
Math 257/316 Assignment 4 Solutions

1. Consider the heat conduction problem:

∂u

∂t
= 5

∂2u

∂x2
, 0 < x < 3, t > 0,

with homogeneous boundary conditions

u(0, t) = u(3, t) = 0.

Find the solution for each of the initial conditions (using formulas from class/notes/text
if you like):

a) u(x, 0) = 4 sinπx

b) u(x, 0) = sin(πx/3)− 2 sin(2πx/3) + 11 sin(2πx)

As worked out in class, the general solution of the PDE and the BCs (taking α2 = 5,
L = 3) is

u(x, t) =
∞∑
n=1

cn sin(nπx/3)e−(5n
2π2/9)t,

so

u(x, 0) =

∞∑
n=1

cn sin(nπx/3).

(a)

4 sin(πx) = u(x, 0) =

∞∑
n=1

cn sin(nπx/3)

so we take c3 = 4, and all other coefficients 0:

u(x, t) = 4 sin(πx)e−5π
2t.

(b)

sin(πx/3)− 2 sin(2πx/3) + 11 sin(2πx) =
∞∑
n=1

cn sin(nπx/3)

so we take c1 = 1, c2 = −2, c6 = 11, and all other coefficients 0:

u(x, t) = sin(πx/3)e−(5π
2/9)t − 2 sin(2πx/3)e−(20π

2/9)t + 11 sin(2πx)e−20π
2t.
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2. Use the method of separation of variables to find the most general solution of the
following heat conduction problem with ”mixed” boundary conditions:

ut = α2uxx, 0 < x < L, t > 0,

u(0, t) = 0, ux(L, t) = 0.

Separating variables u(x, t) = X(x)T (t) leads to

ut = α2uxx =⇒ XT ′ = α2X ′′T

and dividing through by α2XT ,

1

α2

T ′

T
=
X ′′

X
= constant =: λ

(each side must be constant since they depend on different variables). The ”X prob-
lem”

X ′′ = λX, X(0) = 0, X ′(L) = 0

inherits its boundary conditions from those of the original PDE problem (note it is
X ′ not X which should vanish at x = L). Cases:

(a) λ > 0: the general solution of the ODE is X(x) = c1e
√
λx + c2e

−
√
λx. 0 =

X(0) = c1 + c2 implies c2 = −c1 so X(x) = c1(e
√
λx − e−

√
λx) = 2c1 sinh(

√
λx).

Then 0 = X ′(L) = 2c1
√
λ cosh(

√
λL), which can only be satisfied if c1 = 0 (cosh

is always positive), so c2 = 0. No non-zero solutions in this case.

(b) λ = 0: then X = c1x+ c2. 0 = X(0) = c2 and 0 = X ′(L) = c1 shows there are
no non-zero solutions in this case either.

(c) λ < 0: the general solution is X(x) = c1 sin(
√
−λx) + c2 cos(

√
−λx). The BCs

give 0 = X(0) = c2, and 0 = X ′(L) = c1
√
−λ cos(

√
−λL). So for a non-zero

solution, we require

cos(
√
−λL) = 0 =⇒

√
−λL = π/2 + kπ, k = 0, 1, 2, 3, . . . .

So we have our solutions of the X problem:

Xk(x) = sin

(
π/2 + kπ

L
x

)
, λk = −(π/2 + kπ)2

L2
, k = 0, 1, 2, 3, . . . .

The solutions of the corresponding ”T problem”

T ′ = α2λkT = −(π/2 + kπ)2α2

L2
T
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are constant multiples of e−(π/2+kπ)
2α2t/L2

. Combining with the corresponding X, we
have product solutions (of both the heat equation and the given boundary conditions)
of the form

e−
(π/2+kπ)2α2

L2 t sin

(
π/2 + kπ

L
x

)
, k = 0, 1, 2, 3, . . . .

Finally, the most general solution we can write is an infinite linear combination of
these (which still satisfies the boundary conditions – since they are homogeneous – as
well as the PDE, since it is linear and homogeneous):

u(x, t) =

∞∑
k=0

cke
− (π/2+kπ)2α2

L2 t sin

(
π/2 + kπ

L
x

)
.

3. Use the method of separation of variables to solve the problem

ut = uxx + au, 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = sin(πx)

How does the long term (t → ∞) behaviour of the solution depend on the constant
a?

Separating variables u(x, t) = X(x)T (t) leads to

0 = ut − uxx − au = XT ′ −X ′′T − aXT

and dividing through by XT yields

0 =
T ′

T
− X ′′

X
− a, or

T ′

T
− a =

X ′′

X
= const. = −λ,

since each side depends on a different variable (note: you could also put the a on the
X side – it would all work out the same). The X problem,

X ′′(x) = −λX(x), X(0) = 0 = X(1),

is the same one we encountered in class in solving the heat equation with zero BCs,
and we know its solutions:

λn = π2n2, Xn(x) = sin(nπx), n = 1, 2, 3, . . . .

Then the T problem, with λ = λn is

T ′(t) = (a− λn)T = (a− π2n2)T,
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whose solution is (any multiple of)

Tn(t) = e(a−π
2n2)t.

The most general solution of the PDE and BCs is an infinite linear combination of
the product solutions Xn(x)Tn(t):

u(x, t) =
∞∑
n=1

cn sin(nπx)e(a−π
2n2)t.

To satisfy the initial condition we need

sin(πx) = u(x, 0) =

∞∑
n=1

cn sin(nπx)

and a simple inspection leads to c1 = 1, c2 = c3 = c4 = · · · = 0, so

u(x, t) = sin(πx)e(a−π
2)t.

Looking at the exponential, we see that (for any 0 < x < 1)
limt→∞ u(x, t) = 0 a < π2

limt→∞ u(x, t) =∞ a > π2

u(x, t) = sin(πx) for all t a = π2
.
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