1. (20pts) (a) State the well-posedness criteria for the following backward diffusion equation

$$
\left\{\begin{array}{l}
u_{t}+u_{x x}=0, t>0,-\infty<x<+\infty, k>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

(b) Use the function $u(x, t)=\frac{1}{n} e^{n^{2} t} \sin (n x)$ to show that the above problem is ill-posed.
2. (20pts) Use the change of variable to transform the following equations into one of the three standard form

$$
\text { (a) } u_{x x}+2 u_{x y}-u_{y y}=0 \text {, (b) } u_{x x}-6 u_{x y}+9 u_{y y}-2 u_{x}=0 \text {, (c) } 4 u_{x x}-4 u_{x y}+5 u_{y y}=0
$$

3 .(20pts) Solve the following wave equation:

$$
\begin{gathered}
u_{t t}-u_{x x}=0 \\
u(x, 0)=x, u_{t}(x, 0)=e^{x}
\end{gathered}
$$

4. (20pts) Find the solution for

$$
\left\{\begin{array}{l}
u_{t t}-u_{t x}-2 u_{x x}=0, t>0,-\infty<x<+\infty, \\
u(x, 0)=\sin (x), u_{t}(x, 0)=0,-\infty<x<+\infty
\end{array}\right.
$$

5. (20pts) Solve the following wave equation

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}+\cos (x) \\
u(x, 0)=\sin (x), u_{t}(x, 0)=1+x
\end{gathered}
$$

You may use the d'Alembert's formula for

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}+f(x, t) \\
u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x) \\
u(x, t)=\frac{\phi(x+c t)+\phi(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s+\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s
\end{gathered}
$$

