MATH305-201-2016/2017 Homework Assignment 4 (Due Date: Feb. 6, 2017, by $5: 30 \mathrm{pm}$, in class or at my office)

1. Find an analytic mapping from $\{-1<x<3, y>-1\}$ onto the upper half plane $\{v>0\}$. Hint: consider the map $\sin (z)$.
2. Evaluate the following
(a) $\log (i)$;
(b) $\log (\sqrt{3}+i)$;
(c) $\log \left(e^{i}\right)$;
(d) $e^{\log (i)}$
3. Find all values of
(a) $e^{z}=-1-2 i$;
(b) $\sin (z)=1$;
(c) $(1+i)^{\frac{1}{3}}$;
(d) i^{i}
4. Solve the following equations
(a) $\log \left(z^{2}-1\right)=\frac{i \pi}{2}$; (b) $e^{2 z}+e^{z}+1=0$; (c) $z^{\frac{1}{2}}+1-i=0$ (here $z^{\frac{1}{2}}$ denotes the principal branch)
5. Determine the domain of analyticity (branch cut) of
(a) $\log \left(1+z^{2}\right)$;
(b) $\log \left(\frac{1-z}{1+z}\right)$;
(c) $\log \left(e^{z}\right)$
6. Which of the followings are true statements? For the ones that are true provide a proof. For the ones that are false find a counterexample
(a) $e^{\log (z)}=z$; (b) $e^{\log (z)}=z$; (c) $\log \left(e^{z}\right)=z$; (d) $\log \left(e^{z}\right)=z$; (e) $\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+$ $\log \left(z_{2}\right) ;(\mathrm{f}) \log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2} ;(\mathrm{g}) \log (z)=-\log \left(\frac{1}{z}\right) ;(\mathrm{h}) \log \left(z^{\frac{1}{2}}\right)=\frac{1}{2} \log (z)$
7. Find a branch cut of $\log (2 z-1)$ that is analytic at all points in the plane except those on the following rays.

$$
\text { (a) }\left\{x \leq \frac{1}{2}, y=0\right\} ; \text { (b) }\left\{x \geq \frac{1}{2}, y=0\right\} ; \text { (c) }\left\{x=\frac{1}{2}, y \geq 0\right\}
$$

8. Find a one-to-one analytic mapping of the upper half plane $\{\operatorname{Im}(z)>0\}$ onto the stripe $\{-\infty<u<+\infty, 0<v<1\}$.
9. Determine a branch of $\log \left(z^{2}+2 z+3\right)$ that is analytic at $z=-1$, and find its derivative there.
10. Determine a branch of $\log \left(1+z^{2}\right)$ that is analytic at $z=0$ and takes the value $2 \pi i$ there.
11. Find a branch cut for $\sqrt{z(z-1)}$ that is analytic in $C \backslash[0,1]$.
