MATH305-201-2016/2017 Homework Assignment 2 (Due Date: Jan. 23, 2017, by $5: 30 \mathrm{pm}$, in class or at my office)

1. Find all values of the following
(a) $(i-1)^{1 / 3}$; (b) $\left(\frac{2 i}{1-\sqrt{3} i}\right)^{1 / 6}$
2. Let m and n be positive integers that have no common factor. Prove that the set of numbers $\left(z^{1 / n}\right)^{m}$ is the same as the set of numbers $\left(z^{m}\right)^{1 / n}$. Use this result to find all values of $(1-i)^{3 / 2}$.
3. Write the following functions in the form $w=u(x, y)+i v(x, y)$.
(a) $f(z)=\frac{z+i}{z+1}$;
(b) $f(z)=\frac{e^{z}}{z}$
4. Describe the image of the following sets under the following maps
(a) $f(z)=i z+5$ for $S=\{\operatorname{Re}(z)>0\}$; (b) $f(z)=\frac{z-1}{z+1}$ for $S=\{|z|<3\}$; (c) $f(z)=-2 z^{3}$ for $S=\left\{|z|<1,0<\operatorname{Arg} z<\frac{\pi}{2}\right\}$
5. Describe the image of the following sets under the map $w=e^{z}$
(a) $S=\{\operatorname{Re}(z)=1\}$;
(b) $S=\left\{\operatorname{Im}(z)=\frac{\pi}{4}\right.$;
(c) $S=\left\{0 \leq \operatorname{Im}(z) \leq \frac{\pi}{4}\right\}$
6. The Joukowski map is defined by

$$
w=f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

Show that J maps the circle $S=\{|z|=r\}(r>0, r \neq 1)$ onto an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
7. Show that the function $w=z^{2}$ maps the line $S=\{\operatorname{Re}(z)=1\}$ into a parabola.
8. Prove that $\left|e^{-z^{3}}\right| \leq 1$ for all z with $-\frac{\pi}{6} \leq \operatorname{Arg}(z) \leq \frac{\pi}{6}$.
9. Show that the function $f(z)=\bar{z}$ is continuous everywhere but not differentiable anywhere.
10. Let

$$
f(z)=\left\{\begin{array}{l}
\left(x^{4 / 3} y^{5 / 3}+i x^{5 / 3} y^{4 / 3}\right) /\left(x^{2}+y^{2}\right), \text { if } z \neq 0 \\
0 \text { if } z=0
\end{array}\right.
$$

Show that the Cauchy-Riemann equations hold at $z=0$ but f is not differentiable at $z=0$.
*: Only five problems will be chosen to be marked but I suggest that you do all of the them.

