374 Conformal Mapping

“Conformal Image Warping” by Frederick and Schwartz (see Ref. [9]), offers a some-
what whimsical depiction of the mapping.

Notice that the upper half-circle, where the unknown function ¢ equals 1. is
mapped to the positive imaginary axis, whereas the lower half-circle (where ¢ = — 1)
corresponds to the negative imaginary axis. Consequently, by the methods of Sec. 34
we find the solution in the w-plane to be

2
Y, v) = — Arg(w).
big

Hence the solution to the original problem is derived from 1 by the mapping (7):
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A little algebra results in the expression
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where the value of the arctangent is taken to be between —m/2 and /2. Note that
¢ (x,0) = 0, as we would expect from symmetry. |

With this example as motivation we devote the next few sections to a study of
mappings given by analytic functions. The final two sections of the chapter will return
us to applications, illustrating the power of this technique in handling many different
situations. A table of some of the more useful mappings appears as Appendix I, for
the reader’s future convenience.

The MATLAB toolbox mentioned in the preface provides an excellent tool for
visualizing most of the mappings studied in the chapter.

EXERCISES 7.1

1. Show that the function w = e? maps the half-strip x > 0, —=7/2 < y < 7/2 onto
the portion of the right halt w-plane that lies outside the unit circle (see Fig. 7.6).
What harmonic function ¥ (w) does the w-plane “inherit,” via this mapping, from
the harmonic function ¢(z) = x + y7 What harmonic function ¢ (z) is inherited
from ¥ {(w) = u + v?

2. Suppose that Egs. (5) and (6) describe a one-to-one analytic mapping. Let ¢ (x, ¥)
be a real-valued twice-continuously differentiable function that is carried over in the
w-plane to the function

Y, v) = @ (x (i, v), Y, V).

(a) The gradient of ¢(x, y)'18 the vector (3¢/dx, dp/ay); it corresponds to the
complex number (recall Sec. 1.3) ¢ /0x +i(0@/0y). Similarly, the gradient
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Figure 7.6 Exponential mapping of halt-strip.

of ¥ corresponds to 9Y/0u + i (6 /8v). Use the chain rule and the Cauchy-
Riemann equations to show that these gradients are related by

dy oy
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Ju lav

(b) Show that the Laplacians of y and ¢ are related by
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du dv?
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(¢) Show that if ¢ (x, y) satisfies Laplace’s equation in the z-plane, then ¥ satis-
fies Laplace’s equation in the w-plane.

(d) Show that if ¢ satisfies Helmholtz’s equation,

e %
axt gy

(A is a constant), in the z-plane, then ¥ satisfies
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in the w-plane. (Helmholtz’s equation arises in transient thermal analysis.)

3. Find a function ¢ harmonic in the upper half-plane and taking boundary values as
indicated in Fig. 7.7. [HINT: Reread Sec. 34]

4. Consider the problem of finding a function ¢ that is harmonic in the right half-plane

and takes the values ¢ (0. y) = y /(1 + y?)

obvious first guess

¢(z) =Im 7

7
<

I

on the imaginary axis. Observe that the
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5.

Figure 7.7 Dirichlet problem in Prob. 3.

fails because z /(1 — zz) is not analytic at z = 1. However, the following strategy
can be used.

(a) According to the text, the mappings (7) and (8) provide a correspondence
between the right half-plane and the unit disk. (Of course, one should inter-
change the roles of z and w in the formulas.) Thus the w-plane inherits from
¢ (z) afunction ¥ (w) harmonic in the unit disk. Show that the values of ¥ (w)
on the unit circle w = ¢'® must be given by

(b) Argue that the harmonic function ¥ (w) must be given by

1
Y{w) = Elmw

throughout the unit disk.
(¢) Use the mappings to carry ¥ (w) back to the z-plane, producing the function

y

P2) = —————yz T e

as a solution of the problem.

Use the strategy of Prob. 4 to find a function ¢ harmonic in the right half-plane such
that ¢(0, y) = 1/(3* + 1).

Suppose that the harmonic function ¢ (x, y) in the domain D is carried over to the
harmonic function ¥ (i, v) in the domain D’ via the one-to-one analytic mapping
w = f(z). Prove that if the normal derivative ¢ /9n is zero on a curve I’ n
D, then the normal derivative dy//9n is zero on the image curve of I’ under f.
(The boundary condition d¢/8n = 0 is known as a Neumann condition.) [HINT:
3¢ /dn is the projection of the gradient (3¢ /dx) + (3¢ /0y) onto the normal, and
the gradient is orthogonal to the level curves ¢ (x, y) = constant.]
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7. Suppose that f(z) is analytic and one-to-one. Then, according to the text, you may

presume that £ ! is also analytic. If x, y, u, v are as in Egs. (5) and (6), explain the
identities
dx 9y dx  dy

du ~ dv’ v ou

7.2  Geometric Considerations

The geometric aspects of analytic mappings split rather naturally into two categories:
local properties and global properties. Local properties need only hold in sufficiently
small neighborhoods, while global propertics hold throughout a domain. For example,
consider the function ¢?. It is one-to-one in any disk of diameter less than 27, and
hence it is locally one-to-one, but since ¢?! = ¢? when zy — zo = 271, the function
is not globally one-to-one. On the other hand, sometimes local properties can be ex-

tended to global properties; in fact, this is the essence of analytic continuation (see
Sec. 5.8).

2

z“ not
one-to-one .Zl
-z, / 22 one-to-one
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Figure 7.8 Locally one-to-one mapping.

Let us begin our study of local properties by considering “one-to-oneness.” As
the example e shows, a function may be locally one-to-one without being globally
one-to-one. (Of course, the opposite situation is impossible.) Furthermore, an analytic
function may be locally one-to-one at some points but not at others. Indeed, consider

2
f2) =z~
In any open set that contains the origin there will be distinct points z; and z5 such
that z2 = —z, and hence (since z% = zlz) the function f will not be one-to-one.

However, around any point other than the origin, we can find a neighborhood in which
2% is one-to-one (any disk that excludes the origin will do; see Fig. 7.8). Thus f(z) =
2% is locally one-to-one at every point other than the origin. An explanation of the
exceptional nature of z = 0 in this example is provided by the following.
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The remainder of this chapter will deal with constructing and applying specific
conformal mappings.

EXERCISES 7.2

1.

For each of the following functions, determine the order m of the zero of the deriva-
tive f’ at zo and show explicitly that the function is not one-to-one in any neighbor-
hood of zp.

(@ f()=z+27+1,20=—1
(b) f(z) =cosz,z0 =0, £7. =27, ...
(] f(z):ezj,z(J:O

Prove that if w = f(z) is analytic at zp and f’(zp) # O, then z = f‘l(w) is
analytic at wy = f (zg), and

for w = wg. 2 = zo. [HINT: Theorem 1 guarantees that f~!(w) exists near wo
and Theorem 3 implies that f~!(w) is continuous. Now generalize the proof in
Sec. 3.2.]

. What happens to angles at the origin under the mapping f(z) = z% for ¢ > 1? For

0O<a<1?

Use the open mapping theorem to prove the maximum-modulus principle.

. Find all functions f(z) analytic in D : |z] < 1 that assume only pure imaginary

values in D.

If f is analytic at zg and f’ (z¢) # O, show that the function g(z) = f(z) preserves
the magnitude, but reverses the orientation, of angles at zg.

Show that the mapping w = z 4 1/z maps circles |z| = p (p # 1) onto ellipses

2
le v-

B

Let f be analytic at zo with f’ (z0) # 0. By considering the difference quotient,
argue that “infinitesimal” lengths of segments drawn from zg are magnified by the
factor | f' (z0)| under the mapping w = f(2).

. Let w = f(z) be a one-to-one analytic mapping of the domain D onto the domain
D', and let A’ = area (D’'). Using Prob. 8, argue the plausibility of the formula

A =/f If/(z)‘2 dxdy.
D
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10. Why is it impossible for D to be the whole plane in the Riemann mapping theorem?
[HINT: Appeal to Liouville’s theorem.]

11. Describe the image of each of the following domains under the mapping w = e?,

(a) thestrip0 < Imz < 77

(b) the slanted strip between the two lines y=xandy=x+2x
(¢) the half-stripRez < 0,0 < Imz <

(d) the half-stripRez > 0,0 < Imz < 7

(e) therectangle ] < Rez < 2,0 <Imz <7

(f) the half-planesRez > 0and Rez < 0

12. Let P(2) = (z —a)(z ~ B), and let L be any straight line through (o + 8)/2. Prove
that P is one-to-one on each of the open half-planes determined by L.

13. Describe the image of each of the following domains under the mapping w =
COS z = COsx cosh y — i sinx sinh y. [HINT: Consider the image of the boundary in
each case.]

(a) the half-strip0 < Rez < 7,Imz <0
(b) the half-strip0 < Rez < %, Imz>0

(c) thestrip0 < Rez < 7
(d) therectangle 0 < Rez < 7, -1 < Imz < |

14. Prove thatif f has a simple pole at zo, then there exists a punctured neighborhood
of zg on which f is one-to- one.

15. A domain D is said to be convex if for any two points zi, zs in D, the line segment
joining zy and z; lies entirely in D. Prove the Noshiro-Warschawski theorem: Let
J be analytic in a convex domain D. If Re f'(z) > 0forall zin D, then fis
one-to-one in D. [HINT: Write f (z2) — f (z1) as an integral of 7.

16. (For students who have read Sec. 4.4a) Argue that a one-to-one analytic function
will map simply connected domains to simply connected domains.

7.3 Mobius Transformations

The problem of finding a one-to-one analytic function that maps one domain onto
another can be quite perplexing, so it is worthwhile to investigate a few elementary
mappings in order to compile some rules of thumb that we can draw upon. The basic
properties of Mobius transformations,’ which we shall investigate in this section, con-
stitute an essential portion of every analyst’s bag of tricks. (Some of these mappings
were previewed in Exercises 2.1.)

TIn 1865 August Mobius (1790-1860) described the Mébius strip, a piece of paper that has only
one side and one edge.
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From the geometric propertics of Mdbius transformations that we have learned,
we can conclude that (11) maps Iz| = | onto some straight line through the origin. To
see which straight line, we plug in z = i and find that the point

i+1
W= =
also lies on the line. Hence the image of the circle under f1 must be the imaginary
axis.

To sec which half-plane is the image of the interior of the circle, we check the
point z = 0. It is mapped by (11) to the point w = —1 in the left half-plane. This is
not what we want, but it can be corrected by a final rotation of 7, yielding

z+l_1+z
-1 1—2

w= f(z) = — (12)
as an answer to the problem. (Of course, any subsequent vertical translation or magni-
fication can be permitted.) Observe that (12) is precisely the mapping that was intro-
duced in Example 1, Sec. 7.1, to solve a thermal problem, and we have thus verified
the claims made there. W

EXERCISES 7.3

1. Find a linear transformation mapping the circle [z| = 1 onto the circle lw—=5]=3
and taking the pointz =i to w = 2.

2. What is the image of the strip 0 < Imz < 1 under the mapping w = (z —i)/z?

3. Discuss the image of the circle |z —~ 2 = 1 and its interior under the following
transformations.

@) w=z—2 () w = 3iz (c)w:z—l
p—

-4 1
(d) w:z )w= -
z-3 b4

4, Find a Mobius transformation mapping the lower half-plane to the disk |w+1| < 1.
[HINT: Do it in steps.]

5. Find a M6bius transformation mapping the unit disk [z] < 1 onto the right half-
plane and taking z = —/ to the origin.

6. A fixed point of a function f(z) is a point zg satisfying f (zg) = zg. Show that a
Mobius transformation f(z) can have at most two fixed points in the complex plane
unless f(z) = z.

7. Find the M&bius transformation that maps 0, 1, o to the following respective points.
(n) 0,7, oc (b)0,1,2 (¢} —i, 00, 1 (d) -1, 1

8. What is the image, under the mapping w = (z +1)/(z — i), of the third quadrant?
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9. What is the image of the sector —7/4 < Argz < 7/4 under the mapping w =

2/(z =17

10. Find a conformal map of the semidisk |z| < 1, Imz > 0, onto the upper half-plane.
[HINT: Combine a Mébius transformation with the mapping w = z2. Make sure
you cover the entire upper half-plane.]

11. Map the shaded region in Fig. 7.21 conformally onto the upper half-plane. [HINT:
Use a Mébius transformation to map the point 2 to co. Argue that the image region
will be a strip. Then use the exponential map.]

~
)

Figure 7.21 Region for Prob. 11.

12. Find a Mdbius transformation that takes the half-plane depicted in Fig. 7.22 onto
the unit disk jw| < 1,

Figure 7.22 Rcgion for Prob. 12.

13. (Smith Chart) The impedance Z of an electrical circuit oscillating at a frequency w
is a complex number, denoted 7 = R + i B, which characterizes the voltage-current
relationship of the circuit; recall Sec. 3.6. In practice R can take any velue from 0
t0 00 and B can take any value from —00 to 0. Thus the usual representation of




394 Conformal Mapping

Figure 7.23 Smith chart.

Z as a point in the complex plane becomes unwieldy (inasmuch as the entire right
half-plane comes into play). The Smith chart provides a more compact graphical
description, displaying the entire range of impedances within the unit circle. The
impedance Z is depicted as the point

_Z-1

CZ+1
This mapping (its inverse, actually) is portrayed in Figs. 7.4 and 7.5. W is also
known as the reflection coefficient corresponding to Z.

(a) Show that the circles in the Smith chart depicting the lines ReZ = R =
constant, indicating constant-resistance contours, have the equations

R >2+2 1
- — V= .
“TILR (1+R)?

(b) Show that the circles in the Smith chart depicting the lines ImZ = B =
constant, indicating constant-reactance contours, have the equations

2
I 1
2 —
(H-—l)-ﬁ(l)“‘E> —ﬁ

14. If a circuit with impedance Z is connected to a length £ of transmission line with
“phase constant” # and a “characteristic impedance” of unity, then the new config-

(See Fig. 7.23.)
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uration has a transformed impedance 7' given by

P Zcos B¢ + isin B
 cosBl+iZsinBE

Show that the Smith chart point depicting Z’ can be obtained from the Smith chart
point depicting Z by a clockwise rotation of 2p¢ radians about the origin.

15. Show that the transformation (5) maps lines not passing through the origin onto

circles passing through the origin. [HINT: The equation of such a line is Ax + By =
C, with C # 0. Solve

I=x4iy=1/w=1/(u+1iv) (13)

for.x and y in terms of & and v and substitute. Show that the result can be expressed
in the form

A B
W+ — cutzv=01] (14)

16. Show that the transformation (5) maps circles passing through the origin onto lines
not passing through the origin. [HINT: Use the preceding problem.]

17. Show that the transformation (5) maps circles not passing through the origin onto
circles not passing through the origin. [HINT: The equation of such circles is

,\2+y2+AX+B)’:C’ with C#O

Substitute the expressions for x and y derived from (13) to obtain

A B 1
L¢2+v2—5u+—v= ]

c ~c’
7.4 Mobius Transformations, Continued

We shall now explore some additional properties of Mdbius transformations that en-
hance their usefulness as conformal mappings. These are the group properties, the
cross-ratio formula, and the symmetry property.
Given any Mobius transformation
az +b

J= f(z) = be)y, 1
w=f(z) T d (ad # be) (D

its inverse f~!(w) can be found by simply solving Eq. (1) for z in terms of w. This
computation yields
dw—1b

——1
—cw +a

2= f"Nw) =

P, H. Smith patented the Smith chart in the late 1930s. It is the only known conformal mapping
to be protected by copyright!
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