MATH 516-101 Homework THREE Due Date: October 27, 2015

This set of homework problems is concerned with Sobolev spaces.

1. Show that the following Chain Rule holds for $W^{1,p}(U)$ function: Let $u \in W^{1,p}(U)$ for some $1 \le p < \infty$ and $f \in C^1$ such that f' is bounded. Show that

$$v := f(u) \in W^{1,p}(U)$$
, and $v_{x_j} = f'(u)u_{x_j}$

Hint: Approximate $W^{1,p}$ functions by C^{∞} functions.

2. Show that if $u \in W^{1,p}(\Omega)$ with $1 \le p < \infty$, then $u^+ := \max(u, 0) \in W^{1,p}(U), u^- := \min(u, 0) \in W^{1,p}(U)$ and

$$Du^{+} = \begin{cases} Du, \text{ if } u > 0\\ 0, \text{ if } u \le 0 \end{cases}$$
$$Du^{-} = \begin{cases} 0 \text{ if } u \ge 0\\ Du, \text{ if } u < 0 \end{cases}$$

As a consequence, show that |D|u|| = |Du| and hence

$$||u||_{W^{1,p}(U)} = |||u|||_{W^{1,p}(U)}$$

Hint: $u^+ = \lim_{\epsilon \to 0} f_{\epsilon}(u)$ where

$$f_{\epsilon}(u) = \begin{cases} \sqrt{u^2 + \epsilon^2} - \epsilon \text{ if } u \ge 0\\ 0, \text{ if } u \le 0 \end{cases}$$

Then apply Chain rule and take limits as $\epsilon \to 0$.

- 3. Verify that if n > 1, the function $u = \log \log(1 + \frac{1}{|x|})$ belongs to $W^{1,n}(U), U = B_1(0)$
- 4. Let $u \in C^{\infty}(\bar{R}^n_+)$. Extend u to Eu on \mathbb{R}^n such that

$$Eu = u, x \in \mathbb{R}^n_+; Eu \in \mathbb{C}^3(\mathbb{R}^n); ||Eu||_{W^{3,p}} \le ||u||_{W^{3,p}}$$

Here $R_{+}^{n} = \{(x^{'}, x_{n}); x_{n} > 0\}.$ Hint: for $x_{n} < 0$ define

$$Eu(x', x_n) = c_1 u(x', -x_n) + c_2 u(x', -\frac{x_n}{2}) + c_3 u(x', -\frac{x_n}{3})$$

and find the coefficients c_1, c_2 and c_3 .

5. Assume that n = 1 and $w \in W^{1,p}(R)$ for 1 . Show that

$$\sup |u| \le C ||u||_{W^{1,p}}, \ |u(x) - u(y)| \le C |x - y|^{1 - \frac{1}{p}} ||u||_{W^{1,p}}$$

6. (Gagliardo-Nirenberg inequality) Let $n \ge 2, 1 and <math>1 \le q < r < \frac{np}{n-p}$. For some $\theta \in (0, 1)$ and some constant C > 0 we have

$$||u||_{L^{r}(R^{n})} \leq C ||u||_{L^{q}(R^{n})}^{1-\theta} ||\nabla u||_{L^{p}(R^{n})}^{\theta}, \forall u \in C_{c}^{\infty}(R^{n})$$

(i) Use scaling to find the θ .

(ii) Prove the inequality.

Hint: Do an interpretation of L^r in terms of L^q and $L^{\frac{np}{n-p}}$ and then apply Sobolev.