Solutions to Homework Assignment 1

1. (10pts) Solve the following first order PDE and find where the solution is defined in the $x-y$ plane.

$$
u_{x}+x y u_{y}=0, u(x, 1)=x^{2}
$$

Solution: By the method of characteristics

$$
\frac{d x}{1}=\frac{d y}{x y}=\frac{d u}{0}
$$

Since $u(x, 1)=x^{2}$, we use y as parameter so we have

$$
\frac{d x}{d y}=\frac{1}{x y}, x(1)=\xi ; \frac{d u}{d y}=0, u(1)=\xi^{2}
$$

Solving the first ODE we get

$$
x^{2}=2 \log y+C, x^{2}=2 \log y+\xi^{2}
$$

and so $\xi^{2}=x^{2}-2 \log (y)$
The solution is

$$
u(x, y)=x^{2}-2 \log (y)
$$

where $y>0$ (since the initial data curve passes through $y=1$).
2. (20pts) Solve $x u_{x}+x y u_{y}=u$ for $u=u(x, y)$ with date $u(1, y)=y^{2}$ for $0 \leq y \leq 1$ and find where the solution is defined in the $x-y$ plane.
Solution: By the method of characteristics

$$
\frac{d x}{x}=\frac{d y}{x y}=\frac{d u}{u}
$$

Since $u(1, y)=y^{2}$, we use x as parameter so we have

$$
\frac{d y}{d x}=\frac{x y}{x}, y(1)=\xi, 0 \leq \xi \leq 1 ; \frac{d u}{d y}=u, u(1)=\xi^{2}
$$

Solving the first ODE we get

$$
y=C e^{x}, y=\xi e^{x-1}
$$

and so $\xi=y e^{1-x}$
The solution is

$$
u(x, y)=\left(y e^{1-x}\right)^{2}
$$

where $0 \leq \xi=y e^{1-x} \leq 1$.
The domain of definition is $0 \leq y \leq e^{x-1}$.
3. (15pts) Solve the following first order PDE and find where the solution becomes unbounded in the $x-y$ plane.

$$
x^{2} u_{x}+x y u_{y}=u^{3}, u=1 \text { on the curve } y=x^{2}
$$

Solution: By the method of characteristics

$$
\frac{d x}{x^{2}}=\frac{d y}{x y}=\frac{d u}{u^{3}}
$$

Since $u=1$ on $y=x^{2}$, we use s as parameter so we have

$$
\begin{gathered}
\frac{d x}{d s}=x^{2}, x(0)=\xi \\
\frac{d y}{d s}=x y, y(0)=\xi^{2} \\
\frac{d u}{d s}=u^{3}, u(0)=1
\end{gathered}
$$

Solving the first ODE we get

$$
-\frac{1}{x}=s+C, x=\frac{\xi}{1-s \xi}
$$

Solving the second ODE we get

$$
\log y=-\log (1-s \xi)+C, y=\frac{\xi^{2}}{1-s \xi}
$$

Solving the last ODE we get

$$
-\frac{1}{2 u^{2}}=s+C, u^{2}=\frac{1}{1-2 s}
$$

Eliminating ξ and s we obtain $\xi=\frac{y}{x}, s=\frac{x^{2}-y}{x y}$ and so

$$
u^{2}=\frac{x y}{x y-2\left(x^{2}-y\right)}
$$

Since $u=1$ on $y=x^{2}$, we take

$$
u=\sqrt{\frac{x y}{x y-2\left(x^{2}-y\right)}}
$$

The blow up curve is $x y-2\left(x^{2}-y\right)=0$.
The domain of definition is $\frac{x y}{x y-2\left(x^{2}-y\right)}>0$.
4. (20pts) Solve $u_{t}+t^{2} u_{x}=4 u$ for $x>0, t>0$ with $u(0, t)=h(t)$ and $u(x, 0)=1$.

Solution: By the method of characteristics

$$
\frac{d t}{1}=\frac{d x}{t^{2}}=\frac{d u}{4 u}
$$

There are two initial date curves so this problem can be decomposed into two systems of ODEs.
ODE1: For $u(x, 0)=1, x>0$, we use t as parameter

$$
\frac{d x}{d t}=t^{2}, x(0)=\xi, \xi>0 ; \frac{d u}{d t}=4 u, u(0)=1
$$

Solving the first ODE we get

$$
x=\frac{1}{3} t^{3}+\xi
$$

Solving the second ODE we get

$$
u=e^{4 t}
$$

in the region $\xi=x-\frac{1}{3} t^{3}>0$.
ODE2: For $u(0, t)=h(t), t>0$, we use x as parameter

$$
\frac{d t}{d x}=\frac{1}{t^{2}}, t(0)=\xi, \xi>0 ; \frac{d u}{d x}=\frac{4 u}{t^{2}}, u(0)=h(\xi)
$$

Solving the first ODE we get

$$
t=(3 x+\xi)^{1 / 3}
$$

Solving the second ODE we get

$$
\log u=4(3 x+\xi)^{1 / 3}+C, u=h(\xi) e^{-4 \xi^{1 / 3}} e^{4(3 x+\xi)^{1 / 3}}
$$

and hence

$$
u=h\left(t^{3}-3 x\right) e^{-4\left(t^{3}-3 x\right)^{1 / 3}} e^{4 t}
$$

in the region $\xi=t^{3}-3 x>0$.
In conclusion, we have

$$
u(x, t)=\left\{\begin{array}{l}
e^{4 t}, \text { if } x>\frac{t^{3}}{3} \\
u=h\left(t^{3}-3 x\right) e^{-4\left(t^{3}-3 x\right)^{1 / 3}} e^{4 t}, \text { if } x<\frac{t^{3}}{3}
\end{array}\right.
$$

5. (15pts) Solve $x u_{x}+y u_{y}=2$ with date $u(x, 1)=x^{2}$ for $-\infty<x<+\infty$. Explain why we can not determine $u(x, y)$ uniquely for $y \leq 0$.
Solution: By the method of characteristics

$$
\frac{d x}{x}=\frac{d y}{y}=\frac{d u}{2}
$$

For $u(x, 1)=x^{2}$, we use y as parameter

$$
\frac{d x}{d y}=\frac{x}{y}, x(1)=\xi ; \frac{d u}{d y}=\frac{2}{y}, u(1)=\xi^{2}
$$

Solving the first ODE we get

$$
x=\xi y
$$

Solving the second ODE we get

$$
u=2 \log y+\xi^{2}
$$

So the solution is

$$
u=2 \log y+\frac{x^{2}}{y^{2}}
$$

The domain of definition is $y>0$, since $\log |y|$ is not defined at $y=0$ and the initial data curve passes through $y>0$.
6.(20pts) Let $u(x, y)$ solve the first order PDE

$$
x u_{x}+y u_{y}=x u
$$

(a). Find the general solutions. (b) Suppose we put $u=h(x)$ on $y=x$. Derive the condition that $h(x)$ must satisfy for a solution to exist.

Solution: By the method of characteristics

$$
\frac{d x}{x}=\frac{d y}{y}=\frac{d u}{x u}
$$

The characteristics are $\lambda=\frac{x}{y}$.
(a). Changing variables

$$
x^{\prime}=x, \lambda=\frac{x}{y}, u(x, y)=U\left(x^{\prime}, \lambda\right)
$$

we have

$$
x U_{x^{\prime}}=x^{\prime} U, U_{x^{\prime}}=U
$$

and so

$$
U=C e^{x^{\prime}}=f(\lambda) e^{x^{\prime}}
$$

The general solution is

$$
u=f\left(\frac{x}{y}\right) e^{x}
$$

(b). When $y=x$, we have

$$
u=f(1) e^{x}=h(x)
$$

and so $h(x)$ must be of the form

$$
h(x)=B e^{x}
$$

where B is a constant.
If $h(x)=B e^{x}$ then the solution u is

$$
u=f\left(\frac{x}{y}\right) e^{x}, f(1)=B
$$

