MATH 516-101 Homework One

Due Date: September 29th, 2015

1. This problem concerns the Newtonian potential

$$
\begin{equation*}
u(x)=\int_{R^{3}} \frac{1}{|x-y|} f(y) d y \tag{0.1}
\end{equation*}
$$

For the following three parts, pick up only one part to finish
a) Show that if $|f(y)| \leq \frac{C}{|y|^{\alpha}}$ for $\alpha \in(2,3)$. Then $|u(x)| \leq \frac{C}{|x|^{\alpha-2}}$ for $|x|>1$

Proof. For $|x|=R \gg 1$ we divide the integral into three parts:

$$
\begin{gathered}
u(x)=\int_{|x-y| \leq \frac{\mid x x}{2}} \frac{f(y)}{|x-y|} d y+\int_{\frac{|x|}{2} \leq|x-y| \leq 2|x|} \frac{f(y)}{|x-y|} d y+\int_{|x-y| \geq 2|x|} \frac{f(y)}{|x-y|} d y \\
=I_{1}+I_{2}+I_{3}
\end{gathered}
$$

For I_{1}, there holds $|y| \geq|x|-\frac{|x-y|}{\geq} \frac{|x|}{2}$ and hence

$$
\begin{aligned}
I_{1} \leq \int_{|x-y| \leq \frac{|x|}{2},|y| \geq \frac{|x|}{2}} \frac{C}{|x-y|} \frac{C}{|y|^{\alpha}} d y & \leq \frac{C}{|x|^{\alpha}} \int_{|x-y| \leq \frac{|x|}{2}} \frac{1}{|x-y|} d y \\
& \leq \frac{C}{|x|^{\alpha}} \int_{0}^{\frac{|x|}{2}} \frac{r^{2} d r}{r}
\end{aligned}
$$

For I_{3}, we can perform similar analysis: $|y-x| \leq|y|+|x| \leq|y|+\frac{|y-x|}{2}$. Thus $|y| \geq \frac{|x-y|}{2}$

$$
\begin{gathered}
I_{3} \leq \int_{|x-y| \geq 2|x|} \frac{C}{|x-y|} \frac{C}{|y|^{\alpha}} d y \leq \int_{|x-y| \geq 2|x|} \frac{1}{|x-y|^{1+\alpha}} d y \\
\leq C \int_{2|x|}^{\infty} \frac{r^{2} d r}{r^{1+\alpha}} d r \leq \frac{C}{|x|^{\alpha-2}}
\end{gathered}
$$

since $\alpha>2$.
It remains to estimate I_{2} :

$$
\begin{gathered}
I_{2} \leq \int_{\frac{|x|}{2} \leq|x-y| \leq 2|x|} \frac{C}{|x|} \frac{C}{1+|y|^{\alpha}} d y \leq \frac{C}{|x|}\left(\int_{|y| \leq 1} \frac{1}{1+|y|^{\alpha}}+\int_{1 \leq|y| \leq 3|x|} \frac{C}{|y|^{\alpha}} d y\right) \\
\quad \leq \frac{C}{|x|}\left(C+\int_{1}^{3|x|} \frac{r^{2} d r}{r^{\alpha}}\right) \\
\leq \frac{C}{|x|}\left(C+|x|^{3-\text { alpha }}\right) \leq \frac{C}{|x|^{\alpha-2}}
\end{gathered}
$$

since $\alpha<3$
b) Show that if $|f(y)| \leq \frac{C}{|y|^{3}}$, then $|u(x)| \leq \frac{C}{|x|} \log |x|$ for $|x|>1$

Proof. The proof is similar to (a) except in the last part, $\int_{1}^{3|x|} \frac{r^{2} d r}{r^{3}} \sim C \log |x|$
c) Show that if $|f(y)| \leq \frac{C}{|y|^{\alpha}}$ for $\alpha>3$, then $|u(x)| \leq \frac{C}{|x|}$ for $|x|>1$

Proof. The proof is similar to (a) except in the last part, $\int_{1}^{3|x|} \frac{r^{2} d r}{r^{3}} \leq C$
2. This problem concerns the Mean-Value-Property (MVP). We say $v \in C^{2}(\bar{U})$ is subharmonic, if

$$
-\Delta v \leq 0 \text { in } U
$$

a) Prove that for subharmonic functions

$$
v(x) \leq \frac{1}{|B(x, r)|} \int_{B(x, r)} v d y, \quad \forall B(x, r) \subset U
$$

Hint: use the formula for $\psi^{\prime}(r)$.
Proof. Let $\psi(r)=\frac{1}{\left|\partial B_{r}(x)\right|} \int_{\partial B_{r}(x)} v d y$. By the computation done at class,

$$
\psi^{\prime}(r)=r \int_{B_{r}(x)} \Delta v \geq 0
$$

and hence

$$
\psi(0) \leq \psi(r)
$$

hence

$$
v(x) \leq \leq \frac{1}{|\partial B(x, r)|} \int_{\partial B(x, r)} v d y
$$

Integrating from 0 to r we obtain

$$
v(x) \leq \frac{1}{|B(x, r)|} \int_{B(x, r)} v d y
$$

b) Prove that the Maximum Principle holds for subharmonic functions on bounded domains

$$
\max _{\bar{U}} v=\max _{\partial U} v
$$

Proof. Repeat the proof done in the class for the harmonic case.
c) Let u be harmonic functions in U. Show that u^{2} and $|\nabla u|^{2}$ are subharmonic functions. Proof.

$$
\begin{aligned}
\Delta u^{2} & =2 u \Delta u+2|\nabla u|^{2}=2|\nabla u|^{2} \\
\Delta|\nabla u|^{2} & =\sum_{i, j} u_{i j}^{2}+\nabla u \cdot \nabla \Delta u=\sum_{i, j} u_{i j}^{2}
\end{aligned}
$$

d) Let u satisfy

$$
-\Delta u=f \text { in } U, \quad u=g \text { on } \partial U
$$

Show that there exists a generic constant $C=C(n, U)$ such that

$$
\max _{U} u \leq C\left(\max _{U}|f|+\max _{\partial U}|g|\right)
$$

Proof. Consider $v(x)=u(x)+\frac{|x|^{2}}{2 n} \max _{U}|f|-\max _{\partial U}|g|-\frac{\max _{U}|x|^{2}}{2 n} \max _{U}|f|$ and show that v is subharmonic and then apply b).

Then $-\Delta v=-\Delta u+\max _{U}|f|=f+\max _{U}|f| \geq 0$ so v is subharmonic. By (b),

$$
\max _{\bar{U}} v=\max _{\partial U} v \leq 0
$$

and hence

$$
\max _{\bar{U}} u \leq C\left(\max _{U}|f|+\max _{\partial U}|g|\right)
$$

3. This problem concerns Green's function and Green's representation formula.
a) Write the Green's function for the unit ball $B(0,1)$.

Proof. For $n \geq 3$,

$$
G_{B_{1}(0)}(x, y)=\frac{1}{(n-2)\left|\partial B_{1}\right|}\left(\frac{1}{|x-y|^{n-2}}-\frac{|x|^{n-2}}{\left|x-|x|^{2} y\right|^{n-2}}\right)
$$

For $n=2$,

$$
G_{B_{1}(0)}(x, y)=\frac{1}{2 \pi}\left(\log \frac{1}{|x-y|}-\log \frac{|x|}{\left|x-|x|^{2} y\right|}\right)
$$

b) Use a) and reflection to find the Green's function in half ball $B^{+}(0,1)=B(0,1) \cap\left\{x_{n}>0\right\}$.

Proof. Let $G_{B_{1}(0)}(x, y)$ be defined at (a). Fix $x \in B^{+}(0,1)$ we define $x^{*}=\left(x^{\prime},-x_{n}\right)$. Then

$$
G(x, y)=G_{B_{1}}(x, y)-G_{B_{1}}\left(x^{*}, y\right)
$$

