Midterm Examination for MATH400-201
 Total: 100 points

Answer All Questions. Show All Steps.
Date: Feb. 23rd, 2016

1. $(10 \mathrm{pts})$ Solve the following first order PDE:

$$
x u_{x}+(y+x) u_{y}=(u+x), \quad u(x, 2 x)=0,-\infty<x<+\infty
$$

2. (20pts) Find the general solutions to the following first order PDE

$$
u_{x}+(2 x) u_{y}=y u
$$

3. (30pts) Consider the traffic flow problem

$$
\rho_{t}+(1-2 \rho) \rho_{x}=0, t>0
$$

Solve for $\rho(x, t)$ with the following initial conditions

$$
\begin{gathered}
\rho(x, 0)=\left\{\begin{array}{l}
1, \text { when } x<0 ; \\
0, \text { when } x>0
\end{array}\right. \\
\rho(0-, t)=2, t>0
\end{gathered}
$$

4. (20pts) Solve the following second order PDE:

$$
\begin{gathered}
u_{t t}-3 u_{t x}=0 \\
u(x, 0)=0, u_{t}(x, 0)=x
\end{gathered}
$$

5. (20pts) Solve the following wave equation:

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}+x,-\infty<x<+\infty, t>0 \\
u(x, 0)=\sin x, u_{t}(x, 0)=e^{x}
\end{gathered}
$$

List of Formulas

(1) First Order Fully Nonlinear PDE

$$
\begin{gathered}
F\left(x, y, u, u_{x}, u_{y}\right)=0 \\
\left\{\begin{array}{l}
\frac{d x}{d s}=F_{p}, x(0)=x_{0}(\xi), \\
\frac{d y}{d s}=F_{q}, y(0)=y_{0}(\xi), \\
\frac{d p}{d s}=-F_{x}-p F_{u}, p(0)=p_{0}(\xi) \\
\frac{d q}{d s}=-F_{y}-q F_{u}, q(0)=q_{0}(\xi) \\
\frac{d u}{d s}=p F_{p}+q F_{q}, u(0)=u_{0}(\xi)
\end{array}\right. \\
F\left(x_{0}, y_{0}, u_{0}, p_{0}, q_{0}\right)=0, u_{0}^{\prime}=p_{0} x_{0}^{\prime}+q_{0} y_{0}^{\prime}
\end{gathered}
$$

(2) General solutions of first order $a u_{x}+b u_{y}=c$:

$$
\begin{gathered}
x^{\prime}=x, y^{\prime}=\xi=\xi(x, y) \\
a U_{x^{\prime}}=c
\end{gathered}
$$

(3) Consider quasi-linear first order PDE

$$
u_{t}+c(u) u_{x}=0, \quad Q(u)=\int_{0}^{u} c(u) d u
$$

Equation for shock curve: $x=s(t)$

$$
\frac{d s}{d t}=\frac{Q\left(u^{+}\right)-Q\left(u^{-}\right)}{u^{+}-u^{-}}
$$

Equation for expansion fan: $u=U\left(\frac{x}{t}\right)$

$$
c(U)=\frac{x}{t}
$$

(4) Change of Variables

$$
\begin{aligned}
\partial_{t} & =b_{11} \partial_{\xi}+b_{12} \partial_{\eta} \\
\partial_{x} & =b_{21} \partial_{\xi}+b_{22} \partial_{\eta}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \xi=b_{11} t+b_{21} x \\
& \eta=b_{12} t+b_{22} x
\end{aligned}
$$

(5) d'ALembert's formula:

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}+f(x, t) \\
u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x) \\
u(x, t)=\frac{1}{2}[\phi(x-c t)+\phi(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s+\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s
\end{gathered}
$$

