Math 257/316 Assignment 4

Due Friday Feb. 6 in class

1. Consider the heat conduction problem:

$$
\frac{\partial u}{\partial t}=5 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<3, t>0
$$

with homogeneous boundary conditions

$$
u(0, t)=u(3, t)=0 .
$$

Find the solution for each of the initial conditions (using formulas from class/notes/text if you like):
a) $u(x, 0)=4 \sin \pi x$
b) $u(x, 0)=\sin (\pi x / 3)-2 \sin (2 \pi x / 3)+11 \sin (2 \pi x)$
2. Use the method of separation of variables to find the most general solution of the following heat conduction problem with "mixed" boundary conditions:

$$
\begin{aligned}
& u_{t}=\alpha^{2} u_{x x}, \quad 0<x<L, t>0, \\
& u(0, t)=0, \quad u_{x}(L, t)=0
\end{aligned}
$$

3. Use the method of separation of variables to solve the problem

$$
\begin{aligned}
& u_{t}=u_{x x}+a u, \quad 0<x<1, t>0 \\
& u(0, t)=0, \quad u(1, t)=0 \\
& u(x, 0)=\sin (\pi x)
\end{aligned}
$$

How does the long term $(t \rightarrow \infty)$ behaviour of the solution depend on the constant a ?

