ⊂ D̃(τ)

where D̃(τ) is the region occupied by γ̃(τ).

Proof: Suppose that there exists τ1 < τ2 < ... < τk → ∞ such that

dist(0, γ̃(τk)) → 0 as k → ∞. Then since γ̃(τ) ⊂ BR(0) for R large

and since γ̃(τ) is convex, then there exists a modified catenary D∗
M,θ0,P

such that

γ̃(τk) ⊂ D∗
M,θ0,P

for some M ≥ c > 0 and |P | is very small.

Consider the solution of the following problem

vτ = σb−
1
σ v1+

1
σ (vθθ + v − 1

1 + σ
b

1
σ v−

1
σ )

v(θ, 0) =Mcos(θ − θ0)

Then v = e−
σ

1+σ
τMcos(θ − θ0).

The equation for the peak point is

P
′
(τ) = v(θ0, τ) =Me−

σ
1+σ

τ
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The distance that P (τ) travels from 0 to ∞ is∫ ∞

0

P
′
(τ)dτ =

1 + σ

σ
M

Since M ≥ c > 0 and P is very small, then after finite time 0 will

be outside γ̃(τ) by comparison principle. A contradiction to Lemma

2.2. �
We are now in a position to prove Proposition 2.1.

Proof of Proposition 2.1:

Suppose that γ̃(τ) is not bounded. Let

ρ(τ) = max
y∈γ̃(τ)

|y|

Let x(τ) be a point on γ̃ such that

|x(τ)| = ρ(τ)

Then ρ(τ) satisfies the following equation

ρ
′
(τ) =

1

1 + σ
ρ(τ)− bk̃σ(τ)

Now suppose k̃(τ) remains bounded, then there existsM > 0 such that

k̃(τ) ≤M, for all τ ≥ 0

Therefore ρ
′
(τ) ≥ 1

1+σ
ρ(τ)−cMσ for some constant c > 0 and e−

τ
1+σ (ρ(τ)−

c(1 + σ)Mσ) is increasing. Since limτ→∞ρ(τ) = ∞, there exists τ0 ≥ 0

such that ρ(τ0)− c(1 + σ)Mσ ≥ 1, then

ρ(τ) ≥ c(1 + σ)Mσ + e
τ−τ0
1+σ

This means that

limt→T (T − t)
1

1+σ max
x∈γ(t)

|x− x0| ≥ e−
τ0

1+σ

A contradiction to Lemma 2.2! Hence (b) implies (a).

Next suppose that k̃(τ) is unbounded while γ̃(τ) is bounded. In this

case, we need a few technical lemmas.
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Lemma 2.4. Let γ1, γ2 be two closed convex curves in R2. Suppose γi

is parametrized by k = gi(θ) where k is the curvature . Suppose that

g1(θ) ≤ g2(θ) and γ1 is tangential to γ2 at some point (i.e. with the

same inner normal direction). Then

D(γ2) ⊂ D(γ1)

where D(γi) denotes the region occupied by γi.

Proof: Geometrically, this is clear. For the proof, see [16]. �

Lemma 2.5. Let k(θ, t) be the positive solution solution of

(2.1) kt = k2((bkσ)θθ + bkσ)

Let θ∗(t) be such that

k(θ∗(t), t) = kmax(t) = max
θ∈[0,2π]

k(θ, t)

Then there exists M > 0 such that

k(θ, t) ≥ kmax(t)(
1

b(θ)
cos(θ − θ∗(t))

1
σ , θ ∈ [θ∗(t)− π

2
, θ∗(t) +

π

2
]

whenever kmax(t) ≥M .

Proof: There exists M > 0 such that the graph of the function

M1(b
−1cos(θ−θ0))

1
σ intersects the graph of k(θ, 0) at precisely 2 points

in the interval [θ0 − π
2
, θ0 +

π
2
] for any M1 ≥ M and any θ0. Con-

sider the equation on the interval [θ0 − π
2
, θ0 + π

2
]. Since the func-

tion w(θ, t) = k(θ, t) − M1(b
−1cos(θ − θ0))

1
σ doesnot change sign at

the end point θ0 ± π
2
, then number of zeroes of w(θ, t) doesnot in-

crease as time passes (hence at most 2). Now choose any t1 such that

kmax(t1) ≥ M and take θ0 = θ∗(t1),M1 = kmax(t1). Then w has

a degenerate 0 at θ = θ∗(t1). Therefore w does not have a zero in

[θ∗(t1)− π
2
, θ∗(t1))∪ (θ∗(t1), θ

∗(t1) +
π
2
]. Since w > 0 at the end points,

θ∗(t1)± π
2
, the lemma is proved. �

Lemma 2.6. Let k(θ, t) be the positive solution solution of

(2.2) kt = k2((bkσ)θθ + bkσ)
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Let θ∗(t) be a local maximum of k(θ, t) with k(θ∗, t) ≥M , then

k(θ, t) ≥ k(θ∗, t)(
1

b(θ)
cos(θ − θ∗(t))

1
σ , θ ∈ [θ∗(t)− π

2
, θ∗(t) +

π

2
]

Proof: The proof is similar to that of Lemma 2.5. �
We then have the following corollaries

Corollary 2.1. kmax(t) = maxθ k(θ, t) is strictly monotone increasing

for t sufficiently close to T .

Proof: Fix t1 as in Lemma 2.5. Applying the strong Maximum Prin-

ciple to w on the interval [θ∗(t) − π
2
, θ∗(t) + π

2
]. Then since w > 0 at

θ = θ∗(t) ± π
2
and since w ≥ 0 for t = t1. Therefore w > 0 for t > t1.

Hence kmax(t) > kmax(t1), t > t1. �
Note: The same result was found in [1] for σ = 1, b = 1 with a different

proof.

Corollary 2.2. Let P (t) be a point of γ(t) be such that k attains

kmax(t) at P (t). If kmax(t) > M , then

γ(t) ⊂ D∗
kmax(t),θ∗(t),P (t)

Proof: By Lemma 2.5, k(θ, t) ≤ kmax(t)(b
−1(θ)cos(θ − θ∗(t)))

1
σ for

θ ∈ [θ∗(t)− π
2
, θ∗(t)− π

2
]. Therefore γ(t) is contained in D∗

kmax(t),θ∗(t),P (t)

for θ ∈ [θ∗(t) − π
2
, θ∗(t) − π

2
]. The remaining part is also contained in

D∗ since γ is convex. �

Corollary 2.3. Let P (t) be a point of γ(t) be such that k attains a

local maximum klocalmax(t) at P (t). If klocalmax(t) > M , then

γ(t) ⊂ D∗
klocalmax(t),θ∗(t),P (t)

Proof: the proof is the same as that in Corollary 2.2 by using Lemma

2.6 and Lemma 2.4. �
Proof of Proposition 2.1 (finished): Suppose that k̃(τ) is not

bounded while γ̃(τ) remains bounded, i.e. γ̃(τ) ⊂ BR(0), τ ≥ 0.
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Let τ1 < τ2 < ... < τk < ... be such that k̃max(τj) → ∞(j → ∞). Let

θ∗(τj) be as in Lemma 2.5 and let P (τ) be a point on γ̃(τ) corresponding

to θ = θ∗(τ). By Corollary 2.2,

γ̃(τj) ⊂ D∗
k̃max(τj),θ∗(τj),P (τj)

As j → ∞, k̃max(τj) → ∞. This is impossible by Lemma 2.3 since

there is a fixed radius ball inside γ̃(τ). �
Next we consider the lower bound for k̃(τ). We have

Lemma 2.7. limτ→∞k̃max(θ, τ) <∞ implies limτ→∞k̃min(θ, τ) > 0.

Remark: For σ = 1, b = 1, Angenent [1] uses traveling waves to obtain

a similar statement.

Proof: Let M2 > 0 be such that

umax(τ) ≤M2

For each θ0 ∈ R/(2πZ) and small m > 0, let u∗θ0,m(θ) be the solution

of

u∗θθ + u∗ − a(u∗)−α = 0

u∗(θ0) = m, (u∗)
′
(θ0) = 0

Then there exist α1, α2 > 0 such that (u∗θ0,m)
′
(θ) < 0 for θ ∈ (θ0−α1, θ0)

and (u∗θ0,m)
′
(θ) > 0 for θ ∈ (θ0, θ0 + α2) as m→ 0, we have α1, α2 → π

2

by Lemmas 3.1 and 3.2 in Section 3 uniformly with respect to θ0.

Furthermore, there exists δ > 0 such that u∗θ0,m(θ0−α1), u
∗
θ0,m

(θ0+α2) >

M1 for any θ0 ∈ R/(2πZ) and m ≤ δ. Moreover, we can choose δ

sufficiently small so that the graph of u∗θ0,m intersects u(θ, 0) at precisely

two points for any θ0 and m ≤ δ.

Now suppose that umin(τ) < δ and let θ∗(τ) be such that u(θ∗(τ), τ) =

umin(τ). Then by an argument similar to the proof of Lemma 2.5, we

see that

u(θ, τ) ≤ uθ∗(τ),umin(τ)(θ)

for θ ∈ [θ∗(τ)− α1, θ∗(τ) + α2].
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Then∫ θ∗(τ)+α2

θ∗(τ)

cos(θ − θ∗)

k̃(θ, τ)
dθ ≥

∫ θ∗(τ)+α2

θ∗(τ)

a(θ)cos(θ − θ∗)

(u∗)α
dθ → ∞

by simple computations.

This is a contradiction since we assume that k̃ is bounded (hence γ̃

is bounded by Proposition 2.1 and hence the diameter of γ̃ is bounded

). �
From Lemma 2.7 and the Liapunov functional method (see [15]), we

have

Proposition 2.8. Type I blow up implies that u(θ, τ) converges to an

equilibrium solution (namely, a self similar solution ).

We next analyze Type II blow up.

By Lemma 2.2, 0 ∈ γ̃(τ) for τ ≥ τ0. Let ρ(τ) = maxθ dist(0, γ̃(τ)).

Assume that there exists τ1 < τ2 < ... < τk → ∞ such that ρ(τk) → ∞.

Let y(τk) be a point on γ̃(τk) where |y(τk)| = ρ(τk). Let ek, e
∗
k be the

unit vector such that

ek =
1

|y(τk)|
y(τk), e

∗
k · ek = 0

Then we have

Lemma 2.9. Suppose max ek · γ̃(τk) → ∞. Then min ek · γ̃(τk) → −∞.

Proof: We prove Lemma 2.9 by a comparison argument similar to that

of Lemma 2.3. We use a modified catenary. Recall that a modified

catenary is a solution of the following problem

k =M(b−1(θ)cos (θ − θ0))
1
σ

We prove by contradiction. Suppose that min ek · γ̃(τk) is bounded

from below. Then there exists a modified catenary D∗
M,θ0,P

such that

γ̃(τk) ⊂ D∗
M,θ0,P

Consider the solution of the following problem

vτ = σb−
1
σ v1+

1
σ (vθθ + v − 1

1 + σ
b

1
σ v−

1
σ )
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v(θ, 0) =Mcos(θ − θ0)

Then v = e−
σ

1+σ
τMcos(θ − θ0).

The equation for the peak point is

P
′
(τ) = v(θ0, τ) =Me−

σ
1+σ

τ

The distance that P (τ) travels from 0 to ∞ is∫ ∞

0

P
′
(τ)dτ =

1 + σ

σ
M

Let M be very large, then after finite time 0 will be outside γ̃(τ) by

comparison principle. A contradiction to Lemma 2.2. �

Lemma 2.10. Suppose that ρ(τ1) < ρ(τ2) < ...→ ∞. Then max |e∗kγ̃(τk)| →
0 as k → ∞.

Remark: If σ = 1 then the area of D̃(τ) is constant. Because of this

and the convexity of γ̃(τ), Lemma 2.10 is obvious in this case.

Proof: We need to prove that max |e∗kγ̃(τk)| → 0 as k → ∞.

In fact, let Q(τ) be the point such that ρ(τ) = maxy∈γ̃(τ) |y| is at-

tained. Let θ∗(τ) be the angle corresponding to Q(τ). We can take

such a subsequence such that

b(θ∗(τj))k̃
σ(θ∗(τj), τj) ≥

1 + σ

2
ρ(τj)

We first claim that there exists a point Pj not far from Q(τj), where

the curvature k̃(θ, τj) atains a local maximum. In fact let θj be the

point closest to θ∗(τj) such that k̃(θ, τj) attains a local maximum at θj

and that k̃(θj, τj) ≥ k̃(θ∗(τj), τj) ( if such local maxima accumulates at

Q(τj), then the conlusion is obvious ).

Then

|Pj −Q(τj)| = (

∫ θj

θ∗(τj)

cos(θ − θ∗(τj))

k̃(θ, τj)
dθ)2 + (

∫ θj

θ∗(τj)

sin(θ − θ∗(τj))

k̃(θ, τj)
dθ)2

≤ o(1)

since k̃(θ, τ) is unbounded over [θ∗(τj), θj].
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Next let M∗
j = k̃(θj, τj). Then M

∗
j → ∞ and

M∗
j = k̃(θj, τj) ≥ Cρ

1
σ (τj)

For a generalized catenery, let y ∈ D∗
M∗

j ,θ
∗,P be a point on the line

θ = θ0. We denote ξ = |yP | and η be the width at y (i.e., the length of

the segment which is the intersection of the line perpendicular to yP

and D∗
M,θ∗,P ). Let us now compute ξ and η.

Set k∗ =M∗
j (b

−1(θ)cos(θ − θ0))
1
σ . Then

ξ =

∫ θ

θ0

sin(θ − θ0)

k∗(θ)
dθ, η = 2

∫ θ

θ0

cos(θ − θ0)

k∗(θ)
dθ

Hence

ξ ∼ 1

M∗
j

∫ θ

θ0

sin(θ − θ0)

(cos(θ − θ0))
1
σ

=
1

M∗
σ

1− σ
((cos(θ − θ0))

1−1/σ − 1)

and

η ∼ 1

M∗
j

∫ θ

θ0

cos(θ − θ0)

(cos(θ − θ0))
1
σ

Let δ = θ0 +
π
2
− θ. Then as δ → 0, we have

η ∼ C

M∗
j


1

δ
1
σ−2

if σ < 1
2

log 1
δ
if σ = 1

2

C if σ > 1
2

ξ ∼ C

M∗
j

1

δ
1
σ − 1

if σ < 1

If σ > 1
2
, then η → 0 if M∗ → ∞. Lemma 2.10 follows.

If σ < 1
2
, then

ξ ∼ 1

M∗
j

1

δ
1
σ
−1
, η ∼ 1

M∗
j

1

δ
1
σ
−2

δη ∼ ξ

Since Pj and Q(τj) are close, we have

ξ ∼ ρj
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Note that

M∗
j ≥ C(ρj)

1
σ

Hence
1

δ
1
σ
−1

∼M∗
j ρj ≥ C2ρ

1+ 1
σ

j

C ≥ δ
1
σ
−1ρ

1+ 1
σ

j

Hence

η ∼ δξj ∼ δρj ≤ (Cδ2)
σ

1+σ → 0

since δ → 0.

Therefore max |γ̃(τj) · e∗j | ≤ 2ηj → 0 by the convexity of γ̃(τj).

The case σ = 1
2
is similar.

Lemma 2.10 is thus proved. �
Finally we prove Theorem 1.1. We need the following standard

proposition.

Proposition 2.11. If γ1(t) and γ2(t) are two solutions of (1.1) then

the number of intersection points is nonincreasing.

Proof of Theorem 1.1. Let 1
3
< σ ≤ 1. By Theorem 1.4, there exists

a family of solutions of (1.4) such that the corresponding curves (we

denoted by γk ) have the following properties;

1. the winding numbers of γk = wk,

2. the number of peaks (maximum points) pk ≤ 2wk − 1.

3. the diameter of γk → ∞
4. distance from 0 to γk → 0.

Let γ(0) be a convex curve. Then by Theorem 1.4, the number

of intersection points between γ̃(0) and γk is 2pk ≤ 2(2wk − 1) for k

sufficiently large.

Now suppose Type II occurs for this initial data. Let k be large and

fixed. By Lemma 2.9 and Lemma 2.10, γ̃(τ) tends to a two-fold line

(at least for a sequence τ1 < τ2 < ... < τj → ∞). For each line L

that passes through the origin and j large, the number of intersection

points between γk and L is 2wk. Therefore the number of intersection
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points between γk and γ̃(τj) is great than or equal to 2 × 2wk = 4wk

for j large. This contradicts to Proposition 2.11, since 2pk < 4wk.

Hence only type I occurs. By Proposition 2.1, we have that k̃(τ)

is bounded. By Proposition 2.8, a subsequence of γ̃(τ) converges to a

self-similar shape solution of (1.2).

This proves Theorem 1.1 for 1
3
< σ ≤ 1.

We next consider the case 0 < σ < 1
3
. Then by Theorem 1.3, the

set S of stationary solutions of (1.4) is compact. By Theorem 1.5,

there exists a family of solutions of (1.4)wk
such that the corresponding

curves (we denoted by γk ) have the following properties;

1. the winding numbers of γk = wk,

2. the number of peaks (maximum points) pk ≥ 2wk + 1.

3. the diameter of γk → ∞
4. distance from 0 to γk → 0.

Therefore for large enough k, the number of intersection points be-

tween γk and any solution Γ ∈ S is 2pk ≥ 2(2wk + 1).

Now fix k sufficiently large and take an initial data γ(0) such that

the number of intersection points between γ̃(0) and γk is 4wk ( this is

the case if γ̃(0) is close to a long thin ellipse). If Type I occurs for this

initial data, then γ̃(τ) → Γ∗ ∈ S. Hence the number of intersection

points between Γ∗ and γk is 2pk ≥ 2(2wk + 1). Therefore the number

of intersection points between γ̃(τ) and γk is 2pk for τ large. A contra-

diction to Proposition 2.11. So Type I blow up doesnot occur. �
Proof of Theorem 1.3. For σ = 1

3
, if Type I occurs, then the rescaled

curve will approach the shape of a self similar solution. Namely, prob-

lem (1.4) has a solution u. Note that u satisfies also the following

equation

(
u2

2
)
′′′
+ 4(

u2

2
)
′
= a

′
u−2

Mutiplying both sides by sin(2θ − θ0), we have∫ 2π

0

a
′
(θ)u−2sin(2θ − θ0)dθ = 0
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By our hypothesis on a, this is impossible ! Hence Type I does not

occur and only Type II occurs in this case. �

3. Preliminary Estimates

In the rest of sections, we shall study equations (1.4) and (1.4)k and

prove Theorems 1.3 to 1.5.

In the present section, we obtain some basic estimates that we will

need later. We always assume that a > 0 is smooth and 1 ≤ α ̸= 3.

We now consider the following initial value problem

(3.1)

{
u

′′
+ u = a(x)

uα

u(x) > 0, u(x0) =M,u
′
(x0) = β,M > 0

It is easy to see that the global solution exists and is unique. We denote

the global solution as u(x,M, β;x0). If β = 0, we denote u(x,M, 0;x0)

as u(x,M ;x0). The purpose of this section is to understand the as-

ymptotic behaviour of u(x,M ; x0) as M → ∞.

Let xM be the first positive zero of u
′
(x,M ;x0) (it is easy to see that

xM exists). A key estimate is the asymptotic behaviour of xM − x0 as

M → ∞.

We first have

Lemma 3.1. xM −x0 → π
2
and u

M
→ cos (x−x0) for x ∈ [x0, x0+

π
2
]

as M → ∞.

Proof: We assume that 1 < α ̸= 3. The case α = 1 can be treated

similarly.

Let m = u(xM). Then m→ 0 as M → ∞. In fact, we have

C1

uα
≤ u

′′
+ u ≤ C2

uα
, u

′ ≤ 0

for x ∈ [x0, xM ].

Set

fC(u) = u2 + C
2

α− 1
u1−α
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Then (u
′
)2 + fC2(u) is increasing over [x0, xM ] while (u

′
)2 + fC1(u) is

decreasing over [x0, xM ]. Hence

fC2(m) ≥ fC2(M)

fC1(m) ≤ fC1(M)

We have M2 ∼ m1−α as M → ∞. Hence m→ 0.

Let fC2(u(zM))) = fC2(M) and x0 < zM < xM . Then

M2u(zM)α−1 ∼ 1

Hence u(zM) ∼ m.

Over [zM , xM ], by equation (3.1), u
′′ ∼ m−α. Hence u

′
(x) ∼ m−α(x−

zM) for x ∈ [zM , xM ]. Therefore

u(zM)− u(xM) =

∫ zM

xM

u
′
(x)dx ∼ m−α(xM − zM)2

Hence

xM − zM = O(mα+1)

On the other hand, we have

(u
′
)2 ≥ fC1(M)− fC1(u)

Hence

zM − x0 ≤
∫ M

u(zM )

du√
fC1(M)− fC1(u)

→ π

2

So

xM − x0 = xM − zM + zM − x0 →
π

2

as M → ∞.

Finally u
M

→ cos (x− x0) is an easy consequence of the above argu-

ments. �
Let −yM be the first negative zero of u(x,M, x0). Then similarly we

have yM → π
2
.

In the following, it will be more convenient to assume that yM =

0, x0 = yM . We omit the index M and x0 in u.
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Lemma 3.2. For any solution of (3.1), we have

(3.2) u
′
(
π

2
) =

∫ π
2

0

a(x)

uα
sin (x)dx− u(0)

For α ≥ 2 and a ∈ C1, we have

(3.3)

2u(
π

2
)u

′
(
π

2
) = (3− α)

∫ π
2

0

a(x)u
′

uα
sin (2x)dx+

∫ π
2

0

a
′
(x)

uα−1
sin (2x)dx

Proof: (3.2) follows by multiplying equation (3.1) by sin x and inte-

grating over (0, π
2
).

For (3.3), we note that u satisfies

(3.4) (
u2

2
)
′′′
+ 4(

u2

2
)
′
= (3− α)

au
′

uα
+

a
′

uα−1

Multiplying (3.4) by sin (2x) and integrating over (0, π
2
), we have (3.3).

�
Next we set

m = u(0)

ϵM =
1

Mα+1
, for 1 ≤ α < 2

ϵM =M−3 log (M) for α = 2

ϵM =
1

M
α+1
α−1

, for 2 < α ̸= 3

We first consider the asymptotic behaviour of yM for 1 ≤ α < 2.

Lemma 3.3. For 1 ≤ α < 2, we have

(3.5) yM =
π

2
+ (

∫ π
2

0

a(x)

sinα−1(x)
dx+ o(1))ϵM

Proof: By equation (3.1), we have

0− u
′
(
π

2
) = u

′
(yM)− u

′
(
π

2
)

=

∫ yM

π
2

u
′′

Hence

yM =
π

2
+
u

′
(π
2
)

M
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By (3.2),

u
′
(
π

2
) =

∫ π
2

0

a(x)

uα
sin (x)dx−m =

1

Mα

∫ π
2

0

a(x)

sinα−1(x)
dx(1+ o(1))−m

= (

∫ π
2

0

a(x)

sinα−1(x)
dx+ o(1))M−α

since M−α ∼ mα(α−1)/2 and α(α− 1)/2 < 1 for α < 2. �
We next consider the case when 2 < α ̸= 3.

Lemma 3.4. For 2 < α ̸= 3, we have

(3.6)

∫ π
2

0

a(x)

uα−1
dx =

√
α− 1

2a(0)

∫ ∞

0

dy

vα−1
0

m
3−α
2 (1 + o(1))

where m = u(0) and v0 is the unique solution of

v
′′

0 = v−α
0 , v0(0) = 1, v

′

0(0) = 0.

Proof: Let δ > 0 be a small fixed number. Let x1 be a point where

u(x) ≤ δa(0)/uα(x) for x ≤ x1 and u(x1)
α+1 = δa(0). Then

(1− δ)a(0)/uα(x) ≤ u
′′ ≤ (1 + δ)a(0)/uα(x)

for x ∈ [0, x1].

We have

(u
′
)2

2
+

(1− δ)a(0)

(α− 1)uα−1
≥ (1− δ)a(0)

(α− 1)mα−1
,
(u

′
)2

2
+

(1 + δ)a(0)

(α− 1)uα−1
≤ (1 + δ)a(0)

(α− 1)mα−1

(u
′
)2 ≥ 2(1− δ)a(0)

α− 1
(

1

mα−1
− 1

uα−1
), (u

′
)2 ≤ 2(1 + δ)a(0)

α− 1
(

1

mα−1
− 1

uα−1
)

Set y =
√

2(1−δ)
α−1

m−α−1a(0)x, u(x) = mv(y). Then we have v satisfies

v0(y) ≤ v(y)

for y ∈ [0, y1] where y1 =
√

2(1− δ)/(α− 1)m−α−1a(0)x1.

Note that v0(y) ∼ y as |y| → ∞.

Hence∫ x1

0

a(x)

uα−1
dx ≤

√
(α− 1)/2(1− δ)

√
mα+1/a(0)m1−α

∫ y1

0

1

vα−1
0 (y)

dy
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=
√

(α− 1)/2(1− δ)a(0)m
3−α
2

∫ y1

0

1

vα−1
0 (y)

dy

where y1 =
√
2(1− δ)/(α− 1)m−α−1a(0)x1.

Note that v(y1) =
u(x1)
m

→ ∞. We have y1 → ∞. Hence∫ x1

0

a(x)

uα−1(x)
≤

√
(α− 1)/2(1− δ)a(0)m

3−α
2

∫ ∞

0

dy

vα0 (y)

Similarly∫ x1

0

a(x)

uα−1(x)
≥

√
(α− 1)/2(1 + δ)a(0)m

3−α
2

∫ ∞

0

dy

vα0 (y)

Note that

x1 ≥
∫ u(x1)

m

du√
2(1+δ)a(0)

α−1
(m1−α − u1−α)

≥ Cm
α−1
2

Similarly we have x1 ≤ Cm
α−1
2 . Hence x1 ∼ m

α−1
2 ∼M−1.

On the other hand, for fixed δ, we have for α > 2,∫ π
2

x1

dx

uα−1
≤ 1

Mα−1

∫ 1

x1

1

sinα−1(x)
dx ≤ Cδ/M ∼ Cδm

α−1
2

Since 3− α < α− 1, we have m(α−1)/2 = o(m(3−α)/2).

Let δ → 0, we have∫ π
2

0

a(x)

uα−1
dx =

√
α− 1

2a(0)

∫ ∞

0

dy

vα−1
0

m
3−α
2 (1 + o(1))

�
For α = 2, we have

Lemma 3.5. For α = 2, we have

(3.7)

∫ π
2

0

a(x)

uα−1
dx ∼M−1 log(M)
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Proof: We use the same notation as in Lemma 3.4.∫ x1

0

a(x)

uα−1(x)
≥

√
(α− 1)/2(1 + δ)a(0)m

3−α
2

∫ y2

0

dy

vα0 (y)

where y2 =
√
2(1 + δ)/(α− 1)m−α−1a(0)x1.

Note that

x1 ∼ m
α−1
2 .

Thus ∫ y2

0

dy

vα0 (y)
≥ C log(1/m)

and ∫ x1

0

a(x)

uα−1(x)
≥ CM−1 log(M)

Similarly we have ∫ x1

0

a(x)

uα−1(x)
∼ CM−1 log(M)

Similar to the proof of Lemma 3.4, we have∫ x1

0

a(x)

uα−1(x)
≤ CM−1 log(M)

Hence ∫ π
2

0

a(x)

uα−1(x)
∼ CM−1 log(M)

�

Lemma 3.6. For 2 < α ̸= 3 and a(x) > 0 ∈ C1, we have

(3.8)

yM =
π

2
+ (3− α)/(α− 1)((α− 1)/(2a(0))

3−α
1−α

+1/2

∫ ∞

0

dy

vα−1
0

ϵM + o(ϵM)

For α = 2 we have

(3.9) yM − π

2
∼ ϵM

Proof: Similar to Lemma 3.3, we have

yM =
π

2
+
u

′
(π
2
)

M
(1 + o(1))
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We use l.o.t. to denote the lower order terms. By Lemma 3.2 we have

u
′
(
π

2
) =

3− α

2u(π
2
)

∫ π
2

0

au
′
sin 2x

uα
+ l.o.t.

=
3− α

(α− 1)M

∫ π
2

0

acos 2x

uα−1
+ l.o.t.

=
3− α

(α− 1)M

∫ π
2

0

a(x)

uα−1
+ l.o.t.

Denote m = u(0). Then by equation (3.1), we have

(
(u

′
)2

2
)
′
+ (

u2

2
)
′
+ (

∫ x

0

au
′

uα
)
′
= 0

M2

2
+

∫ yM

0

au
′

uα
=
m2

2

M2

2
+

1

α− 1

∫ yM

0

a
′

uα−1
=
m2

2
+
a(0)m1−α

α− 1

Hence

M2 =
2a(0)

α− 1
m1−α(1 + o(1))

So by Lemma 3.4, we have

yM =
π

2
+(3−α)/(α−1)M−2

√
(α− 1)/2a(0)

∫ ∞

0

1

vα0
dym(3−α)/2(1+o(1))

=
π

2
+ (3−α)/(α− 1)

√
(α− 1)/(2a(0))

3−α
1−α

+ 1
2

∫ ∞

0

dy

vα0
M−α+1

α−1 (1+ o(1))

The case for α = 2 can be proved in a similar way.

The Lemma is proved. �

Corollary 3.1. If a(x) > 0 is smooth, then there exists c0 > 0 such

that

yM >
π

2
+ c0ϵM

for α < 3 and

yM <
π

2
− c0ϵM

for α > 3.

In particular for a(x) ≡ constant = a, we have
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Corollary 3.2. Let um(x) be the unique solution of

u
′′
+ u =

a

uα
, u

′
(0) = 0, u(0) = m

Let ym be the psotive zero of u
′
m(x). Then for m sufficiently small and

M2 = 2a
α−1

m1−α, we have

ym >
π

2
+ c0ϵM

for α < 3 and

ym <
π

2
− c0ϵM

for α > 3

Next we estimate the difference between the local maximums. Let

yM , zM be the two consecutive local maximum points. Let u(yM) =

M1, y(zM) = M2. Let tM be the local maximum point in between

yM , zM .

Then we have

M2
1

2
−
∫ tM

yM

au
′

uα
=
M2

2

2
+

∫ tM

zM

au
′

uα

Note that∫ tM

yM

au
′

uα
=
a(tM)u1−α(tM)

1− α
− a(yM)M1−α

1

1− α
+

1

α− 1

∫ tM

yM

a
′

uα−1

Similarly we have∫ tM

zM

au
′

uα
=
a(zM)u1−α(zM)

1− α
− a(tM)u1−α(tM)

1− α
+

1

α− 1

∫ tM

zM

a
′

uα−1

By Lemmas 3.3, 3.4 and 3.5, we have∫ tM

yM

a
′

uα−1
=M2

1O(ϵM1)

∫ tM

zM

a
′

uα−1
=M2

2O(ϵM2)

Hence we have proved
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Lemma 3.7. For 1 ≤ α ̸= 3, we have

M2 =M1(1 +O(ϵM1))

Namely we have for M ≥M0

M1(1− c1ϵM1) ≤M2 ≤M1(1 + c1ϵM1)

4. Proofs of Theorem 1.3 and Corollary 1.2

Theorem 1.3 can be proved based on Lemma 3.2 and the following

Lemma.

Lemma 4.1. If a(x) > 0 is continuous, then for M sufficiently large

we have

yM >
π

2
for α < 3 and

yM <
π

2
for α > 3, where yM is defined as in Section 3.

Proof: We just need to consider the case for α > 2. For 1 ≤ α < 2,

we have Lemma 3.3. Similar to the proof of Lemma 3.3, we have by

(3.2) for α = 2,

u
′
(
π

2
) > 0

for M sufficiently large. Hence yM > π
2
for M sufficiently large.

For 2 < α ̸= 3, we have by (3.2)

u
′
(
π

2
) =

∫ π
2

0

a(x)

uα
sin (x)dx− u(0)

Let δ > 0 be a small fixed number. Let x1 be a point where a(0)(1−
δ) ≤ a(x) ≤ (1 + δ)a(0) for x ≤ x1. Then

(1− δ)a(0)/uα(x) ≤ u
′′
+ u ≤ (1 + δ)a(0)/uα(x)

for x ∈ [0, x1].

Note that ∫ π
2

x1

a(x)

uα
sin (x)dx = O(M−α)
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and over [0, x1] we have

u1m ≤ u ≤ u2m

where u1m is the unique solution of

u
′′
+ u = (1− δ)a(0)/uα, u

′
(0) = 0, u(0) = m

and u2m is the unique solution of

u
′′
+ u = (1 + δ)a(0)/uα, u

′
(0) = 0, u(0) = m

Then we have

u
′
(
π

2
) ≤

∫ π
2

0

a(x)/(u1m)
α −m+O(M−α)

≤
∫ π

2

0

a(x)− (1− δ)a(0)

(u1m)
α

sin (x)+ ≤
∫ π

2

0

(1− δ)a(0)

(u1m)
α

sin (x)−m

Note that ∫ π
2

0

(1− δ)a(0)

(u1m)
α

sin (x)−m = (u1m)
′
(
π

2
)

and for 2 < α < 3, we have

(u1m)
′
(
π

2
) ∼M

2
1−α ∼ m

for α > 3, we have

(u1m)
′
(
π

2
) ∼ −M

2
1−α ∼ −m

Hence

u
′
(
π

2
) > 0

for 2 < α < 3 and

u
′
(
π

2
) < 0

for α > 3.

The Lemma is thus proved. �
Proof of Theorem 1.3:

Let k ≥ 1 be a fixed integer. Let u be a 2kπ period solution of (1.4)k.

It is easy to see that we just need to proved that min0≤x≤2kπ u(x) ≥
c > 0. Suppose on the contrary that we have a sequence of solutions uj

such that min0≤x≤2kπ uj(x) → 0. Then by Lemma 3.1, we have that uj
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has exactly L+1 local minimum points, say 0 < x1 < x2 < ... < xL−1 <

xL = 2kπ such that uj(xi) → 0, i = 1, ..., L. Moreover xi+1 − xi → π

as j → ∞.

Therefore L = k for j large. But by Corollary 3.3, xi+1 − xi > π for

α < 3 and xi+1 − xi < π for α < 3. Hence

2kπ =
∑L

i=1(xi−xi−1) > 2Lπ for α < 3 and 2kπ =
∑L

i=1(xi−xi−1) <

2Lπ for α > 3. A contradiction ! �
Proof of Corollary 1.2: We first note that for α < 8 and α ̸= 3, the

solution to the following equation

(4.1) uθθ + u− 1

uα
= 0, θ ∈ R/(2πZ)

is unique and in fact is equal to 1. The proof of the above fact can be

done by using a first integral method (a proof of it can be seen in [16]

). Moreover the solution u0 = 1 is nondegenerate and has a nonzero

degree. In fact let v be the solution of the linearized equation

(4.2) vθθ + v + α
1

uα+1
0

v = λv, θ ∈ R/(2πZ)

Then

1 + α− λ = n2, λ = 1 + α− n2

for some n ∈ Z, n ̸= 0. Hence λ ̸= 0 and there are only one or two

positive eigenvalues with multiplicity 2.

By using Theorem 1.3 and a degree method, we can proceed as in

Section 5 of [6] and obtain the existence of a solution to (1.4). �

5. Proof of Theorems 1.4 and 1.5

In this section, we apply Ding’s version of the Poincare-Birkhoff The-

orem to prove Theorems 1.4 and 1.5. We first state Ding’s result.

Lemma 5.1. ([8]) Let A denote an anular region whose inner boundary

C1 and outer boundary C2 of A are simple curves. Denote by Di the

open region bounded by Ci, i = 1, 2. Let W : A → W (A) ⊂ R2\{0}be
an area-preserving homeomorphism. Suppose that

(1) The inner boundary curve C1 is star-shaped about the origin.
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(2) W has a lifting W̃ to the polar coordinates plane, that is W̃

satisfies P ◦ W̃ = W ◦ P , where P (ρ, θ) = (ρcos θ, ρsin θ) such that if

W̃ (ρ, θ) = (R(ρ, θ),Θ(ρ, θ)) Then Θ(ρ − θ) − θ > 0(< 0) on P−1(C1)

and Θ(ρ, θ) − θ > 0(> 0) on P−1(C2). The functions R and Θ are

continuous and 2π-periodic in θ.

(3) W can be extended as an area-preserving homeomorphism W :

D2 → R2 so that 0 ∈ W (D1).

Then W̃ has at least two fixed points such that their images under P

are two different fixed points of W .

To apply the above theorem, we first set up some notations. Let

r(α, β) = α2 + α1−α + β2

If a function y ∈ C1[0, T ], where T is to be defined later, has only

simple zeros (namely if y(x0) = 0, y
′
(x0) ̸= 0), we define its rotation

number ψ(y) as

ψ(y) = kπ + lim
t→0+

tan−1 y
′
(t)

y(t)
− lim

t→T−
tan−1 y

′
(t)

y(t)

where k is the number of zeros of y(t) in (0, T ). Geometrically ψ(y) rep-

resents the total angle the vector from the origin to the point (y(t), y
′
(t))

in R2 describes as t goes from 0 to T , positive angles measures clock-

wise.

Let us go back to equation (3.1). Let y1, y2, ..., yk, ... be the local

maximum points of u(x,M ; 0). Set

Mk = u(yk), ϵk = ϵMk

By Lemma 3.7 of Section 3, we have

(5.1) Mk(1− c1ϵk) ≤Mk+1 ≤Mk(1− c1ϵk)
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Let c0 be defined in Corollary 3.5 and c1 be defined in Lemma 3.6.

We now define the following constants.

k(M) =


I(2

−α−1/c1
ϵ1

) for 1 ≤ α < 2

I( 2
3c1ϵ1

) for α = 2

I( 2
−α+1

α+1 c1
ϵ1

) for 2 < α ̸= 3

where I(a) means the largest integer less than or equal to a.

c2 =


3−α−1/c1 for 1 ≤ α < 2
1

27c1
for α = 2

3
−α+1

α−1

c1
for 2 < α ̸= 3

c3 =


c12

2
α−1 for 1 ≤ α < 2

3c1 for α = 2

2αc1 for 2 < α ̸= 3

We begin with the following lemma.

Lemma 5.2. For M =M1 ≥M0 for k ≤ k(M), we have

(5.2)
1

2
M ≤M(1− c3kϵ1) ≤Mk ≤M(1 + c3kϵ1) ≤

3

2
M

Moreover

(5.3)

k(M)∑
k=1

ϵk ≥ c2

Proof: We prove (5.2) only when 1 ≤ α < 2. The other cases are

simlar. We prove it by induction. In fact suppose

M(1− 2αc1(k − 1)ϵ1) ≤Mk ≤M(1 + 2αc1(k − 1)ϵ1)

Then by (5.1)

Mk+1 ≤Mk(1 + c1ϵk) ≤M + 2αc1(k − 1)Mϵ1 + c1Mϵk

≤M + 2αc1kMϵ1 + c1Mϵk − 2αc1Mϵ1

≤M + 2αc1kMϵ1
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since for α < 2

c1Mϵk = c1M
−α
k ≤ c1(M − 2αc1M)−α

≤ c12
αM−α

Simlarly we have the other inequality.

We now have

k(M)∑
k=1

ϵk ≥
k(M)∑
k=1

(M + 2αkM−α)−α−1

≥ 2−α−13α+1/(2α+1c1) = c2

�

The next lemma is the key estimate.

Lemma 5.3. Let M ≥ 2N+4M0 and

M i =Mk(M i−1)+1, ki = k(M i−1), i = 2, ..., N

Then
kN∑
k=1

ϵk ≥ Nc2

Proof: In fact it easy to see that

M i ≥ 1

2
M i−1 ≥ 2−NM ≥M0, i = 2, ..., N

By Lemma 5.2, we have

ki+1∑
k=ki+1

ϵk ≥ c0

kN∑
k=1

ϵk =
N∑
i=1

(

ki+1∑
k=ki+1

ϵk) ≥ Nc2

�
Let M = M1 and yk be the local maximum points of u(x,M, 0; 0).

Note that y1 = 0.Then we have
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Corollary 5.1. For M ≥ 2N+4M0, we have

kN∑
k=1

(yk+1 − yk) ≥ kNπ +Nc0c2

for 1 ≤ α < 3 and

kN∑
k=1

(yk+1 − yk) ≤ kNπ −Nc0c2

for α > 3.

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4: Let N be such that Nc0c2 > 64π. Let kN be

defined as in Lemma 5.3. Set

T = 2kNπ

Consider the operator

W : (−1,∞)×R → (−1,∞)×R

defined by

W (α, β) = (u(T, 1 + α, β)− 1, u
′
(T, 1 + α, β)

Standard arguments show that W is an area-preserving homeomor-

phism. Observe also that u(x, 1 + α, β) is a T−periodic solution of

(1.4)kN if and only if (α, β) is a fixed point of W .

Let r0 > 4N+4M0. For r((1+α), β) = (1+α)2+(1+α)1−α+β2 = r20,

we have that max0≤x≤π u(x, 1 + α, β) ∼ r0. Then we have for α < 3

η(1 + α, β) ≤ 4kNπ
4kNπ

4kNπ +
∑kN

k=1(yk+1 − yk)

≤ 4kNπ
4kNπ

4kNπ + c0
∑kN

k=1 ϵk

≤ 4kNπ − 1

4
c0

kN∑
k=1

ϵk

≤ 4kNπ − 16π
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Let n0 = kN − 4. Then we have proved that

η(1 + α, β) ≤ 4n0π

for r(1 + α, β) = r20.

Since as r → ∞, η(1 + α, β) → 4kNπ, there exists r1 > r0 such that

sup (η(1 + α, β)|r(1 + α, β) = r20) ≤ 2n0π

< 4(kN − 1)π < inf (η(1 + α, β)|r(1 + α, β) = r21)(5.4)

Let us now define the curves C1 and C2 in R2 by

C1 = {(α, β) ∈ (−1,∞)×R|r(1 + α, β) = r20}

C2 = {(α, β) ∈ (−1,∞)×R|r(1 + α, β) = r21}

Then C1, C2 are closed simple curves and, in particular, C1 is star-

shaped around the origin. Thus define A to be the annular region

between these two curves. It is standard that the restriction of W to

A can be lifted to the plar coordinate plane through the usual covering

map P (ρ, θ) = (ρcos θ, ρsin θ) to a map W̃ satisfying the periodicity

condition

W̃ (ρ, θ + 2π) = W̃ (ρ, θ) + (0, 2π)

Then if we write W̃ (ρ, θ) = (R(ρ, θ),Θ(ρ, θ)), we have an integrer ñ

such that

Θ(ρ, θ)− θ = 2ñπ − η(1 + α, β)

for all (ρ, θ) ∈ P−1(A) where (α, β) = P (ρ, θ).

Now for each integer n such that n0 ≤ n < kN − 1 define

W̃n(ρ, θ) = W̃ (ρ, θ) + (0, 2(2n− ñ)π)

Then W̃n is still a lifting of W via the covering map P . By (5.4), it

is clear that W̃n satisfies conditon (2) of Lemma 5.1. The only thing

left is to verify that 0 ∈ W (D1). But this is equivalent to saying that

if (α, β) is such that u(T, α, β) = 1, u
′
(T, α, β) = 0 then r(α, β) < r20.

This is obvious if we choose r0 sufficiently large.
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It follows from Lemma 5.1 that W̃n possessses two fixed points yield-

ing two distinct fixed points (α1
n, β

1
n) and (α2

n, β
2
n) of W .

Thus u(x, α1
n+1, β1

n) is a 2kNπ−periodic solutions of (1.4)kN . Observ-

ing that η(1+α1
n, β

1
n) = 4nπ we have u(x, α1

n+1, β1
n) has exactly Pn =

2nmaximum points (note for r large two zeros of u(x, 1+α1
n, β

1
n)−1 cor-

respond to one local maximum point) and 2(kN −1) > 2n ≥ 2(kN −4).

Moreover r20 < r(1 + α, β) < r21.

Therfore for eachM we have w(M), p(M) such that w(M) → ∞, 2(w(M)−
1) > p(M) ≥ 2(w(M)− 4) and a solution uM with pM local maximum

points, y1, ..., ypM . Moreover uj(yi) > cM for some c > 0, j = 1, ..., pM .

Let M → ∞, we obtain a sequence of solutions satisfying Theoren

1.4

Theorem 1.5 can proved by similar methods. We omit the details.

�

References

[1] S. Angenent, On the formation of singularities in the curve shortening flow,

J. Diff. Geom. 33 (1991), 601-633.

[2] B. Andrews, Contraction of convex hypersurfaces by their affine normal, J.

Diff. Geom. 43(19996), 207-230.

[3] S. Angenent and M. Gurtin, Multiphase thermomechnics with interfacial

structure 2. Evolution of an isothermal surface, Arch. Rational Mech. Anal.

108 (1989), 323 -391.

[4] U. Abresch and J. Langer, The normalized curve shortening flow and homo-

thetic solutions, J. Diff. Geom. 23 (1986), 175-196.

[5] J. Ai, K.S. Chou and J. Wei, Self-similar solutions for the anisotropic affine

curve shortening problem and a related nonlinear Hill’s equation, Cal. Var.

PDE, accepted for publication.

[6] Claus Dohmen, Y. Giga and N. Mizoguchi, Existence of selfsimilar shrinking

curves for anisotropic curvature flow equations, Cal. Var. 4(1996), 103-119.

[7] M. Del Pino and R.F. Manasevich, Infinitely many T-period solutions for a

problem arising in nonlinear elasticity, J. Diff. Eqns 103(1993), 260-277.

[8] W.Y.Ding, A generalization of the Poincare-Birkhoff theorem, Proc. Amer.

Math. Soc. 88 (1983), 341-346.



ANISOTROPIC CURVATURE FLOWS 33

[9] M.E. Gurtin, Thernodynamics of eveolving phase boundaries in the plane,

Clarendon Press, Oxford (1993).

[10] A. Fonda, R. Manasevich and F. Zanolin, Subharmonic solutions for some

second-order differential equations with singularities, SIAM J. Math. Anal.

24(1993), 1294-1311.

[11] M. Gage, Evovling plane curves by curvature in relative geometries, Duke

Math. J. 72(1993), 441-466.

[12] M. Gage and R. Hamilton, The shrinking of convex plane curves by the heat

equation, J. Diff. Geom. 23 (1986), 69-96.

[13] M. Gage and Y. Li, Evolving plane curves by curvature in relative geometries

II, Duke Math. J. 75 (1) 1994, 79-98.

[14] M. Grayson, The heat equation shrinks embedded plane curves to round

points, J. Diff. Geom. 26(1987), 285-314.

[15] H. Matano, Asymptotic behavior and stability of solutions of semilinear dif-

fusion equations, Publ. Res. Inst. Math. Sci. 15(1979), 401-454.

[16] H. Matano and Taniyama, preprint.

[17] G. Sapiro and A. Tannenbaum, On invariant curve evolution and image anal-

ysis, Indiana Univ. J. of Math. , to appear.

Department of Mathematics, University of Tokyo, Japan

E-mail address: matano@ms.u-tokyo.ac.jp

Department of Mathematics, Chinese University of Hong Kong, Shatin,

Hong Kong

E-mail address: wei@math.cuhk.hk


