Homework Assignment 6 (Due Date: April 8, 2014)

1. (30pts) Put the following two problems in Sturm-Liouville form, identify the weight function $w(x)$, and calculate the eigenvalues and eigenfunctions. Also what is the orthogonality relation for the eigenfunctions?

$$
x^{2} \phi_{x x}+5 x \phi_{x}+\lambda \phi=0,1 \leq x \leq 2 ; \phi(1)=\phi(2)=0
$$

Hint: $\operatorname{try} \phi(x)=x^{r}$

$$
\phi_{x x}-2 \phi_{x}+\lambda \phi=0,0 \leq x \leq 1, \phi(0)=\phi(1)=0
$$

Hint: $\operatorname{try} \phi(x)=e^{r x}$
2. (20pts) Use the method of separation variables to solve

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x}+e^{t} \sin (3 x), \quad 0<x<\pi \tag{1}\\
u(x, 0)=\sin (3 x), u_{t}(x, 0)=\sin (5 x) 0<x<\pi \\
u(0, t)=t, u(\pi, t)=0
\end{array}\right.
$$

3. (30pts) (a) (20pts) Use the method of separation variables to solve the following PDE:

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \text { in } D=(0, \pi) \times(0, \pi) \\
u_{y}(x, 0)=u(x, \pi)=0, u(\pi, y)=0 \\
u(0, y)=\cos ^{2}(y)
\end{gathered}
$$

(b) (10pts) Prove that the solution obtained in (a) is unique.
4. (20pts) Use the method of separation of variables to solve the following PDE:

$$
\begin{gathered}
u_{x x}+u_{y y}=1 \text { in } D=\left\{(x, y) \mid x^{2}+y^{2}<4\right\} \\
u(x, y)=x^{2}-y^{2} \quad \text { on } \partial D=\left\{(x, y) \mid x^{2}+y^{2}=4\right\}
\end{gathered}
$$

