MATH301-201 Homework Assignment 7 (Due Date: by 6pm, April 13, 2016)

Please either hand in to my office or send it by email by 6 pm of April 13, 2016. The solutions will be put on my web-site on April 14.

1. Find the inverse Laplace transform of

$$
F(s)=e^{-a \sqrt{s}}, a>0
$$

Hint: use the complex contour as in the Lecture notes.
2. Solve the following second order ODE using Laplace transform

$$
u^{\prime \prime}-2 u^{\prime}+5 u=1+5 \sin (t), u(0)=a, u^{\prime}(0)=1
$$

Find the unique initial value a such that u is bounded.
3. Use the Laplace transform to find the general formula for

$$
y^{\prime \prime \prime}+y=f(t)
$$

Hint: The inverse Laplace transform of $\hat{g}(s) \hat{f}(s)$ is $\int_{0}^{t} g(t-\tau) f(\tau) d \tau$.
4. (a) Suppose that $f(t+T)=-f(t)$. Show that the Laplace transform

$$
\hat{f}(s)=\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1+e^{-s T}}
$$

(b) Find the Laplace transform of the following function

$$
f(t)=\left\{\begin{array}{l}
1, t \in(0, T) \cup(2 T, 3 T) \cup(4 T, 5 T) \cup \ldots, \\
-1, t \in(T, 2 T) \cup(3 T, 4 T) \cup(5 T, 6 T) \cup \ldots
\end{array}\right.
$$

5. Consider $y^{\prime}+y=f(t)$ with $f(t+1)=f(t)$ with initial value $y(0)=y_{0}$. Here $f(t)=0$ for $0 \leq t<1 / 2$ and $f(t)=1$ for $1 / 2 \leq t<1$. Find the special value y_{0} such that the solution y is also periodic $y(t+1)=y(t)$.
6. Use the Laplace transform to find the solution to the diffusion equation

$$
\begin{gathered}
u_{t}=u_{x x}, 0<x<\infty, t>0 \\
u(x, 0)=e^{-x}, 0<x<\infty \\
u(0, t)=1, t>0
\end{gathered}
$$

Hint: The inverse Laplace transform of $\frac{e^{-a \sqrt{s}}}{s}$ is $1-\frac{2}{\sqrt{\pi}} \int_{0}^{\frac{a}{2 \sqrt{t}}} e^{-p^{2}} d p=\int_{\frac{a}{2 \sqrt{t}}} e^{-p^{2}} d p$, and the inverse transform of $e^{-a \sqrt{s}}$ is given in Problem 1.
7. Find the number of zeroes of $f(z)=z^{3}+2 z^{2}+z+1$ in the right-half plane.

