Math 257/316 Assignment 4 Solutions

1. Consider the heat conduction problem:

$$
\frac{\partial u}{\partial t}=5 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<3, t>0
$$

with homogeneous boundary conditions

$$
u(0, t)=u(3, t)=0 .
$$

Find the solution for each of the initial conditions (using formulas from class/notes/text if you like):
a) $u(x, 0)=4 \sin \pi x$
b) $u(x, 0)=\sin (\pi x / 3)-2 \sin (2 \pi x / 3)+11 \sin (2 \pi x)$

As worked out in class, the general solution of the PDE and the BCs (taking $\alpha^{2}=5$, $L=3$) is

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / 3) e^{-\left(5 n^{2} \pi^{2} / 9\right) t}
$$

so

$$
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / 3)
$$

(a)

$$
4 \sin (\pi x)=u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / 3)
$$

so we take $c_{3}=4$, and all other coefficients 0 :

$$
u(x, t)=4 \sin (\pi x) e^{-5 \pi^{2} t}
$$

(b)

$$
\sin (\pi x / 3)-2 \sin (2 \pi x / 3)+11 \sin (2 \pi x)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / 3)
$$

so we take $c_{1}=1, c_{2}=-2, c_{6}=11$, and all other coefficients 0 :

$$
u(x, t)=\sin (\pi x / 3) e^{-\left(5 \pi^{2} / 9\right) t}-2 \sin (2 \pi x / 3) e^{-\left(20 \pi^{2} / 9\right) t}+11 \sin (2 \pi x) e^{-20 \pi^{2} t}
$$

2. Use the method of separation of variables to find the most general solution of the following heat conduction problem with "mixed" boundary conditions:

$$
\begin{aligned}
& u_{t}=\alpha^{2} u_{x x}, \quad 0<x<L, t>0, \\
& u(0, t)=0, \quad u_{x}(L, t)=0
\end{aligned}
$$

Separating variables $u(x, t)=X(x) T(t)$ leads to

$$
u_{t}=\alpha^{2} u_{x x} \quad \Longrightarrow \quad X T^{\prime}=\alpha^{2} X^{\prime \prime} T
$$

and dividing through by $\alpha^{2} X T$,

$$
\frac{1}{\alpha^{2}} \frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}=\text { constant }=: \lambda
$$

(each side must be constant since they depend on different variables). The " X problem"

$$
X^{\prime \prime}=\lambda X, \quad X(0)=0, \quad X^{\prime}(L)=0
$$

inherits its boundary conditions from those of the original PDE problem (note it is X^{\prime} not X which should vanish at $x=L$). Cases:
(a) $\lambda>0$: the general solution of the $O D E$ is $X(x)=c_{1} e^{\sqrt{\lambda} x}+c_{2} e^{-\sqrt{\lambda} x} .0=$ $X(0)=c_{1}+c_{2}$ implies $c_{2}=-c_{1}$ so $X(x)=c_{1}\left(e^{\sqrt{\lambda x}}-e^{-\sqrt{\lambda} x}\right)=2 c_{1} \sinh (\sqrt{\lambda} x)$. Then $0=X^{\prime}(L)=2 c_{1} \sqrt{\lambda} \cosh (\sqrt{\lambda} L)$, which can only be satisfied if $c_{1}=0$ (cosh is always positive), so $c_{2}=0$. No non-zero solutions in this case.
(b) $\lambda=0$: then $X=c_{1} x+c_{2} \cdot 0=X(0)=c_{2}$ and $0=X^{\prime}(L)=c_{1}$ shows there are no non-zero solutions in this case either.
(c) $\lambda<0$: the general solution is $X(x)=c_{1} \sin (\sqrt{-\lambda} x)+c_{2} \cos (\sqrt{-\lambda} x)$. The BCs give $0=X(0)=c_{2}$, and $0=X^{\prime}(L)=c_{1} \sqrt{-\lambda} \cos (\sqrt{-\lambda} L)$. So for a non-zero solution, we require

$$
\cos (\sqrt{-\lambda} L)=0 \quad \Longrightarrow \quad \sqrt{-\lambda} L=\pi / 2+k \pi, \quad k=0,1,2,3, \ldots
$$

So we have our solutions of the X problem:

$$
X_{k}(x)=\sin \left(\frac{\pi / 2+k \pi}{L} x\right), \quad \lambda_{k}=-\frac{(\pi / 2+k \pi)^{2}}{L^{2}}, \quad k=0,1,2,3, \ldots .
$$

The solutions of the corresponding "T problem"

$$
T^{\prime}=\alpha^{2} \lambda_{k} T=-\frac{(\pi / 2+k \pi)^{2} \alpha^{2}}{L^{2}} T
$$

are constant multiples of $e^{-(\pi / 2+k \pi)^{2} \alpha^{2} t / L^{2}}$. Combining with the corresponding X, we have product solutions (of both the heat equation and the given boundary conditions) of the form

$$
e^{-\frac{(\pi / 2+k \pi)^{2} \alpha^{2}}{L^{2}} t} \sin \left(\frac{\pi / 2+k \pi}{L} x\right), \quad k=0,1,2,3, \ldots
$$

Finally, the most general solution we can write is an infinite linear combination of these (which still satisfies the boundary conditions - since they are homogeneous - as well as the PDE, since it is linear and homogeneous):

$$
u(x, t)=\sum_{k=0}^{\infty} c_{k} e^{-\frac{(\pi / 2+k \pi)^{2} \alpha^{2}}{L^{2}} t} \sin \left(\frac{\pi / 2+k \pi}{L} x\right) .
$$

3. Use the method of separation of variables to solve the problem

$$
\begin{aligned}
& u_{t}=u_{x x}+a u, \quad 0<x<1, t>0 \\
& u(0, t)=0, \quad u(1, t)=0 \\
& u(x, 0)=\sin (\pi x)
\end{aligned}
$$

How does the long term $(t \rightarrow \infty)$ behaviour of the solution depend on the constant a ?

Separating variables $u(x, t)=X(x) T(t)$ leads to

$$
0=u_{t}-u_{x x}-a u=X T^{\prime}-X^{\prime \prime} T-a X T
$$

and dividing through by XT yields

$$
0=\frac{T^{\prime}}{T}-\frac{X^{\prime \prime}}{X}-a, \quad \text { or } \quad \frac{T^{\prime}}{T}-a=\frac{X^{\prime \prime}}{X}=\text { const. }=-\lambda,
$$

since each side depends on a different variable (note: you could also put the a on the X side - it would all work out the same). The X problem,

$$
X^{\prime \prime}(x)=-\lambda X(x), \quad X(0)=0=X(1),
$$

is the same one we encountered in class in solving the heat equation with zero BCs, and we know its solutions:

$$
\lambda_{n}=\pi^{2} n^{2}, \quad X_{n}(x)=\sin (n \pi x), \quad n=1,2,3, \ldots
$$

Then the T problem, with $\lambda=\lambda_{n}$ is

$$
T^{\prime}(t)=\left(a-\lambda_{n}\right) T=\left(a-\pi^{2} n^{2}\right) T,
$$

whose solution is (any multiple of)

$$
T_{n}(t)=e^{\left(a-\pi^{2} n^{2}\right) t} .
$$

The most general solution of the PDE and BCs is an infinite linear combination of the product solutions $X_{n}(x) T_{n}(t)$:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x) e^{\left(a-\pi^{2} n^{2}\right) t}
$$

To satisfy the initial condition we need

$$
\sin (\pi x)=u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x)
$$

and a simple inspection leads to $c_{1}=1, c_{2}=c_{3}=c_{4}=\cdots=0$, so

$$
u(x, t)=\sin (\pi x) e^{\left(a-\pi^{2}\right) t}
$$

Looking at the exponential, we see that (for any $0<x<1$)

$$
\left\{\begin{array}{cc}
\lim _{t \rightarrow \infty} u(x, t)=0 & a<\pi^{2} \\
\lim _{t \rightarrow \infty} u(x, t)=\infty & a>\pi^{2} \\
u(x, t)=\sin (\pi x) \text { for all } t & a=\pi^{2}
\end{array} .\right.
$$

