MATH400-201 Homework Assignment 7 (Due Date: by 6pm, April 14, 2016)

Please either hand in to my office or send it by email by 6 pm of April 14, 2016. The solutions will be put on my website on April 15.

1. (a) Solve the following exterior domain problem

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0, \text { for } x^{2}+y^{2}>1 \\
u(x, y)=x-2 y^{2} \text { for } x^{2}+y^{2}=1 \\
u(x, y) \text { is bounded }
\end{array}\right.
$$

Hint: use polar coordinate
(b) Prove that the solution in (a) is unique.
2. Use the method of separation of variables to solve the following PDE:

$$
\begin{gathered}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 \text { in } D=\left\{(r, \theta) \mid 1<r<2,0<\theta<\frac{\pi}{4}\right\} \\
u(1, \theta)=2 \cos ^{2}(2 \theta), u(2, \theta)=1 \\
u_{\theta}(r, 0)=0, u_{\theta}\left(r, \frac{\pi}{4}\right)=0
\end{gathered}
$$

3. Find an infinite series representation (in terms of the Bessel function of order zero) for the wave equation problem

$$
\left\{\begin{array}{l}
u_{t t}=c^{2}\left(u_{r r}+\frac{1}{r} u_{r}\right), 0 \leq r<a, t>0 \\
u(a, t)=0, t \geq 0 \\
u(r, 0)=\phi(r), u_{t}(r, 0)=\psi(r)
\end{array}\right.
$$

4. Solve the diffusion equation using the Bessel functions

$$
\left\{\begin{array}{l}
u_{t}=k\left(u_{r r}+\frac{1}{r} u_{r}+\frac{u_{\theta \theta}}{r^{2}}\right), 0 \leq r<a, 0 \leq \theta<2 \pi, t>0 \\
u(a, \theta, t)=0, t \geq 0,0 \leq \theta<2 \pi \\
u(r, \theta, 0)=1-2 \cos \theta
\end{array}\right.
$$

5. Find an infinite series representation (in terms of the Bessel function) for the diffusion equation problem

$$
\left\{\begin{array}{l}
u_{t}=k\left(u_{r r}+\frac{1}{r} u_{r}+u_{z z}\right), 0 \leq r<a, 0<z<b, t>0 \\
u_{r}(a, z, t)=0, u(r, 0, t)=0, u(r, b, t)=0 \\
u(r, z, 0)=\phi(r, z)
\end{array}\right.
$$

