
Conformal MaPPing
314

..ConformallrnageWarping,'byFreder.ickandSchwartz(seeRef.[9]),offersaSone-

what ivhimsical depiction of the mapptng'

Noticethattheupperhalf.circle,wheLetheunknownfunction@equals1,is
rnapped to the positive'irrlaginury axis, whereas the lower half-circle (where Q : -l)
corresponds to trt. n"gafwe"'muiinary a*is' Consequently' by the methods of Sec' 3'4

we find the solution in the ur-plane to be

2
t@,u) = -Arg(ut)'

Hencethesolutiontotheoriginalproblemisderivedfromiy'bythemapping(7):

Z 1 /1-+-'t
dr.r. l) : ir(rr(.r.)'). u(.r'))) = I Alg( ftz)t :iott(' 

-. I

A little algebra results in the expresstol.t

2 -r 2)
@{i.).1:-t3I1 l;::ll

wherethevalueofthearctangentistakentobebetrveen-rl2andt12,Notethat
d (r, 0) : 0, as we would expect from symmetry t

Witlrthisexampleasmotivationwedevotethenextfewsectionstoastudyof
mappirrgsgivenbyanalyticfunctions.Theinaltwosectionsofthechapterwillreturn
us to applicatlons, itiusirating the power of this rechnique in handhng many different

situations.Atab]eofsomeofthemoreusefulmappirrgsappearsasAppendixll,for
the reader's future conlenlence'

TheMATLAtstoolboxmentionedintheprefaceprovidesanexcellenttoolfor
visualizing most of the mappings studied in the chapter'

EXERCISES 7.1

1. Show that the fr"rnction u) = ez maps the hall-strip x > 0' -7T12 < r' < ni2 ot.tto

the portion of the right half u-,-plane that lies outsicle the unit circle (see Fig T'6'1'

whar harmonic funJtion ry'(u) cloes the u-plane "inherit," via this mapprng, from

the harmonic functiot-r QQ) :,t t )? What harinorrrc function d(l) is inher.ited

flonr ry't r,ttl - It r u?

2.SupposethatEqS'(5)and(6)describeaone-to-oneanalyticnrapping.Letd(,1;'),)
be a real-valued twice-continuously differentiable function that is canied over in the

ru-Plane to the function

lrfu, u) :- QQQt, r), 1'(t't' u))'

(a) The gradient of @(.t,1') is the vector (3@/6 x'0Ql0v')'' it conesponcls to the

complex nunrbeL (,...olt s".. 1.3) sQl,c)x + iGQla,. Srrrrilarly, the gradient



7.1 Invariance of Laplace's Equation J/)

z

Figure 7.6 Exponential rnapping of half_strip.

of / conesporlds b A1b lALr * i (3lr lOu). Usc the chain ruie and the Cauchl,_
Riemann equations to show that these graclients are related by

Cti AV l aQ A61 1 ,ta
;ru -' aL,: (r, +' a, )\n)

(b) Show that the Lctplacions of ry' and @ are related by

1

4,

aze _+arOllar lt
il.r2 ar2 | l(1u,1

(c) Show that if @(-t,l') satisrres Laplace's equation in the z-plane, then iy' satis-
lies Laplace's equation in the u.,-plane.

(d) Show that if @ sarisfies Helniltolrz,,.s ecluation,

o2a _Dre _ n^
,-J.12 ' ;1.',2 - "Y

(A is a constallt), in the z_piane, then y'r satislles

a2* 
+a).,!t _ nldrlr,,,

ar2 - a; : 't lrt*1 v
in the rr,'-plane. (Helmholtz's equation arises in transient thermal analysis.)

Find a fu'ction @ harmonic in the upper harf-prane ancl taki'g bounclary varues as
rndrcated in Fig. 7.7. [HINT: Rereacl Sec. 3.4.]

Consider the problem of findi'g a function d that is hannonic i' the liglit half',plane
andtakesthevaluesd(0..]) =.\,/(l +.t.2) ontheimaginar.yaxis. observerharrhe
obr ious first gttes' 

or: ) :rr' , , .

l-.
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Figure 7'7 Dirichlet problen-r in Prob 3'

fails because z l0 - z2) ,s 
''ot 

anaiytic at z : 1' However' the foilorving strateLly

can be used.

(a) According to the text, the mappings (7) ancl (8) provide a conespondence

betweentherighthalf-ptaneandtheunitdisk.(ofcourse,oneshouldinttlr.
char]getherolesofzan.tr,Uintheformulas.)Thustheru-planeir-rheritsfrcrm
d(z)afunction{(p)harmonicintheunitdisk.Showthatthevaluesofry'(:Ll)
on the unit circle u,' : €16 trust be given by

tkiaT- 
tinp.

2

(b) Argue that the harnor.ric function ry' (u) must be given by

t[(.w) : f tn.,,
L

throughout the unit dtsk

(c)Usethenrappirrgstocal.IJry'(ur)backtothez-plane,producingthefunctiol]

@t:t=;-;T

as a soltttion of the Problem

5. Use the strategy of Prob. 4 to find a function @ harnonic in the right half-plane s'uch

that d(0, y) : 1/(l'2 * 1).

6. Suppose that the harmouic function Q(x' y) in the dornain D is carried over tcr the

harmonic function $(u.u) in the domain D'via the one-to-one analytic map'ping

u : f (z). Prove that if the normal derivative EQl\n is zero on a curve .[- tn

D,thenthenorrr-ralderivative.d!llsniszeroontheimagecurveofIunder/.
Gh. boundury condition 'dQl3n :0 is known as aNeumann condition) IHINTT

DQlSn is the projection of the graclient GQIS:l) + iQQl3 r) onto the nonnal' and

the gradient is orthogonal to the level curves /(x' )') = constant']



to 7.2 Geometric Considerations
-1 / /

7' Suppose that./(3) is a'alytic and one-to-one. Then, according to the rexr. you may
presume that 1-t is also analytic. If :r, ),, ,/, u are as in Eqs. (5) and 16), explain the
rdentities

0x_=
3tt

3),

3u

ut : -',3u }Lt

7.2 Geometric Considerations

The geometric aspects of analytic mappings split lather naturally into rwo caregoles:
local.properties and gtobat properties. Local properties need oniy holcl in sufficiently
small neighborlioods, while giobal properties hold thr.oughout a dtmain. For exampie,
consider the function ez. It is one-to-one in any clisk of diameter less than 2n, and
hence it is locall.v oue-to-one, but since ezt : e?.2 when zt - z2:2ri,thefunction
is not globally one-to-one. on the other hand, sometimes locafproperties can be ex_
tended to global properties; in fact, this is the esseltce of analytic corttinuation (see
Sec.5.8).
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Figure 7.8 Locally one-to-one mapping.

Let us begin our study of local properties by considering ',one-to-oneness.,, As
the exaniple e' shows, a function rnay be locally one-to-one without being globally
one-to-one (Of course, the opposite situation is impossible.) Furthermore, an analytic
function may be locally one-Io-one at some points but not at others. Indeed. consider

f l:l: 
'2'

In any oper set that contains the origin the'e will be clistinct points z1 and zz such
that zz - -i1, and hence lsince z3 : 2l; the function f will not be one-ro_one.
However, around any point other than the origin, we can find a neighborhood in which
:' rs one-to-one (any disk that exciudes the origin will do; see Fig.7.g). Thus .f (z) :
z- lri locally olle-to-olle at every poittt other than thc origin. An explanation of the
exceptional natu'e of ; : 0 i' this example is providecl by the foliowrng.

i

t:
,.
.:



Conformal Nlapping

The rernainder of this chapter wili deal with constructing and applying specffic
conformal mappings.

EXERCISES 7.2

1. For each of the following functions, determine the order m of the zero of the deriva-
tive // at z6 and shoiv explicitly that the function is not one-to-one in any neighbor-
hood of zo,

(a) f (z) : zz + 2z + 7,zo : -1
(b) ,f (z) : cos Z, Z0 : 0, Xtr, LZn. , ,

_l(c) /(z):€'-.zu:0
2. Prove that if tr : JQ) is analytic at zo and f'(2il a 0, then 3 = ;-liur) is

analYtic ot tt,s : / (zo), and

df-|,. 1

dw dJ,.
e"'

for u : u0. z : zo. IHINT: Theorem 1 guarantees that /-1(ur) exists near u0
and Theorem 3 irnplies that /-i(ur) is continuous. Now generalize the proof in
Sec.3.2.l

3. What happens to angles at the origin under the mapping f \2.) = zo for q > 1? For
0<cv<1?

4. Use the open mapping theorem to pfove the maximum-modulus pnnciple.

5. Find all functions /(z) analytic \n D ', zl < 1 that assume only pure inaginaly
values in D.

6, If f is analytic at zs and J'' (zrl # 0, show that the function g(z) = /k) preseruet
the nragnitude. but reverses the orientation, of angles at zg.

7. Show that the mapping @* : z + 1/z naps circles Lz = p (p I 1) onto ellipses

tt2 u2

---- 
] -T 

-

(r*I)' (r-1)'
\ p/ \ p/

8. Let / be analytrc at z6 with f ' (20 * 0. By considering the difference quorienr,
argue that "infinitesimal" lengths of segments drawn from z0 are magnified by the
factor 

] f' (zilj under the mapping * : f (z).

9. Let * : J (z) be a one-to-one analytic rnapping of the domain D onto the domain
D' , and let A' : area (O'). Using Prob. 8, argue the plausibility of the formula

rt
A': ll ,I',r)- dxd1..

J JD
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10' Why is it irnpossible for D to be the whole plane in the Riernann rnapping rheorem?
IHINT: Appeal to Liouville's rheorem.]

L1' Describe the irrage of each of the following dornains under the nrapping u) : ez,

(a) the strip 0 < Imz < tr
(b) the slanted strip between the two lines 1, : .r &nd ), : x * 2r
(c) thehalf-str.ipRez = 0, 0 < Imz < z
(d) thehalf-stripRez > 0, 0 < Imz < z
(e) therectangle 1 < Re z < 2,0< Imz < z
(0 the half-planes Re z > 0 and Re e < 0

12. Let P (z) : (z - u112 - p), and let L be any srraight hne through (a * F) 12. 
prove

that P is one-to-one on each of the open half-planes determined by L.
13. Desc'ibe the image of each of the foilowing dornains ur.rder the mapping r.r., :

coS z : cos -v cosh )' - I sin;r sinh 1,. IHINT: Cor.rsider the irnage of the boulclary in
each case.l

(a) thehalf-str.rp 0 < Re : < r,Inrz < 0
(b) thehalf-strip0 < Re, . +.Iniz > 0

(c) the str.ip 0 < Rez < :r
(d) therectangle0 < Re z < /r, -1 < Irnz < 1

14' Prove that if I has a simple pole at zo, then there exists a punctured neighborhood
ol z6 on which ./ is one-to- one.

15' A domain D is said to be convex if for any two points Zt, zz in D, the line segment
.loitting zt atld z.z lies entirely in D. Prove the NosJtiro-Wnrschaw.ski tlteorent: Lel
/ be anaiytic in a convex domain D. If Re f,k) > 0 for all z in D, then f is
one-to-one in D. [HINT: Write / (zz) _ f (zt) as an integral of ./,.]

16. (For students who have reacl Sec. 4.4a) Argue that a one-to-one analytic function
wrll n.rap sirnpll' connectecr dornains to si'ply connected domains.

7.3 Miibius Tfansformations

The problem of finding a one-to-one analytic function thar maps one domain onto
anothet' can be quite perplexing, so it is worthwhile to investigale a few elementary
mappings in order to compile sorne rules of thumb that we can draw upon. The basic
properties of Mobius transforntations,t which we shall investigate in this section, con-
stitute an essential portion of every analyst's bag of tricks. (Some of these mappings
were previewed in Exercises 2. l.)

rIn 1865 August Mcibius (1790-1860) descr-ibed rhe Mribitts.sri'rp, a piece of paper that has only
one side and oue edge.



Frorn the geometric properties of Mobius transformations that we have learned,
wecanconcludethat(11)maps l1l : l onto somestraightlinethroughtheorigin. To
see which straight line, we plug in z : I and find that the point

also lies on the line. Hence the image of the circle under fi must be the imaginary
AXlS,

To see which half-plane is the rmage of the interior of the circle, we check theporntz:0. Itismappedby(11)torhepoinr 1t) : -1 inthe tefthalf_plane. Thisis
not what we want, but it can be corrected b1, a final rotation of z, yielding

Conforntal Mapping

1-r -{,
(12)

as an answef to the problem. (Of course, any subsequent vertical translation or magni-
fication can be pennitted.) observe that (12) is precisely the mapping that was iniro_
duced in Example l, Sec, l,l,to solve a thermal problem, and we have thus verified
the claims made there. f

EXERCISES 7.3

1. Find a linear transfomation mapping the circle lzl : I onto the crrcle lu _ 5l : 3
and taking the point z : i to ut :2.

2. Whatistheinageof thestrip0 < Imz < l underthenapping w: (z_i)lz
3, Discuss the iruage of the circle z - 2l : 1 ancl its interior r.rnder the follorvins

transfonnations.

z{l
w:flzy --a---'- I

(a) u::-2i (b)1.,:
-u

(d) u' - l--- (e) u :
7,-,1

-a3iz (c)u:l--
-1

1 
t-t

z

4. Find a Nlobius rransformarion mappi'g the lower half-pla'e to the disk lru * 1 < 1.

IHINT: Do it in steps.]

5. Find a Mobius tlansfbrmation mapping the unit disk lzl < I onto the right half-
plane and taking z : -l to the origin.

6, Afred point of a function ,f (z) is a point a6 satisfying -f kd :;e. Sho,"i,rhar a
Mobius tlansformation .l'(z) can have at most two fixed points in the complex plane
unless /(1) : s.

7. Find the Moblus transformation that naps 0, 1, oc to the following lespectrve poirts.
(a) 0, i, cc (b) 0, 1, 2 (c) -r, rc, J (d) -1, x I

8. What is the inage, uncler the mapping ur : (l + i)lk - l), of the rhrrd quadranr?



7,3 Miibius Transformations

n' 
I}'is the image of the secror *nr4 < Argz < irf 4 uncrer rlie'rapping u =i./17 - tI !

393

10.

11.

Find a conforn.ral map of the serniclisk lz < 1, Im; > 0, onto fie upper. half_plane.
IHINT: Combine a Mobius transformation with the mapping u, :' ,z. Nlake sureyou cover the eutire upper half_plane.l

Map the shaclecl region in Fig. 7.2r confo'narly'onto rhe upper half-prane. [HINT:Use a Mcibir'rs transfomation to map the point z to *. A-r.gue that the irnage regronwill be a strip, Then use the exponential map.l

12.

Figure 7.21 Region for. pr.ob. 
1 1.

Find a Mobius transformation tliat takes the
the unir disk iru I < 1 ,

half-plane clepicred in Fig. 1.22 onto

Figure 7.22 Rcgion folprob. 12.

(smxh Chart) The unpecrcrnce Z of an electrical circuit oscilrating at a frequerlcy .,
is a cornplex number, denoted Z : R * i B, which character.izes tte voltage_cunent
relationship of the circuit; recall sec. 3.6. I'pr.actice R can take any vi lue fror'0
to oo and I ca. take a'y value from -oo to oo. Thus the usuar reiresentation of

13.
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Figure 7.23 Smith chart.

Z as a point in the complex plane becomes unwieldy (inasmuch as the entire nght

half-plane comes into play). The Smith chart provides a more compact graphical

description, dispiaying the entire range of impedances within the unit circle. The

impedance Z is depicted as the poittt

Z_TTI/ 
-" - z+1

This nrapping (its inverse, actually) is portrayed in Figs. 1.4 and 7.5. W is also

known as lhe re.flection coeJftc:ient correspondrn E lo Z.

(a) Shorv that the circles in the Smith chart depicting the lines Re Z : R :
constant, indicating constant-resistance contours, have the equations

/ R \' . I
| ,t 

- 

- 

| - i''
\- t-R) " l +R)2'

(b) Shorv that the circles in the Smith chart depictrng the iines InZ = B :
constant, indicating constant-reactance contours, have the equations

(See Fig. 7.23.)

14. If a circuit with impedance Z is connected to a length ! of transmission line wtth
"phase constant" B and a "charactetistic impedance" of unity, then the ner.v config-

z rr2r / l\ i
ttt-1)'-lu--l --\" B) - 32



7.4 Miibius Transformations, Continued

uratlon has a transformed impedance Z, pjvenby

Z,: ZcosBl+lsinpl

?.: x + i1t - l1p : ll@ -l iu) ( 13)

for;i and ) in terms of u a'd r a'd substitute. Show that the resuit can be expressed
in the fonn

))ABu-lu' 
Crr+ Cr:0.1 ( 14)

395

cos Bl f iZ sin B[.

Show that the Smith chart point depictrng Z' canbeobtained fron.r the Smith chart
point clepictin g Z by a ciockwise roratiori of 2Br racrrans about rhe origin.t

15' Show that the transformation (5) maps lines 
'ot 

passing thr.ough the odgin o'to
circlespassr'gthroughtheorigin. [HINT: Theequationof suchalineis Ax-*By =C, wirh C I 0. Solve

16' Show that the transformation (5) maps circles passing througli the or.rgrn onto lines
not passing through the origin. [HINT; Use the preceding problern.]

17' Show that the tt'ansformation (5) maps cilcles not passing through the origin onto
circles not passi'g through the origin. IHINT: The equation of such circles is

,2 +12*Ar1 B), =C, with C +0.
Substitute the expressions for-r and y clerived frorn (13) to obtain

tu2+u2-7r+4r:1,
CCC

7.4 Miibius TFansformations, Continued
We shall now explore sorne additional properties of Mobius transformations that en-
hance their usefulness as conformat mappings. These are the group propertres, the
closs-ratio formula, and the symmeuy property.

Given any X.,lcjbius transfbnnation

az*b1t'- +1.\ 
-* - ./ \.,/ - tod * bt),

cz, + cl

its inverse .f 
*I(.u,1can 

be found by sirnply solving Eq. (1) for; in terms of r,r.,. This
computation yreids

. dw-b.._ J ,u,: _rr, !|.
' P H Srmth patented the Srnith chart in the late 1 930s. It is the only knorvn confonnal rnapping

to be protecred by copyrightl

(1)


