MATH305-201-2016/2017 Homework Assignment 1 (Due Date: Jan. 13, 2017, by $5:30\,\mathrm{pm}$, in class or at my office)

1. Calculate the following complex numbers:

(a)
$$(1+i)(2-i)(3+2i)$$
; (b) $(\frac{1-i}{3+i})^2$; (c) $(1-i)^4$

- 2. Prove that if $|z| = 1 (z \neq 1)$, then $Re(\frac{1}{1-z}) = \frac{1}{2}$. Here Re(w) denotes the real part of w.
- 3. Find the followings (write your answer in terms of arctan):

(a)
$$\left| \frac{(\pi+i)^{100}}{(\pi-i)^{100}} \right|$$
; (b) $Arg(1+2i)$; (c) $arg(1-2i)$; (d) $arg(-1-2i)$

- 4. Find the argument of each of the following complex numbers and write each in polar form (a) -3+3i; (b) $\frac{1-i}{-\sqrt{3}+i}$; (c) $(\sqrt{3}-i)^2$
- 5. Decide which of the following statements are always true.

(a)
$$Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$$
 if $z_1 \neq 0, z_2 \neq 0$

(b)
$$Arg(\bar{z}) = -Arg(z)$$
 if z is not a real number.

(c)
$$arg(z) = Arg(z) \pm 2\pi k, k = 0, 1, 2, ...$$
 if $z \neq 0$

6. Use De Moivre's formula together with binomial formula and geometric sequence formula to prove

(a)
$$\sin(4\theta) = 4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta$$

(b)
$$1 + \cos \theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin(n + \frac{1}{2})\theta}{2\sin(\frac{\theta}{2})}$$

7. Use De Moivre's formula and binomial formula to compute

(a)
$$\int_0^{2\pi} \cos^6 \theta d\theta$$
; (b) $\int_0^{2\pi} \sin^6(2\theta) d\theta$

8. Describe the set of points z in the complex plane that satisfies each of the following

(a)
$$|z-1| = |z+i|$$
; (b) $|z| = 2|z+1|$; (c) $|z-1| + |z+1| = 7$.

9. Find an upper bound for $\left|\frac{1}{z-5}\right|$ when z satisfies $|z-1| \le 1$.

Hint: Use
$$||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$$
.