
MATH 516-101 Solutions to Homework Four

This set of homework problems is concerned with Sobolev spaces and weak solutions.

1. Fix α > 0 and let U = B1(0). Show that there exists a constant C, depending on n and α such that∫
U

u2dx ≤ C

∫
U

|∇u|2

provided
u ∈ W 1,2(U), |{x ∈ U |u(x) = 0}| ≥ α

Solutions: We prove it by contradiction. Suppose the inequality is not true. Then there exists un such that∫
U

u2
ndx ≥ n

∫
U

|∇un|2

|{un(x) = 0}| ≥ α

As in the proof of Poincare ineqaulity, we may assume that∫
U

u2
n = 1,

∫
U

|∇un|2 ≤ 1

n

Since un is bounded in W 1,2, by embedding theorem, there exists a subsequence of un, still denoted by un, such that
un → u0 in L2 and

∫
U
u2
0 = 1. By Fatou’s Lemma, we have∫

U

|∇u0|2 ≤ lim
n→+∞

|∇un|2 = 0

This implies that
u0 ≡ Constant

On the other hand∫
U

|un − u0|2dx ≥
∫
U∩{un=0}

|u0|2dx ≥ |Constant|2|{un = 0}| ≥ |Constant|2α

but
∫
U
|un − u0|2 → 0 since un → u0 in L2. Thus the constant must be zero and hence u0 = 0, un → 0 in L2, which

contradicts with ∥u0∥L2 = 1.

2. (a) Let n > 4. Show that the embedding W 2,2(U) → L
2n

n−4 (U) is not compact; (b) Describe the embedding of
W 2,p(U) in different dimensions. State if the embedding is continuous or compact.

Solutions: (a) Suppose Br(x0) ⊂ U . Let η(x) = 1 for |x− x0| ≤ 1 and η(x) = 1 for |x− x0| ≥ 2. For λ > 0, we set

uλ(x) = λ
n−4
4 η(λx)

where λ is large. It is easy to see that ∫
U

u
2n

n−4

λ =

∫
η

2n
n−4
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∫
U

|∇2
λu|2 =

∫
|∇2η|2

For λ = 2k, uλ is a bounded sequence in W 2,2, but uλ contains a subsequence converging in L2n/(n−4). In fact for
k > m ∫

U

(u2k − u2m)
2n

n−4 =

∫
Rn

(η(x)− 2(m−k)n−4
4 η(2m−kx))

2n
n−4 ≥ 1

2

∫
η

2n
n−4 > 0

(b) If 2− n
p < 0, i.e., p < n

2 , then W 2,p is compactly embedded into Lq for any q < np
n−2p and continuously embedded

into L
np

n−2p .
If p = n

2 ,then W 2,p is compactly embedded into Lq for any q < +∞ and continuously embedded into Orlicz space

eu
2

.
If n

2 < p < n, then W 2,p is compactly embedded into Cα for any α < 2− n
p and continuously embedded into C2−n

p

If p = n, then W 2,p is compactly embedded into Cα for any α < 1.
If p > n, then W 2,p is compactly embedded into C1,α for any α < 1− n

p and continuously embedded into C1,1−n
p .

3. Consider the following one-dimensional problem

(1) − a(x)uxx + b(x)ux + c(x)u = f, 0 < x < L, u(0) = u(L) = 0

where
0 < c1 ≤ a(x) ≤ c2

(a) Show that (1) can always be transformed into a self-adjoint form:

(2) − (ãux)x + c̃u = f̃

Solutions: We multiply (1) by some positive function β(x)

−aβuxx + bβux + cβu = fβ

−(aβux) + (aβ)xux + bβux + cβ = fβ

Now we choose
(aβ)x + bβ = 0

aβ = e−
∫

b
a

and

ã = aβ, c̃ = cβ, f̃ = fβ

(b) State the definition of weak solution.

Solution: A weak solution to (2) is a H1
0 function u such that∫

U

ãuxvx + c̃uv =

∫
U

f̃v, ∀v ∈ H1
0 (U)
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(c) Find conditions on c̃ such that the existence of a weak solution to (1) exists.

Solution: By Fredholm Alternative, a weak solution exists for all f̃ ∈ L2(U) if there exists only trivial solution to

−(ãux)x + c̃u = 0

So the condition for existence is: the only weak solution to

−(ãux)x + c̃u = 0

is zero.

4. (a). Assume that U is connected. A function u ∈ W 1,2(U) is a weak solution of the Neumann problem

(3) −∆u = f in U ;
∂u

∂ν
= 0 on ∂U

if ∫
U

Du ·Dv =

∫
U

fv, ∀v ∈ W 1,2

Suppose that f ∈ L2. Show that (3) has a weak solution if and only if∫
U

f = 0

Solution: necessity is easy to show: just let v ≡ 1. To prove that it is also sufficient, we either use Lax-Milgram theorem
or Fredholm Alternatives.

On existence: Let H = {u ∈ W 1,2(U) |
∫
U
u = 0} with inherited W 1,2-inner product. It is clearly a linear subspace.

To be a Hilbert space, we need to show it is closed: In fact this is trivial since W 1,2 is compactly embedded into L2.
Let the bilinear form be

B[u; v] =

∫
U

DuDvdx

We check that it satisfies the conditions of the Lax-Milgram Theorem on H. Indeed, clearly B[u; v] ≤ ∥u∥W 1,2∥v∥W 1,2

and

B[u;u] =

∫
U

|∇u|2

By Poincare’s inequality ∫
U

(u− 1

|U |

∫
U

u)2 =

∫
U

u2 ≤ C

∫
U

|∇U |2

Hence

B[u;u] ≥ 1

C + 1
∥u∥W 1,2

By Lax-Milgram theorem, for all f ∈ L2,
∫
f = 0, the problem

B[u; v] = (f, v), ∀v ∈ H
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has a unique solution u.
Now for any v ∈ W 1,2, v − v̄ ∈ H, where v̄ is the average of v. Then we have

B[u; v − v̄] = (f, v − v̄)

which implies ∫
U

DuDv =

∫
U

fv

Another proof is to use Fredholm Alternatives.
(b). Discuss how to define a weak solution of the Poisson equation with Robin boundary conditions

(4) −∆u = f in U ; u+
∂u

∂ν
= 0 on ∂U

Solution: If everything is smooth, we multiply (4) by v and integrate:∫
U

DuDv −
∫
∂U

v
∂u

∂ν
=

∫
U

fv

By the BC, we have ∫
U

DuDv +

∫
∂U

uv =

∫
U

fv

We now define a weak solution to (4) if for all v ∈ W 1,2 there holds∫
U

DuDv +

∫
∂U

uv =

∫
U

fv

Note that the second term makes sense by the trace theorem.
Defining the bilinear form as

B[u; v] =

∫
U

DuDv +

∫
∂U

uv

we can use Lax-Milgram theorem to prove the existence, but a new kind of Poincare inequality is needed!!!
5. Let u ∈ W 1,2(Rn) have compact support and be a weak solution of the semilinear PDE

−∆u+ u3 = f in Rn

where f ∈ L2(Rn). Prove that u ∈ W 2,2(Rn).
Hint: mimic the proof of interior regularity but without the cut-off function.

Solutions: We follow the same proof. The problem is how to deal with the second term. Multiplying the equation by

v = D−h
k (Dh

ku)

which is W 1,2, thanks to compact support of u. The rest of the proof is similar to the Theorem we proved in class. the
only difference is the second term∫

u3D−h
k (Dh

ku) = −
∫

Dh
k (u

3)Dh
ku = −

∫
u3(x+ h)− u3(x)

h

u(x+ h)− u(x)

h

= −
∫

(u(x+ h)− u(x))2

h2
(u2(x+ h) + u2(x) + u(x+ h)u(x))

≤ 0
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