Midterm Examination for MATH400
 Total: 100 points
 Answer All Questions. Show All Steps. Date: March 4th, 2014

1. (30pts) Consider the following first order PDE for $u=u(x, y)$ given by
(1) $\quad y u_{x}+x u_{y}=y^{3} u$
(i) (10points) Find the general solution to the PDE in terms of an arbitrary function.

Using the general solution given by (i) determine for (ii)-(iii) below whether (1) has a solution for each of the following data. If there is a solution, find out the solution.
(ii) (10points) $u=1$ on $y=x$ for $1 \leq x \leq 2$
(iii) (10points) $u=y$ on $x=1$ for $2 \leq y \leq 3$
2. (30points) Consider the traffic flow problem

$$
\frac{\partial \rho}{\partial t}+\cos (\pi \rho) \frac{\partial \rho}{\partial x}=0
$$

Solve for $\rho(x, t)$ with the following initial condition

$$
\rho(x, 0)=\frac{1}{4},-\infty<x<+\infty ; \rho(0-, t)=1, t>0 ; \rho(0+, t)=\frac{1}{3}, t>0
$$

3. (20pts) Solve the following wave equation:

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}+\cos (c t) \cos x,-\infty<x<+\infty, t>0 \\
u(x, 0)=x, u_{t}(x, 0)=\sin x
\end{gathered}
$$

4. (20pts) Solve the following diffusion equation

$$
\begin{gathered}
u_{t}=k u_{x x}, 0<x<+\infty, t>0 \\
u(x, 0)=x, x>0 \\
u_{x}(0, t)=0
\end{gathered}
$$

You may write your answer in terms of the function $\int_{0}^{\frac{x}{\sqrt{4 k t}}} e^{-p^{2}} d p$.

