7.5 The Schwarz-Christoffel Transformation

(¢) Show that if the Mobius transformations 71 and T are associated as in part
(b) with the elements

_(ar B (e P2
Sl—<w 51> and Sz‘()/z 52>

of L, then the composition Ty o T, is associated with the product matrix S$182.

23. Let z be fixed withRez > 0, and let
To(w) = ——— e Ti(w) % =1,2,....n=D
0 = , (w) = =1,4 ...,
z+ag+ b +w : 7+ b+ w

be a sequence of Mobius transformations such that each ay is real and positive and
each by, is pure imaginary or zero. Prove, by induction, that the composition
r=Sw)=Tpo Tio--oTly20 Tp—1(w)

maps the half-plane Rew > 0 onto a region contained in the disk {¢ — %\ < %

2. Let P(z) = 2" + " h + ez 4 opbed polynomial of degree 1 > 0

with complex coefficients cx = Pk +ige k=12.....1 Set Q(z) = 1)12”~1 +
tqzz”_2 + pgz”_3 + iq4z”'4 + ... Prove Wall's criterion that if Q(z)/P(z) can
be written in the form
o .
— = a1
P@) s4aq+b+—— @
7 by
Cba b
, ’ 7+ by

where each ay is real and positive and each by is pure imaginary or zero, then all the
seros of P(z) have negative real parts. [HINT: Write 0@)/P(@) =Too Tyo-: -0
T,,—1(0), where the transformations Ty, aré defined as in Prob. 23.]

25, Prove that P(z) = 23 4372 -+62+6 has all its ZeT0s in the left half-plane by applying
the result of Prob. 24. [HINT: Use ordinary long division to obtain the representation
for Q(2)/ P (2).]

7.5 The Schwarz-Christoffel Transformation

We have seen that a function f (z) is conformal atevery point at which it is analytic and
its derivative is nonzero. Itis instructive to analyze what happens at certain isolated
points where these conditions are not met. For concreteness, letx; bea fixed point on
the real axis and let f(z) be a function whose derivative f/(2) is given by (z — x)”
for some real « satisfying —1 <o < 1. [To be precise, we shall take the argument of
- — x; to lie between —7/2 and 37 /2, introducing a branch cut vertically downward
from x1; see Fig. 7.31(a).] We are going to use the equation

fl(z) = @—x)° ¢
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f@ =32

Figure 7.34 Mapping for Eq. (2).

for some complex constant A (# 0), then
arg f'(z) = arg A + o arg (2 — x1),

and the mapping can be visualized by rotating Fig. 7.32(b) by an amount arg A, see
Fig. 7.34. In particular, the angle made by the image of the interval (x1, 00) is now
arg A, but the angle of the turn at f(x;) is unchanged.

The next generalization is to consider a mapping given by a function f with a
derivative of the form

)y =AG—x)" (z—x)% (@ ~- ) (3)

here A (s 0) is a complex constant, each o; Hes between —1 and +1, and the (real) x;
satisty
X < Xp < < X

(As before we take the argument of each z — x; 10 be between —7/2 and 37 /2.) What
does this mapping f do to the real axis?
From the equation

arg f'(z) = arg A + o arg (z — x1) +ogarg(z — X9) 4 g arg (2 - Xn)
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and the previous discussion we see that the images of the intervals (—oc¢, x1), (x1,x2),
..., (x,, 00) are each portions of straight lines, making angles measured counterclock-
wise from the horizontal in accordance with the following prescription:

Interval Angle of image
(—o0.x)) argA4oim o+ o
(x1,x72) arg A+om + o o

(Xp—1. %) AEA T oM
(X5, 00) arg A.

Hence as z traverses the real axis from left to right f(z) generates a polygonal path
whose tangent at the point f(x;) makes a right turn through the angle a;m; see
Fig. 7.35.
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\\ (a3 <0)
Figure 7.35 Mapping for Eq. (3).
Now if the function f(z) satisfies Eq. (3) it is, a priori, differentiable and hence

analytic on the complex plane with the exception of the (downward) branch cuts from
the points x;. So for any z in the upper half-plane we can set

o(0) = /F Ferde, @)

where [ is. for definiteness, the straight line segment from 0 to z, and conclude then
that f(z) = g(z) + B for some constant B. In particular, we can write

fl2) = Af(; (0 —x)" (¢ —x)® (= x)™ dC + B, (5)

Functions of the form (3) are known as Schwarz-Christoffel trcmsformarion,s‘.';h We
have seen that such transformations map the real axis onto a polygonal path. Now one
of the most important problems in conformal mapping applications is the construction

THermann Amandus Schwarz (1842-1921), Elwin Bruno Christoffel (1829-1900).
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Figure 7.36 Positively oriented polygon (8,, 83, 84, b5 are negative).

of a one-to-one analytic function carrying the upper half-plane to the interior of a given
polygon. We thus turn to the task of tailoring a Schwarz-Christoffel transformation to
accomplish this.
To be specific, let the polygon P have vertices at the consecutive points wy, wy,
.. wy taken in counterclockwise order, giving P a positive orientation, as in Fig. 7.36.
In traversing the polygon we make a right turn at vertex w; through the angle ;. Thus
each angle lies between —7 and 7 and a negative value of §; indicates a left turn. The
net rotation for a counterclockwise tour must be 27 radians to the left:

91+92+"'+9n:_27(' (6)

To map the x-axis onto P with a Schwarz-Christoffel transformation w = g(2)

we begin by picking real points x, xo, ..., Xy—1 as the preimages of the vertices
Wi, W2, ..., wWy—1, and presume that both x = —oco and x = oo are the preimages

of wy; see Fig. 7.37. From the discussion of Eq. (5) it follows that the function
Z
g(z) = / € = x0T — ) P g 7
0

maps the real axis onto some polygon P’. Although P’ may not be the desired polygon
P, it does have the proper right-turn angles «;r = 6; at the corners g (x;) fori =
1.2,... . n— 1; and since the initial and final segments intersect at g(£00), the right
turn at this final vertex must match the angle 6, (because both are given by =27 —
6y — Oy — o — O—1).

Now because P’ has the same angles as P, by adjusting the lengths of the sides of
P’ we can make it geometrically similar to P. And it seems quite plausible that we
could accomplish this by adjusting the points x1, x2, ..., x,—1; after all, they deter-
mine where the comers of P’ lie. Then, with the use of a rotation, a magnification, and
a translation—in other words, a linear transformation—we could make these similar
polygons coincide.
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Figure 7.37 Mapping for Eq. (7).

Summarizing, we are led to speculate that with an appropriate choice of the con-
stants we can construct a function

f(z) =Ag(z) + B

Z 8
= A/ (¢ —x)T )T — xp_) "1 dg + B, ®
0

that is. a Schwarz-Christoffel transformation, which maps the real axis onto the perime-
ter of a given polygon P, with the correspondences

fx) =wy, f )y =w2, ..., f (xp-1) = wn—1, f(o0) = wy. 9)

Moreover, if our speculations are valid, we can use conformality and connectiv-
ity arguments to show that f maps the upper half-plane to the interior of P, as was
requested; for observe that if y is a segment as indicated in Fig. 7.38, conformal-
ity requires that its image, v, have a tangent that initially points inward as shown,
and connectivity completes the argument (assuming one-to-oneness). The whole story
about Schwarz-Christoffel transformations is given in Theorem 7, whose proof can be
found in the references.

at wiy, wa, ..., wy with corresponding right-turn angles 6; (i = 1,2,....n).
Then there exists a function of the form (8) that is a one-to-one conformal map
from the upper half-plane onto the interior of P. Furthermore, the correspon-
dences (9) hold.

I

‘l Theorem 7. Let P be a positively oriented polygon having consecutive corners
1

l




7.5 The Schwarz-Christoffel Transformation 413

WS

W3

4

(=) Xy X, oo X, () \\/’Vy
W2 )

Figure 7.38 The upper half-plane is mapped to the interior of P.

Before we illustrate the technique, we must make two remarks. First, recall that
in constructing the map we have three “degrees of freedom” at our disposal (from the
Riemann mapping theorem). Thus we can specify three points on the real axis to be
the preimages of three of the w;. However, formula (9) already designates oo as the
preimage of wy,, so we are free to choose only, say, x; and x;, and the other x; are then
determined.

Second, to get a closed-form expression for the mapping we must be able to com-
pute the integral in Eq. (8). A glance through a standard table of integrals shows that
this is hopeless for n > 4 and not always possible even for smaller n. Numerical in-
tegration, however, is always feasible. In Appendix I, L. N. Trefethen and T. Driscoll
discuss how to implement these computations, and provide reference to their readily
accessible software package.

Example 1

Derive a Schwarz-Christoffel transformation mapping the upper half-plane onto the
triangle in Fig. 7.39.

Solution. The right turns are through angles 6) = 6, = —37/4, 63 = —r/2.

Hence, choosing xy = —1 and xy = 1 we have

Z
£(o) :A/ €+ 1)~ )V + B
0

z ~3/4
:Aﬁ (§2—1> d¢ + B.

The integration must be performed numerically. To evaluate the constants we compute

o (:2 - 1‘)#3/4 dt + B = An + B,

f)=f=D= A/
0
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z-plane w-plane

Figure 7.39 Mapping onto a triangle.

where .
- ~3/4
7= / (¢2-1) " acm~18s+i)
0
and
by -3/4
f(.x2)=f(1)=A/ (g _1> A7 + B = —An + B.
0
Setting these equal to w; and wo, respectively, we find
An+ B =1,
—-An+B=1.
Consequently,

Azl_—.i_, l_ﬁ u
2n 2

Example 2

Determine a Schwarz-Christoffel transformation that maps the upper half-plane onto
the semi-infinite strip | Re w| < 1, Imw > 0 (Fig. 7.40).

Solution. We return to the analysis surrounding Eq. (3) for mapping the real
axis onto a polygonal path. To have the upper half-plane map onto the interior of the
strip we choose the orientation indicated by the arrows in Fig. 7.40. Left turns of /2
radians at w; and w, can be accommodated by a mapping whose derivative is of the
form

flloy=A@z~- x) Vg - xp) T

Choosing x| = —1 and x; = 1 again, we compute

l

Z Z
f2) A/ G+ D= P+ B = A;f LI S
0 0

NS

A
—sin” z+ B.
i
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Figure 7.40 Semi-infinite strip for Example 2.

Setting f(~1) =w; = —1 and f(1) = wy = 1, we have
—iAsinTi (=) + B = -1,
—iAsin”!(H+ B =1,

which implies that B = O and A = 2i /7. Hence
2
f()y==sin"'z. W
T

Example 3

Map the upper half-plane onto the domain consisting of the fourth quadrant plus the
strip 0 < v < 1. (This is a crude model of the continental shelf.)

Solution. The boundary of this domain consists of the line v = 1. the negative u-
axis, and the negative v-axis. We shall regard this as the limiting form of the polygonal

Vv

|

u

Figure 7.41 Domain for Example 3.




416 Conformal Mapping

path indicated in Fig. 7.41. again choosing the orientation so that the specified domain
lies to the left. A left turn of 7 radians is called for at the corner “near w = —oc” and
a right turn of /2 radians occurs at w = 0. Selecting x1 = —1 and x, = 1 as the
respective preimages of these points we write, in accordance with Eq. (3),

) =Az+ D= DY

Using integral tables, with some labor we arrive at

JT—2-+2
= Ai -2 210 —————= .
f @ 41{2v1 Z+\/—Ogm+ﬁ + B

The selection of branches is quite involved in this case, so we shall leave it to the
industrious reader (Prob. 6) to verify that with the choice

3 ;
log¢ = Logi¢i+iargd, —§n<arg§§—;—,

JT = ez, log ¢ as above,

we find that
o P g i
) 4 oo JI=z+2

satisfies the required conditions

Re f(x) — +09, Im f(x) > 1 as x — —00,
Re f(x) = —o0, Imf(x) -1 as x— (-1,
Re f(x) > —0o0, Imf(x) >0 as x— (-,
f(H=0

Re f(x) — 0, Im f(x) > —00 a X —> +0C. [ ]

EXERCISES 7.5

1. Use the techniques in this section 10 find a conformal map of the upper half-plane
onto the whole plane slit along the negative real axis up to the point —1. [HINT:
Consider the slit as the limiting form of the wedge indicated in Fig. 7.42.]

. Use the Schwarz-Christoftel formula to derive the mapping w = /z of the upper
half-plane onto the first quadrant.

. Map the upper half-plane onto the semi-infinite strip u > 0,0 < v < 1, indicated
in Fig. 7.43.

. Show that the transformation

w-—/: dg
=, —_(1_§‘2>2/3

maps the upper half-plane onto the interior of an equilateral triangle.




