MATH400-201 Homework Assignment 1 (Due Date: Jan. 19, 2016)

1. (10points) Solve the following first order PDE and find where the solution is defined in the $x-y$ plane.

$$
2 u_{x}+u_{y}=0, u(x, x)=e^{x}
$$

2. (10points) Solve the following first order PDE and find where the solution is defined in the $x-y$ plane.

$$
u_{x}+3 x^{2} y u_{y}=0, u(0, y)=y
$$

3. (20points) Solve the following first order PDE and find where the solution is defined in the $x-y$ plane.

$$
x u_{x}+(x+y) u_{y}=u, u(1, y)=y^{2}, 0 \leq y \leq 1
$$

4. (20points) Solve $u_{t}+(x+1) u_{x}=4 u$ for $x>0, t>0$ with $u(0, t)=t$ and $u(x, 0)=1$.
5. (20points) Solve the following first order PDE and find where the solution becomes unbounded in the $x-y$ plane.

$$
u_{x}+e^{x} u_{y}=-u^{2}, u=1 \text { on the curve } y=2 e^{x}
$$

6. (20points) Let $u(x, y)$ solve the first order PDE

$$
x u_{x}+y u_{y}=x^{2} u
$$

(a). Find the general solutions. (b) Suppose we put $u=h(x)$ on $y=x$. Derive the condition that $h(x)$ must satisfy for a solution to exist.

