
MATH 516-101 Solutions to Homework TWO

1. This problems concerns the Green’s representation formula in a ball.
(a) using the Green’s function in a ball to prove

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0)

whenever u is positive and harmonic in Br(0).
Solution: From Green’s function in a ball we get the following Poisson’s formula

u(x) =

∫
∂Br(0)

r2 − |x|2

|Sn−1|r|x− y|n
u(y)dσ(y)

Since r − |x| ≤ |y − x| ≤ r + |x| for |y| = r, we have

u(x) ≥
∫
∂Br(0)

r2 − |x|2

|Sn−1|r(r + |x|)n
u(y)dσ(y) ≥ r2 − |x|2

|Sn−1|r(r + |x|)n

∫
∂Br(0)

u(y)dσ(y)

By the mean-value-property we get

u(0) =
1

|Sn−1|rn−1

∫
∂Br(0)

udσ(y)

u(x) ≥ rn−2 r − |x|
(r + |x|)n−1

u(0)

The other inequality can be proved similarly.
(b) use (a) to prove the following result: let u be a harmonic function in Rn. Suppose that u ≥ 0. Then u ≡ Constant.

Solution
In (a), we let r → +∞, we obtain that u(x) = u(0) for all x.

2. This problem concerns the heat equation
ut = ∆u

Let

Φ(x− y, t) = (4πt)−n/2e−
|x−y|2

4t

(a) Show that
∫
Rn Φ(x− y, t)dy = 1 for all t > 0

Solution ∫
Rn

Φ(x− y, t)dy = (4πt)−n/2

∫
Rn

e−
(x−y)2

4t dy = (4πt)−n/2

∫
Rn

e−
y2

4t dy

= (π)−n/2

∫
Rn

e−y2

dy = (π)−n/2(

∫
R

e−x2

dx)n = 1

(b) Show that there exists a generic constant Cn such that

Φ(x− y, t) ≤ Cn|x− y|−n
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Hint: maximize the function in t.
Solution: For the function Φ(x, t) with x ̸= 0, we know that limt→0 Φ(x, t) = 0 and limt→+∞ Φ(x, t) = 0 and hence the
maximum is attained at some t = t0:

∂Φ(x, t)

∂t
= 0

x2

4t
=

n

2

and hence |Φ(x, t)| ≤ (2n)n/2e−n/2|x|−n.
(c) Let f(x) be a function such that f(x0−) and f(x0+) exists. Show that

lim
t→0

∫
R

Φ(x− x0, t)f(y)dy =
1

2
(f(x0−) + f(x0+))

Solution: The fact that f(x0−) and f(x0+) exist implies that for all ϵ > 0 there exists δ > 0 such that for all
|x− x0| < δ

|f(x)− f(x0−)| < ϵ, x0 − δ < x < x0; |f(x)− f(x0+)| < ϵ, x0 < x < x0 + δ

Thus∫
R

Φ(x− x0, t)f(y)dy =

∫
|x−x0|>δ

Φ(x− x0)f(y)dy +

∫
x0−δ<x<x0

Φ(x− x0, t)f(y)dy +

∫
x0<x<x0+δ

Φ(x− x0, t)f(y)dy

The first term on the right hand side can be estimated as

|
∫
|x−x0|>δ

Φ(x− x0, t)f(y)dy| ≤ sup |f |Φ(δ, t)

For the second term, we have∫
x0−δ<x<x0

Φ(x− x0, t)f(y)dy −
1

2
f(x0−) =

∫
x0−δ<x<x0

Φ(x− x0)(f(y)− f(x0−))dy + f(x0−)

∫ x0−δ

−∞
Φ(x− x0, t)

Now

|
∫
x0−δ<x<x0

Φ(x− x0)(f(y)− f(x0−))dy| < ϵ

∫
R

Φ(x− x0, t)dy = ϵ

|f(x0−)

∫ x0−δ

−∞
Φ(x− x0, t)| ≤ CΦ(δ, t)

Thus

|
∫
x0−δ<x<x0

Φ(x− x0, t)f(y)dy −
1

2
f(x0−)| < ϵ+ CΦ(δ, t)

Similarly we get

|
∫
x0<x<x0+δ

Φ(x− x0, t)f(y)dy −
1

2
f(x0+)| < ϵ+ CΦ(δ, t)

The results follows by letting t → 0 first and then let ϵ →.
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3. This problem concerns the one-dimensional wave equation

utt = c2uxx

u(x, 0) = f(x), ut(x, 0) = g(x)

(a) Show that all solutions to the following equation

uXY =
∂2u

∂X∂Y
= 0

are given by a combination of two functions
u = F (X) +G(Y )

Solution: Since
∂X(∂Y u) = 0

we have ∂Y u = g(Y ). Now integrating over Y we get u = F (X) +G(Y ).
(b) Show that all solutions to

utt = c2uxx

are given by
u = F (x− ct) +G(x− ct)

Hint: let
X = x− t, Y = x+ t

and then use (a)
Solution: Follow the hint

(c) Prove the d’Alembert’s formula: all solutions to

utt = c2uxx

u(x, 0) = f(x), ut(x, 0) = g(x)

are given by

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct

g(s)ds

Solution: By (b) we have u(x, t) = F (x− ct) +G(x+ ct). Now

u(x, 0) = F (x) +G(x) = f(x)

ut(x, 0) = c(−F
′
(x) +G

′
(x)) = g(x)

and hence

−F (x) +G(x) =
1

c

∫ x

0

g(s)ds+ C

So

F (x) =
f(x)

2
− 1

2c

∫ x

0

g(s)ds− C

2
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G(x) =
f(x)

2
+

1

2c

∫ x

0

g(s)ds+
C

2

Substituting into the formula u(x, t) = F (x− ct) +G(x+ ct), we obtain the formula.
(d) use (c) to show that Maximum Principle does not hold for wave equation, i.e.,

max
ŪT

u(x, t) > max
∂′UT

u(x, t)

Hint: Let f = 0 and g = 1, U = (−1, 1) and choose T large.
Solution

Let f = 0, g = 1 for |x| < 1
2 and g = 0 for |x| ≥ 1

2 . Then

u(x, t) =
1

2c

∫ x+ct

x−ct

g(s)ds =
1

2c
|(x− ct, x+ ct) ∩ (−1, 1)|

Let T = 1
2 . Then

max
UT

u > 0 = max
∂
′
T

u

4. This problem concerns Sobolev space
(a) Let U = (−1, 1) and

u(x) = |x|

What is its weak derivative u
′
? Prove it rigorously.

Solution
We claim that

u
′
=

{
1, x > 0
−1, x < 0

In fact let v = u
′
and let H(x) denote the right hand side function. Then∫

U

vϕ = −
∫

uϕ
′
= −

∫ 1

0

xϕ
′
+

∫ 0

−1

xϕ
′
dx

=

∫ 1

0

ϕ−
∫ 0

−1

ϕ =

∫ 1

−1

H(x)ϕ

By the uniqueness of weak derivative, we see that v = H(x).
(b) Does the second order weak derivative u

′′
exist?

Solution: Answer No. Suppose the second order weak derivative exist, called v. Then∫
U

vϕ =

∫
uϕ

′′
=

∫ 1

0

xϕ
′′
−
∫ 0

−1

ϕ
′′
dx

= −
∫ 1

0

ϕ
′
+

∫ 0

−1

ϕ
′
= 2ϕ(0)

Now we choose ϕm such that ϕm(0) = 1 and 0 ≤ ϕm ≤ 1 and the support of ϕm to be [−1/m, 1/m].
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(c) For which integer k and positive p > 1, does u belong to W k,p(U)?
Solution

For (a) and (b), we have
u ∈ W 1,p(U), 1 ≤ p ≤ +∞

u ̸∈ W k,p, k ≥ 2
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