Homework Assignment 4 (Due Date: March 18, 2014)

1. (20pts) Consider the following equation

$$
u_{x y}-4 y u_{x}=0
$$

(1) (5pts) What is the type?
(2) (15pts) Find the general solution

Hint: write $u_{x}=v$.
2. (20pts) Solve $u_{t t}=c^{2} u_{x x}$ for $0<x<+\infty, u(0, t)=t^{2}, u(x, 0)=x, u_{t}(x, 0)=0$.
3. (20pts) Consider the following wave equation:

$$
\begin{gathered}
u_{t t}=4 u_{x x}, 0<x<1 \\
u(x, 0)=1, u_{t}(x, 0)=1 \\
u(0, t)=u(1, t)=0
\end{gathered}
$$

Find $u\left(\frac{5}{2}, 2\right)$.
4. (20pts) Solve

$$
\begin{gathered}
u_{t}=k u_{x x}, 0<x<+\infty \\
u(x, 0)=0,0<x<+\infty \\
u(0, t)=1
\end{gathered}
$$

Write the solution in terms of $\int_{0}^{\frac{x}{4 k t}} e^{-p^{2}} d p$.
5. (20pts) Consider the following diffusion equation

$$
\begin{gathered}
u_{t}=k u_{x x}+f(x, t), 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u_{x}(0, t)-a_{0} u(0, t)=g_{1}(t), u_{x}(l, t)+a_{1} u(l, t)=g_{2}(t)
\end{gathered}
$$

where

$$
a_{0} \geq 0, a_{1} \geq 0
$$

Use the energy method to show that the solution to the above problem is unique.

