Homework Assignment 1 (Due Date: Jan. 23 2014)

1. Solve the following first order PDE and find where the solution is defined in the $x-y$ plane.

$$
u_{x}+x y u_{y}=0, u(x, 1)=x^{2}
$$

2. Solve $x u_{x}+x y u_{y}=u$ for $u=u(x, y)$ with date $u(1, y)=y^{2}$ for $0 \leq y \leq 1$ and find where the solution is defined in the $x-y$ plane.
3. Solve the following first order PDE and find where the solution becomes unbounded in the $x-y$ plane.

$$
x^{2} u_{x}+x y u_{y}=u^{3}, u=1 \text { on the curve } y=x^{2}
$$

4. Solve $u_{t}+t^{2} u_{x}=4 u$ for $x>0, t>0$ with $u(0, t)=h(t)$ and $u(x, 0)=1$.
5. Solve $x u_{x}+y u_{y}=2$ with date $u(x, 1)=x^{2}$ for $-\infty<x<+\infty$. Explain why we can not determine $u(x, y)$ uniquely for $y \leq 0$.

6 . Let $u(x, y)$ solve the first order PDE

$$
x u_{x}+y u_{y}=x u
$$

(a). Find the general solutions. (b) Suppose we put $u=h(x)$ on $y=x$. Derive the condition that $h(x)$ must satisfy for a solution to exist.

