This set of homework problems is concerned with Sobolev spaces.

1. Show that the following Chain Rule holds for $W^{1, p}(U)$ function: Let $u \in W^{1, p}(U)$ for some $1 \leq p<\infty$ and $f \in C^{1}$ such that f^{\prime} is bounded. Show that

$$
v:=f(u) \in W^{1, p}(U), \text { and } v_{x_{j}}=f^{\prime}(u) u_{x_{j}}
$$

Hint: Approximate $W^{1, p}$ functions by C^{∞} functions.
Solution: Let $M=\sup _{x \in R}\left|f^{\prime}(s)\right|$. By density theorem, there are functions $u^{m} \in C^{\infty}(U)$ such that $u^{m} \rightarrow u$ in $W^{1, p}(U)$. Hence $u^{m} \rightarrow u, D u^{m} \rightarrow D u$, a.e. in U. Let $v^{m}=f\left(u^{m}\right)$. Since $F, u^{m} \in C^{1}, v^{m}$ is also in C^{1} and by chain rule for smooth functions, $v_{x_{i}}^{m}=f^{\prime}\left(u^{m}\right) u_{x_{i}}^{m}$. Since $\left|v^{m}-v\right|=\left|f\left(u^{m}\right)-f(u)\right| \leq M\left|u^{m}-u\right|, v^{m} \in L^{p}$, we deduce that $v^{m} \rightarrow v$ in $L^{p}(U)$. Moreover, $f^{\prime}\left(u^{m}\right) \rightarrow f^{\prime}(u)$, a.e. since $f^{\prime} \in C^{0}$ and $u^{m} \rightarrow u$, a.e. For any tes function $\phi \in C-0^{\infty}(U)$ we have

$$
\int_{U} v \phi_{x_{i}}=\lim _{m \rightarrow \infty} \int_{U} v^{m} \phi_{x_{k}} d x=-\lim _{m \rightarrow \infty} f^{\prime}\left(u^{m}\right) u_{x_{i}}^{m} d x=-\int_{U} f^{\prime}(u) u_{x_{k}} \phi d x
$$

where in the last equality we used Lebesgue's Dominated Convergence Theorem, $\left|f^{\prime}\left(u^{m}\right) u_{x_{i}}^{m}\right| \leq 2 M\left|u_{x_{i}}\right| a . e$. and the a.e. convergence of the integrand. Hence $v_{x_{i}}$ exists and by defintion, $v_{x_{i}}=f^{\prime}(u) u_{x_{i}}$, which is in L^{p} since $\left|v_{x_{i}}\right| \leq M\left|u_{x_{i}}\right|$.
2. Show that if $u \in W^{1, p}(\Omega)$ with $1 \leq p<\infty$, then $u^{+}:=\max (u, 0) \in W^{1, p}(U), u^{-}:=\min (u, 0) \in W^{1, p}(U)$ and

$$
\begin{aligned}
& D u^{+}=\left\{\begin{array}{l}
D u, \text { if } u>0 \\
0, \text { if } u \leq 0
\end{array}\right. \\
& D u^{-}=\left\{\begin{array}{l}
0 \text { if } u \geq 0 \\
D u, \text { if } u<0
\end{array}\right.
\end{aligned}
$$

As a consequence, show that $|D| u||=|D u|$ and hence

$$
\|u\|_{W^{1, p}(U)}=\|\mid u\|_{W^{1, p}(U)}
$$

Hint: $u^{+}=\lim _{\epsilon \rightarrow 0} f_{\epsilon}(u)$ where

$$
f_{\epsilon}(u)=\left\{\begin{array}{l}
\sqrt{u^{2}+\epsilon^{2}}-\epsilon \text { if } u \geq 0 \\
0, \text { if } u \leq 0
\end{array}\right.
$$

Then apply Chain rule and take limits as $\epsilon \rightarrow 0$.
Solution: We follow the hint. Let f_{ϵ} be defined as above. We see that $f_{\epsilon} \in C^{1}$ and $\mid f_{\epsilon}^{\prime}(s) l e q 1$ for all ϵ, s. Moreover we have $u^{+}(x)=\lim _{\epsilon \rightarrow 0+} f_{\epsilon}(u(x))$ for all x. By Problem One, $f_{\epsilon}(u) \in W^{1, p}$ and $D_{x_{k}} f_{\epsilon}(u)=f_{\epsilon}^{\prime}(u) u_{x_{k}}$ for each k. hence for any test function $\phi \in C_{0}^{\infty}$ we have

$$
\int_{U} u^{+} \phi_{x_{k}}=\lim _{\epsilon \rightarrow 0} f_{\epsilon}(u) \phi_{x_{k}}=-\lim _{\epsilon \rightarrow 0} \int_{U} f_{\epsilon}^{\prime}(u) u_{x_{k}} \phi d x==\int_{U} \chi_{\{u>0\}} u_{x_{k}} \phi
$$

where $\chi_{\{u>0\}}$ is the characteristic function of the region $u>0$. We have used Lebesgue's Dominated Convergence Theorem in the first and the third equalities. Thus $D u^{+}$exists and $D u^{+}=\chi_{\{u>0\}} D u$ which belongs to L^{p}. The proofs for the others are similar.
3. Verify that if $n>1$, the function $u=\log \log \left(1+\frac{1}{|x|}\right)$ belongs to $W^{1, n}(U), U=B_{1}(0)$

Solution: $u_{x_{i}}=\frac{1}{\log \left(1+\frac{1}{|x|}\right)}\left(-\frac{x_{i}}{|x|^{3}}\right)$ and hence $|D u| \leq \frac{1}{\log \left(1+\frac{1}{|x|}\right)} \frac{1}{|x|^{2}}$. The rest is trivial computation.
4. Let $u \in C^{\infty}\left(\bar{R}_{+}^{n}\right)$. Extend u to $E u$ on R^{n} such that

$$
E u=u, x \in R_{+}^{n} ; E u \in C^{2}\left(R^{n}\right) ;\|E u\|_{W^{3, p}} \leq\|u\|_{W^{3, p}}
$$

Here $R_{+}^{n}=\left\{\left(x^{\prime}, x_{n}\right) ; x_{n}>0\right\}$.
Hint: for $x_{n}<0$ define

$$
E u\left(x^{\prime}, x_{n}\right)=c_{1} u\left(x^{\prime},-x_{n}\right)+c_{2} u\left(x^{\prime},-\frac{x_{n}}{2}\right)+c_{3} u\left(x^{\prime},-\frac{x_{n}}{3}\right)
$$

and find the coefficients c_{1}, c_{2} and c_{3}.
Solution: Following the hint, let the extension be as above. Now we compute: C^{0} implies $\lim _{x_{n} \rightarrow 0+} u\left(x^{\prime}, x_{n}\right)=$ $\lim _{x_{n} \rightarrow 0-} E u\left(x^{\prime}, x_{n}\right)$ and hence

$$
c_{1}+c_{2}+c_{3}=1
$$

For C^{1} we get

$$
c_{1}(-1)+c_{2}\left(-\frac{1}{2}\right)+c_{3}\left(-\frac{1}{3}\right)=1
$$

For C^{2} we get

$$
c_{1}(-1)^{2}+c_{2}\left(-\frac{1}{2}\right)^{2}+c_{3}\left(-\frac{1}{3}\right)^{2}=1
$$

Solving the above three equations for c_{1}, c_{2}, c_{3} we obtain

$$
c_{1}=6, c_{2}=-32, c_{3}=27
$$

5. Assume that $n=1$ and $w \in W^{1, p}(R)$ for $1<p<\infty$. Show that

$$
\sup |u| \leq C\|u\|_{W^{1, p}},|u(x)-u(y)| \leq C|x-y|^{1-\frac{1}{p}}\|u\|_{W^{1, p}}
$$

Solution: By density theorem we may assume that $u \in C_{0}^{\infty}(R)$. Then we have by Holder's

$$
\begin{aligned}
|u(x)-u(y)| & =\left|\int_{x}^{y} D u(s) d s\right| \leq|x-y|^{1-\frac{1}{p}}\|D u\|_{L^{p}} \\
u^{p}(x)=u^{p}(x)-u^{p}(-\infty) & =\int_{-\infty}^{x} D u^{p} d s=\int_{-\infty}^{x} p u^{p-1} D u d s \leq p\|u\|_{L^{p}}\|D u\|_{L^{p}}
\end{aligned}
$$

6. (Gagliardo-Nirenberg inequality) Let $n \geq 2,1<p<n$ and $1 \leq q<r<\frac{n p}{n-p}$. For some $\theta \in(0,1)$ and some constant $C>0$ we have

$$
\|u\|_{L^{r}\left(R^{n}\right)} \leq C\|u\|_{L^{q}\left(R^{n}\right)}^{1-\theta}\|\nabla u\|_{L^{p}\left(R^{n}\right)}^{\theta}, \forall u \in C_{c}^{\infty}\left(R^{n}\right)
$$

(i) Use scaling to find the θ.
(ii) Prove the inequality.

Hint: Do an interpretation of L^{r} in terms of L^{q} and $L^{\frac{n p}{n-p}}$ and then apply Sobolev.
Solution: (i) letting $u_{\lambda}(x)=u(\lambda x)$,

$$
\begin{aligned}
\left\|u_{\lambda}\right\|_{L^{s}} & =\lambda^{-n / s}\|u\|_{L^{s}} \\
\left\|\nabla u_{\lambda}\right\|_{L^{s}} & =\lambda^{1-\frac{n}{s}}\|\nabla u\|_{L^{s}}
\end{aligned}
$$

since $\lambda>0$ is arbitrary the power of λ must match, we get

$$
\frac{n}{r}=(1-\theta) \frac{n}{q}+\theta\left(-1+\frac{n}{p}\right)
$$

and hence

$$
\theta=\frac{\frac{1}{q}-\frac{1}{r}}{\frac{1}{n}+\frac{1}{q}-\frac{1}{p}}
$$

(ii) For θ determined as above, the Holder inequality implies that

$$
\|u\|_{L^{r}} \leq\|u\|_{L^{q}}^{1-\theta}\|u\|_{L^{\frac{n p}{n-p}}}^{1-\theta}
$$

By Sobolev embedding ives the desired estimate.

