## MATH 516-101 Homework TWO

Due Date: October 13, 2015

1. This problems concerns the Green's representation formula in a ball.
(a) using the Green's function in a ball to prove

$$
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) \leq u(x) \leq r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0)
$$

whenever $u$ is positive and harmonic in $B_{r}(0)$.
(b) use (a) to prove the following result: let $u$ be a harmonic function in $R^{n}$. Suppose that $u \geq 0$. Then $u \equiv$ Constan
2. This problem concerns the heat equation

$$
u_{t}=\Delta u
$$

Let

$$
\Phi(x-y, t)=(4 \pi t)^{-n / 2} e^{-\frac{|x-y|^{2}}{4 t}}
$$

(a) Show that $\int_{R^{n}} \Phi(x-y, t) d y=1$ for all $t>0$
(b) Show that there exists a generic constant $C_{n}$ such that

$$
\Phi(x-y, t) \leq C_{n}|x-y|^{-n}
$$

Hint: maximize the function in $t$.
(c) Let $f(x)$ be a function such that $f\left(x_{0}-\right)$ and $f\left(x_{0}+\right)$ exists. Show that

$$
\lim _{t \rightarrow 0} \int_{R} \Phi\left(x-x_{0}, t\right) f(y) d y=\frac{1}{2}\left(f\left(x_{0}-\right)+f\left(x_{0}+\right)\right)
$$

3. This problem concerns the one-dimensional wave equation

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x} \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x)
\end{gathered}
$$

(a) Show that all solutions to the following equation

$$
u_{X Y}=\frac{\partial^{2} u}{\partial X \partial Y}=0
$$

are given by a combination of two functions

$$
u=F(X)+G(Y)
$$

(b) Show that all solutions to

$$
u_{t t}=c^{2} u_{x x}
$$

are given by

$$
u=F(x-c t)+G(x-c t)
$$

Hint: let

$$
X=x-t, Y=x+t
$$

and then use (a)
(c) Prove the d'Alembert's formula: all solutions to

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x} \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x)
\end{gathered}
$$

are given by

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

(d) use (c) to show that Maximum Principle does not hold for wave equation, i.e.,

$$
\max _{\bar{U}_{T}} u(x, t)>\max _{\partial^{\prime} U_{T}} u(x, t)
$$

Hint: Let $f=0$ and $g=1, U=(-1,1)$ and choose $T$ large.
4. This problem concerns Sobolev space
(a) Let $U=(-1,1)$ and

$$
u(x)=|x|
$$

What is its weak derivative $u^{\prime}$ ? Prove it rigorously.
(b) Does the second order weak derivative $u$ " exist?
(c) For which integer $k$ and positive $p>1$, does $u$ belong to $W^{k, p}(U)$ ?

