Homework Assignment 3 (Due Date: Feb 25, 2014)

1. (20pts) Use the change of variable to transform the following equations into one of the three standard form
(a) $2 u_{x y}+u_{y y}=0$, (b) $u_{x x}-6 u_{x y}+10 u_{y y}+u_{y}=0$, (c) $u_{x x}-4 u_{x y}+4 u_{y y}-2 u_{x}+3 u_{y}=0$ 2.(20pts) Solve the following wave equation:

$$
\begin{gathered}
u_{t t}-c^{2} u_{x x}=x t \\
u(x, 0)=x^{2}, u_{t}(x, 0)=1+x
\end{gathered}
$$

3. (20pts) (a) State the well-posedness criteria for the following backward diffusion equation

$$
\left\{\begin{array}{l}
u_{t}+k u_{x x}=0, t>0,-\infty<x<+\infty, k>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

(b) Use the function $u(x, t)=\frac{1}{n} e^{n^{2} k t} \sin (n x)$ to show that the above problem is not wellposed.
4. (a) (20pts) Find the general solution formula for

$$
\left\{\begin{array}{l}
2 u_{t t}+5 u_{t x}-3 u_{x x}=0, t>0,-\infty<x<+\infty \\
u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x),-\infty<x<+\infty
\end{array}\right.
$$

(b) (20pts)In part (a), find the solution with

$$
\phi(x)=\sin x, \psi(x)=\cos x
$$

