MATH305-201-2016/2017 Homework Assignment 3 (Due Date: Jan.30, 2017, by $5: 30 \mathrm{pm}$, in class or at my office)

1. Discuss the analyticity of the following complex functions
(a) $x^{2}+y^{2}+y-2+i x$;
(b) $2 y-i x$; (c)
(c) $\left(x+\frac{x}{x^{2}+y^{2}}\right)+i\left(y-\frac{y}{x^{2}+y^{2}}\right)$
2. Use Cauchy-Riemann equation to find out the harmonic conjugate of the following functions (a) $x y-x+y$; (b) $u=\log \left(x^{2}+y^{2}\right)$ for $\operatorname{Re}(z)>0$; (c) $u=e^{x} \sin y$; (d) $u=\sin x \cosh (y)$
3. Show that if v is a harmonic conjugate of u in a domain D, then both $u^{2}-v^{2}$ and $u v$ are harmonic in D. Can you generalize this?
4. Suppose that functions u and v are harmonic in D. Are the following functions harmonic?
(a) $u+v$; (b) $u v$; (c) $\frac{\partial u}{\partial x}$; (d) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}$
(Assume that harmonic functions are smooth functions with all derivatives.)
5. Find a harmonic function $\phi(x)$ in the infinite strip

$$
\{z:-2 \leq \operatorname{Re}(z)-\operatorname{Im}(z) \leq 3\}
$$

such that $\phi=0$ on the left edge and $\phi=4$ on the right edge. Hint: consider linear functions.
6. Find a harmonic function $\phi(x, y)$ in the region of the first duadrant between the curves $x y=2$ and $x y=4$ and take value 1 on the lower edge and the value 3 on the upper edge.
7. Suppose that f is analytic and nonzero in a domain D. Prove that $\log |f(z)|$ is harmonic in D. Use this to find a harmonic function $\phi(x, y)$ in the annulus $\{z: 1 \leq|z| \leq 2\}$ such that $\phi=1$ on $\{|z|=1\}$ and $\phi=2$ on $\{|z|=2\}$.
8. Let the polar coordinate be

$$
x=r \cos \theta, y=r \sin \theta
$$

(a) Suppose $u(x, y)=U(r, \theta)$. Find out $\frac{\partial U}{\partial r}, \frac{\partial U}{\partial \theta}$
(b) Let $f=u(x, y)+i v(x, y)=U(r, \theta)+i V(r, \theta)$ be analytic. (Here $u=U, v=V$.) Find out the Cauchy-Riemann equation in polar form.
9. Find the image of the $S=\left\{z:-1 \leq \operatorname{Re}(z) \leq 1,-\frac{\pi}{2} \leq \operatorname{Im}(z) \leq \pi\right\}$ under the map $f(z)=e^{z}$
10. Find all numbers z such that
(a) $z^{3}=-1-i$;
(b) $e^{z}=-1-i$;
(c) $\sin (z)=-1-i$

