MATH 516-101 Solutions to Homework TWO

1. This problems concerns the Green’s representation formula in a ball.
(a) using the Green’s function in a ball to prove
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whenever v is positive and harmonic in B,.(0).
Solution: From Green’s function in a ball we get the following Poisson’s formula
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Since r — |z| < |y — z| < r 4+ |z| for |y| = r, we have
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By the mean-value-property we get
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The other inequality can be proved similarly.
use (a) to prove the following result: let u be a harmonic function in . Suppose that © > 0. en u = Constant.
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Solution

In (a), we let r — +o00, we obtain that u(z) = u(0) for all .
2. This problem concerns the heat equation
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(a) Show that [, ®(x —y,t)dy =1 for all t >0
Solution
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(b) Show that there exists a generic constant C,, such that
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Hint: maximize the function in t.
Solution: For the function ®(z,t) with x # 0, we know that lim_,o ®(x,¢) = 0 and lim;_, ; oo P(x,t) = 0 and hence the
maximum is attained at some t = tg:
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and hence |®(xz,t)| < (2n)™/2e~"/?|z|~".
(c) Let f(z) be a function such that f(xg—) and f(zo+) exists. Show that
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Solution: The fact that f(xo—) and f(xo+) exist implies that for all € > 0 there exists § > 0 such that for all
|z —zo| < 0
[f(x) = flmo—)| < e,x0 — 6 < < wo; | f(x) — flzot)| < €m0 <z <0 +6

Thus
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The first term on the right hand side can be estimated as
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For the second term, we have
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Thus
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Similarly we get
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The results follows by letting ¢ — 0 first and then let € —.



3. This problem concerns the one-dimensional wave equation
2
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u(z,0) = f(x),u(z,0) = g(x)
(a) Show that all solutions to the following equation
0u
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are given by a combination of two functions
u=F(X)+GY)

Solution: Since
8X (8yu) =0

we have 0Yu = g(Y'). Now integrating over Y we get u = F(X) + G(Y).
(b) Show that all solutions to
U = gy

are given by
u=F(z—ct)+ Gz — ct)

Hint: let
X=x—-t,Y=x+t

and then use (a)
Solution: Follow the hint
(¢c) Prove the d’Alembert’s formula: all solutions to

2
Utt = C Ugy
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are given by
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Solution: By (b) we have u(z,t) = F(x — ct) + G(z + ct). Now
uw(z,0) = F(z) + G(z) = f(x)
ui(@,0) = e(=F (2) + G () = g(=)

and hence
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Substituting into the formula u(z,t) = F(x — ct) + G(z + ct), we obtain the formula.
(d) use (c) to show that Maximum Principle does not hold for wave equation, i.e.,

max u(z,t) > maxu(z,t)
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Hint: Let f =0and g =1, U = (—1,1) and choose T large.
Solution
Let f=0,g=1for |z| < % and g =0 for |z| > 1. Then
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Let T = % Then
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4. This problem concerns Sobolev space
(a) Let U = (—1,1) and
u(x) = |zl
What is its weak derivative u'? Prove it rigorously.
Solution
We claim that
u - 1,z >0
]l -Lz<0

In fact let v = v and let H(z) denote the right hand side function. Then
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By the uniqueness of weak derivative, we see. that v = H(x)
(b) Does the second order weak derivative u” exist?
Solution: Answer No. Suppose the second order weak derivative exist, called v. Then
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Now we choose ¢, such that ¢,,(0) =1 and 0 < ¢,,, < 1 and the support of ¢,,, to be [-1/m,1/m)].



(c) For which integer k and positive p > 1, does u belong to W (U)?
Solution
For (a) and (b), we have
ue WhHP(U), 1< p< 400

ug WhP k> 2



