1. This problems concerns the Green's representation formula in a ball.
(a) using the Green's function in a ball to prove

$$
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) \leq u(x) \leq r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0)
$$

whenever u is positive and harmonic in $B_{r}(0)$.
Solution: From Green's function in a ball we get the following Poisson's formula

$$
u(x)=\int_{\partial B_{r}(0)} \frac{r^{2}-|x|^{2}}{\left|S^{n-1}\right| r|x-y|^{n}} u(y) d \sigma(y)
$$

Since $r-|x| \leq|y-x| \leq r+|x|$ for $|y|=r$, we have

$$
u(x) \geq \int_{\partial B_{r}(0)} \frac{r^{2}-|x|^{2}}{\left|S^{n-1}\right| r(r+|x|)^{n}} u(y) d \sigma(y) \geq \frac{r^{2}-|x|^{2}}{\left|S^{n-1}\right| r(r+|x|)^{n}} \int_{\partial B_{r}(0)} u(y) d \sigma(y)
$$

By the mean-value-property we get

$$
\begin{gathered}
u(0)=\frac{1}{\left|S^{n-1}\right| r^{n-1}} \int_{\partial B_{r}(0)} u d \sigma(y) \\
u(x) \geq r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0)
\end{gathered}
$$

The other inequality can be proved similarly.
(b) use (a) to prove the following result: let u be a harmonic function in R^{n}. Suppose that $u \geq 0$. Then $u \equiv$ Constant. Solution

In (a), we let $r \rightarrow+\infty$, we obtain that $u(x)=u(0)$ for all x.
2. This problem concerns the heat equation

$$
u_{t}=\Delta u
$$

Let

$$
\Phi(x-y, t)=(4 \pi t)^{-n / 2} e^{-\frac{|x-y|^{2}}{4 t}}
$$

(a) Show that $\int_{R^{n}} \Phi(x-y, t) d y=1$ for all $t>0$

Solution

$$
\begin{gathered}
\int_{R^{n}} \Phi(x-y, t) d y=(4 \pi t)^{-n / 2} \int_{R^{n}} e^{-\frac{(x-y)^{2}}{4 t}} d y=(4 \pi t)^{-n / 2} \int_{R^{n}} e^{-\frac{y^{2}}{4 t}} d y \\
=(\pi)^{-n / 2} \int_{R^{n}} e^{-y^{2}} d y=(\pi)^{-n / 2}\left(\int_{R} e^{-x^{2}} d x\right)^{n}=1
\end{gathered}
$$

(b) Show that there exists a generic constant C_{n} such that

$$
\Phi(x-y, t) \leq C_{n}|x-y|^{-n}
$$

Hint: maximize the function in t.
Solution: For the function $\Phi(x, t)$ with $x \neq 0$, we know that $\lim _{t \rightarrow 0} \Phi(x, t)=0$ and $\lim _{t \rightarrow+\infty} \Phi(x, t)=0$ and hence the maximum is attained at some $t=t_{0}$:

$$
\begin{gathered}
\frac{\partial \Phi(x, t)}{\partial t}=0 \\
\frac{x^{2}}{4 t}=\frac{n}{2}
\end{gathered}
$$

and hence $|\Phi(x, t)| \leq(2 n)^{n / 2} e^{-n / 2}|x|^{-n}$.
(c) Let $f(x)$ be a function such that $f\left(x_{0}-\right)$ and $f\left(x_{0}+\right)$ exists. Show that

$$
\lim _{t \rightarrow 0} \int_{R} \Phi\left(x-x_{0}, t\right) f(y) d y=\frac{1}{2}\left(f\left(x_{0}-\right)+f\left(x_{0}+\right)\right)
$$

Solution: The fact that $f\left(x_{0}-\right)$ and $f\left(x_{0}+\right)$ exist implies that for all $\epsilon>0$ there exists $\delta>0$ such that for all $\left|x-x_{0}\right|<\delta$

$$
\left|f(x)-f\left(x_{0}-\right)\right|<\epsilon, x_{0}-\delta<x<x_{0} ;\left|f(x)-f\left(x_{0}+\right)\right|<\epsilon, x_{0}<x<x_{0}+\delta
$$

Thus

$$
\int_{R} \Phi\left(x-x_{0}, t\right) f(y) d y=\int_{\left|x-x_{0}\right|>\delta} \Phi\left(x-x_{0}\right) f(y) d y+\int_{x_{0}-\delta<x<x_{0}} \Phi\left(x-x_{0}, t\right) f(y) d y+\int_{x_{0}<x<x_{0}+\delta} \Phi\left(x-x_{0}, t\right) f(y) d y
$$

The first term on the right hand side can be estimated as

$$
\left|\int_{\left|x-x_{0}\right|>\delta} \Phi\left(x-x_{0}, t\right) f(y) d y\right| \leq \sup |f| \Phi(\delta, t)
$$

For the second term, we have

$$
\int_{x_{0}-\delta<x<x_{0}} \Phi\left(x-x_{0}, t\right) f(y) d y-\frac{1}{2} f\left(x_{0}-\right)=\int_{x_{0}-\delta<x<x_{0}} \Phi\left(x-x_{0}\right)\left(f(y)-f\left(x_{0}-\right)\right) d y+f\left(x_{0}-\right) \int_{-\infty}^{x_{0}-\delta} \Phi\left(x-x_{0}, t\right)
$$

Now

$$
\begin{gathered}
\left|\int_{x_{0}-\delta<x<x_{0}} \Phi\left(x-x_{0}\right)\left(f(y)-f\left(x_{0}-\right)\right) d y\right|<\epsilon \int_{R} \Phi\left(x-x_{0}, t\right) d y=\epsilon \\
\left|f\left(x_{0}-\right) \int_{-\infty}^{x_{0}-\delta} \Phi\left(x-x_{0}, t\right)\right| \leq C \Phi(\delta, t)
\end{gathered}
$$

Thus

$$
\left|\int_{x_{0}-\delta<x<x_{0}} \Phi\left(x-x_{0}, t\right) f(y) d y-\frac{1}{2} f\left(x_{0}-\right)\right|<\epsilon+C \Phi(\delta, t)
$$

Similarly we get

$$
\left|\int_{x_{0}<x<x_{0}+\delta} \Phi\left(x-x_{0}, t\right) f(y) d y-\frac{1}{2} f\left(x_{0}+\right)\right|<\epsilon+C \Phi(\delta, t)
$$

The results follows by letting $t \rightarrow 0$ first and then let $\epsilon \rightarrow$.
3. This problem concerns the one-dimensional wave equation

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x} \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x)
\end{gathered}
$$

(a) Show that all solutions to the following equation

$$
u_{X Y}=\frac{\partial^{2} u}{\partial X \partial Y}=0
$$

are given by a combination of two functions

$$
u=F(X)+G(Y)
$$

Solution: Since

$$
\partial_{X}\left(\partial_{Y} u\right)=0
$$

we have $\partial Y u=g(Y)$. Now integrating over Y we get $u=F(X)+G(Y)$.
(b) Show that all solutions to

$$
u_{t t}=c^{2} u_{x x}
$$

are given by

$$
u=F(x-c t)+G(x-c t)
$$

Hint: let

$$
X=x-t, Y=x+t
$$

and then use (a)
Solution: Follow the hint
(c) Prove the d'Alembert's formula: all solutions to

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x} \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x)
\end{gathered}
$$

are given by

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

Solution: By (b) we have $u(x, t)=F(x-c t)+G(x+c t)$. Now

$$
\begin{gathered}
u(x, 0)=F(x)+G(x)=f(x) \\
u_{t}(x, 0)=c\left(-F^{\prime}(x)+G^{\prime}(x)\right)=g(x)
\end{gathered}
$$

and hence

$$
-F(x)+G(x)=\frac{1}{c} \int_{0}^{x} g(s) d s+C
$$

So

$$
F(x)=\frac{f(x)}{2}-\frac{1}{2 c} \int_{0}^{x} g(s) d s-\frac{C}{2}
$$

$$
G(x)=\frac{f(x)}{2}+\frac{1}{2 c} \int_{0}^{x} g(s) d s+\frac{C}{2}
$$

Substituting into the formula $u(x, t)=F(x-c t)+G(x+c t)$, we obtain the formula.
(d) use (c) to show that Maximum Principle does not hold for wave equation, i.e.,

$$
\max _{\bar{U}_{T}} u(x, t)>\max _{\partial^{\prime} U_{T}} u(x, t)
$$

Hint: Let $f=0$ and $g=1, U=(-1,1)$ and choose T large.

Solution

Let $f=0, g=1$ for $|x|<\frac{1}{2}$ and $g=0$ for $|x| \geq \frac{1}{2}$. Then

$$
u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s=\frac{1}{2 c}|(x-c t, x+c t) \cap(-1,1)|
$$

Let $T=\frac{1}{2}$. Then

$$
\max _{U_{T}} u>0=\max _{\partial_{T}^{\prime}} u
$$

4. This problem concerns Sobolev space
(a) Let $U=(-1,1)$ and

$$
u(x)=|x|
$$

What is its weak derivative u^{\prime} ? Prove it rigorously.
Solution
We claim that

$$
u^{\prime}=\left\{\begin{array}{l}
1, x>0 \\
-1, x<0
\end{array}\right.
$$

In fact let $v=u^{\prime}$ and let $H(x)$ denote the right hand side function. Then

$$
\begin{aligned}
\int_{U} v \phi & =-\int u \phi^{\prime}=-\int_{0}^{1} x \phi^{\prime}+\int_{-1}^{0} x \phi^{\prime} d x \\
& =\int_{0}^{1} \phi-\int_{-1}^{0} \phi=\int_{-1}^{1} H(x) \phi
\end{aligned}
$$

By the uniqueness of weak derivative, we see that $v=H(x)$.
(b) Does the second order weak derivative $u^{\prime \prime}$ exist?

Solution: Answer No. Suppose the second order weak derivative exist, called v. Then

$$
\begin{aligned}
\int_{U} v \phi & =\int u \phi^{\prime \prime}=\int_{0}^{1} x \phi^{\prime \prime}-\int_{-1}^{0} \phi^{\prime \prime} d x \\
& =-\int_{0}^{1} \phi^{\prime}+\int_{-1}^{0} \phi^{\prime}=2 \phi(0)
\end{aligned}
$$

Now we choose ϕ_{m} such that $\phi_{m}(0)=1$ and $0 \leq \phi_{m} \leq 1$ and the support of ϕ_{m} to be $[-1 / m, 1 / m]$.
(c) For which integer k and positive $p>1$, does u belong to $W^{k, p}(U)$?

Solution

For (a) and (b), we have

$$
\begin{gathered}
u \in W^{1, p}(U), 1 \leq p \leq+\infty \\
u \notin W^{k, p}, k \geq 2
\end{gathered}
$$

