MATH305-201-2016/2017 Homework Assignment 6 (Due Date: Feb. 27, 2017, by 5:30pm, in class or at my office)

1. Evaluate $\int_{\Gamma} (2z+1) dz$, where Γ is the following contour from z = -i to z = 1:

(a) the simple line segment; (b) two simple line segments, the first from z = -i to z = 0 and the second from z = 0 to z = 1; (c) the circular arc $z = e^{it}, -\frac{\pi}{2} \le t \le 0$

2. Evaluate $\int_{\Gamma} \bar{z} dz$, where

(a) Γ is the circle |z| = 2 traversed once counterclockwise; (a) Γ is the circle |z| = 2 traversed twice counterclockwise; (a) Γ is the circle |z| = 2 traversed three times clockwise

3. Evaluate $\int_C \frac{1}{z} dz$, where C is the contour defined in polar coordinate $z = re^{i\theta}$ by r = 3 - 1 $\sin^2(\frac{\theta}{8}), 0 \le \theta \le 8\pi.$

Hint: check page I10 of Lecture Note 5.

4. Use Fundamental Theorem of Calculus to evaluate

(a) $\int_C e^z dz$, C: arc $e^{it}, -\frac{\pi}{2} \le t \le \pi$; (b) $\int_C \frac{1}{z} dz$, C: part of the ellipse $\frac{x^2}{4} + y^2 = 1, x \ge 0$; (c) $\int_C \frac{1}{z^2} dz, C: \text{ part of the ellipse } \frac{x^2}{4} + y^2 = 1, y \ge 0.$

5. Use the inequality $|\int_{\Gamma} f(z) dz| \leq \max_{z \in \Gamma} |f(z)| \times \text{length of}(\Gamma)$ to prove (a) $\left|\int_C \frac{dz}{z^2 - i}\right| \leq \frac{3\pi}{4}$, C: circle |z| = 3 traversed once; (b) $\left|\int_C Log(z)dz\right| \leq \frac{\pi^2}{2}$, C: arc $e^{it}, -\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$; (c) $\left|\int_C \frac{e^{3z}}{e^{z+1}}dz\right| \leq \frac{2\pi e^{3R}}{e^{R}-1}$, C is the vertical line segment from z = R(>0) to $z = R + 2\pi i$.

Hint: Check page I12 and page I13 of Lecture Note 5.

6. Show that

(a) $\int_{C_{\epsilon}} \frac{Log(z)}{1+z^2} dz \to 0$ as $\epsilon \to 0$, where C_{ϵ} is the contour $\epsilon e^{it}, -\pi + \epsilon \leq t \leq \pi - \epsilon$; (b) $\int_{C_{R}} \frac{Log(z)}{1+z^2} dz \to 0$ as $R \to +\infty$, where C_{R} is the contour $\epsilon e^{it}, -\pi + \frac{1}{R} \leq t \leq \pi - \frac{1}{R}$;

7. Use Fundamental Theorem of Calculus to compute

(a) $\int_{\Gamma} z^{\frac{1}{2}} dz$ for the principal branch of $z^{\frac{1}{2}}$, where Γ is $r = 2\cos\frac{\theta}{2}, -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$; (b) $\int_{\Gamma} (Log(z))^2 dz$, where Γ is $r = 2\cos\frac{\theta}{2}, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

Hint: Check
$$(zz^{\frac{1}{2}})' = \frac{3}{2}z^{\frac{1}{2}}, (z(Log(z))^2)' = (Log(z))^2 + 2Log(z).$$

8. Let C be the contour of ellipse $\frac{x^2}{4} + y^2 = 1$ traversed once. Compute (a) $\int_C \frac{1}{(z-1)^2} dz$; (b) $\int_C \frac{e^z}{z(z-1)} dz$; (c) $\int_C \frac{1}{z(z^2-1)} dz$; (d) $\int_C \frac{1}{2z^2+1} dz$