This set of homework problems is concerned with Sobolev spaces and weak solutions.

1. Fix $\alpha>0$ and let $U=B_{1}(0)$. Show that there exists a constant C, depending on n and α such that

$$
\int_{U} u^{2} d x \leq C \int_{U}|\nabla u|^{2}
$$

provided

$$
u \in W^{1,2}(U),|\{x \in U \mid u(x)=0\}| \geq \alpha
$$

Solutions: We prove it by contradiction. Suppose the inequality is not true. Then there exists u_{n} such that

$$
\begin{gathered}
\int_{U} u_{n}^{2} d x \geq n \int_{U}\left|\nabla u_{n}\right|^{2} \\
\left|\left\{u_{n}(x)=0\right\}\right| \geq \alpha
\end{gathered}
$$

As in the proof of Poincare ineqaulity, we may assume that

$$
\int_{U} u_{n}^{2}=1, \int_{U}\left|\nabla u_{n}\right|^{2} \leq \frac{1}{n}
$$

Since u_{n} is bounded in $W^{1,2}$, by embedding theorem, there exists a subsequence of u_{n}, still denoted by u_{n}, such that $u_{n} \rightarrow u_{0}$ in L^{2} and $\int_{U} u_{0}^{2}=1$. By Fatou's Lemma, we have

$$
\int_{U}\left|\nabla u_{0}\right|^{2} \leq \lim _{n \rightarrow+\infty}\left|\nabla u_{n}\right|^{2}=0
$$

This implies that

$$
u_{0} \equiv \text { Constant }
$$

On the other hand

$$
\int_{U}\left|u_{n}-u_{0}\right|^{2} d x \geq \int_{U \cap\left\{u_{n}=0\right\}}\left|u_{0}\right|^{2} d x \geq \mid \text { Constant }^{2}\left|\left\{u_{n}=0\right\}\right| \geq \mid \text { Constant }^{2} \alpha
$$

but $\int_{U}\left|u_{n}-u_{0}\right|^{2} \rightarrow 0$ since $u_{n} \rightarrow u_{0}$ in L^{2}. Thus the constant must be zero and hence $u_{0}=0, u_{n} \rightarrow 0$ in L^{2}, which contradicts with $\left\|u_{0}\right\|_{L^{2}}=1$.
2. (a) Let $n>4$. Show that the embedding $W^{2,2}(U) \rightarrow L^{\frac{2 n}{n-4}}(U)$ is not compact; (b) Describe the embedding of $W^{2, p}(U)$ in different dimensions. State if the embedding is continuous or compact.
Solutions: (a) Suppose $B_{r}\left(x_{0}\right) \subset U$. Let $\eta(x)=1$ for $\left|x-x_{0}\right| \leq 1$ and $\eta(x)=1$ for $\left|x-x_{0}\right| \geq 2$. For $\lambda>0$, we set

$$
u_{\lambda}(x)=\lambda^{\frac{n-4}{4}} \eta(\lambda x)
$$

where λ is large. It is easy to see that

$$
\int_{U} u_{\lambda}^{\frac{2 n}{n-4}}=\int \eta^{\frac{2 n}{n-4}}
$$

$$
\int_{U}\left|\nabla_{\lambda}^{2} u\right|^{2}=\int\left|\nabla^{2} \eta\right|^{2}
$$

For $\lambda=2^{k}, u_{\lambda}$ is a bounded sequence in $W^{2,2}$, but u_{λ} contains a subsequence converging in $L^{2 n /(n-4)}$. In fact for $k>m$

$$
\int_{U}\left(u_{2^{k}}-u_{2^{m}}\right)^{\frac{2 n}{n-4}}=\int_{R^{n}}\left(\eta(x)-2^{(m-k) \frac{n-4}{4}} \eta\left(2^{m-k} x\right)\right)^{\frac{2 n}{n-4}} \geq \frac{1}{2} \int \eta^{\frac{2 n}{n-4}}>0
$$

(b) If $2-\frac{n}{p}<0$, i.e., $p<\frac{n}{2}$, then $W^{2, p}$ is compactly embedded into L^{q} for any $q<\frac{n p}{n-2 p}$ and continuously embedded into $L^{\frac{n p}{n-2 p}}$.

If $p=\frac{n}{2}$, then $W^{2, p}$ is compactly embedded into L^{q} for any $q<+\infty$ and continuously embedded into Orlicz space $e^{u^{2}}$.

If $\frac{n}{2}<p<n$, then $W^{2, p}$ is compactly embedded into C^{α} for any $\alpha<2-\frac{n}{p}$ and continuously embedded into $C^{2-\frac{n}{p}}$
If $p=n$, then $W^{2, p}$ is compactly embedded into C^{α} for any $\alpha<1$.
If $p>n$, then $W^{2, p}$ is compactly embedded into $C^{1, \alpha}$ for any $\alpha<1-\frac{n}{p}$ and continuously embedded into $C^{1,1-\frac{n}{p}}$.
3. Consider the following one-dimensional problem

$$
\text { (1) } \quad-a(x) u_{x x}+b(x) u_{x}+c(x) u=f, 0<x<L, u(0)=u(L)=0
$$

where

$$
0<c_{1} \leq a(x) \leq c_{2}
$$

(a) Show that (1) can always be transformed into a self-adjoint form:

$$
(2) \quad-\left(\tilde{a} u_{x}\right)_{x}+\tilde{c} u=\tilde{f}
$$

Solutions: We multiply (1) by some positive function $\beta(x)$

$$
\begin{gathered}
-a \beta u_{x x}+b \beta u_{x}+c \beta u=f \beta \\
-\left(a \beta u_{x}\right)+(a \beta)_{x} u_{x}+b \beta u_{x}+c \beta=f \beta
\end{gathered}
$$

Now we choose

$$
\begin{gathered}
(a \beta)_{x}+b \beta=0 \\
a \beta=e^{-\int \frac{b}{a}}
\end{gathered}
$$

and

$$
\tilde{a}=a \beta, \tilde{c}=c \beta, \tilde{f}=f \beta
$$

(b) State the definition of weak solution.

Solution: A weak solution to (2) is a H_{0}^{1} function u such that

$$
\int_{U} \tilde{a} u_{x} v_{x}+\tilde{c} u v=\int_{U} \tilde{f} v, \forall v \in H_{0}^{1}(U)
$$

(c) Find conditions on \tilde{c} such that the existence of a weak solution to (1) exists.

Solution: By Fredholm Alternative, a weak solution exists for all $\tilde{f} \in L^{2}(U)$ if there exists only trivial solution to

$$
-\left(\tilde{a} u_{x}\right)_{x}+\tilde{c} u=0
$$

So the condition for existence is: the only weak solution to

$$
-\left(\tilde{a} u_{x}\right)_{x}+\tilde{c} u=0
$$

is zero.
4. (a). Assume that U is connected. A function $u \in W^{1,2}(U)$ is a weak solution of the Neumann problem

$$
\text { (3) } \quad-\Delta u=f \text { in } U ; \frac{\partial u}{\partial \nu}=0 \text { on } \partial U
$$

if

$$
\int_{U} D u \cdot D v=\int_{U} f v, \quad \forall v \in W^{1,2}
$$

Suppose that $f \in L^{2}$. Show that (3) has a weak solution if and only if

$$
\int_{U} f=0
$$

Solution: necessity is easy to show: just let $v \equiv 1$. To prove that it is also sufficient, we either use Lax-Milgram theorem or Fredholm Alternatives.

On existence: Let $H=\left\{u \in W^{1,2}(U) \mid \int_{U} u=0\right\}$ with inherited $W^{1,2}$-inner product. It is clearly a linear subspace. To be a Hilbert space, we need to show it is closed: In fact this is trivial since $W^{1,2}$ is compactly embedded into L^{2}.

Let the bilinear form be

$$
B[u ; v]=\int_{U} D u D v d x
$$

We check that it satisfies the conditions of the Lax-Milgram Theorem on H. Indeed, clearly $B[u ; v] \leq\|u\|_{W^{1,2}}\|v\|_{W^{1,2}}$ and

$$
B[u ; u]=\int_{U}|\nabla u|^{2}
$$

By Poincare's inequality

$$
\int_{U}\left(u-\frac{1}{|U|} \int_{U} u\right)^{2}=\int_{U} u^{2} \leq C \int_{U}|\nabla U|^{2}
$$

Hence

$$
B[u ; u] \geq \frac{1}{C+1}\|u\|_{W^{1,2}}
$$

By Lax-Milgram theorem, for all $f \in L^{2}, \int f=0$, the problem

$$
B[u ; v]=(f, v), \forall v \in H
$$

has a unique solution u.
Now for any $v \in W^{1,2}, v-\bar{v} \in H$, where \bar{v} is the average of v. Then we have

$$
B[u ; v-\bar{v}]=(f, v-\bar{v})
$$

which implies

$$
\int_{U} D u D v=\int_{U} f v
$$

Another proof is to use Fredholm Alternatives.
(b). Discuss how to define a weak solution of the Poisson equation with Robin boundary conditions

$$
\text { (4) }-\Delta u=f \text { in } U ; u+\frac{\partial u}{\partial \nu}=0 \text { on } \partial U
$$

Solution: If everything is smooth, we multiply (4) by v and integrate:

$$
\int_{U} D u D v-\int_{\partial U} v \frac{\partial u}{\partial \nu}=\int_{U} f v
$$

By the BC, we have

$$
\int_{U} D u D v+\int_{\partial U} u v=\int_{U} f v
$$

We now define a weak solution to (4) if for all $v \in W^{1,2}$ there holds

$$
\int_{U} D u D v+\int_{\partial U} u v=\int_{U} f v
$$

Note that the second term makes sense by the trace theorem.
Defining the bilinear form as

$$
B[u ; v]=\int_{U} D u D v+\int_{\partial U} u v
$$

we can use Lax-Milgram theorem to prove the existence, but a new kind of Poincare inequality is needed!!!
5. Let $u \in W^{1,2}\left(R^{n}\right)$ have compact support and be a weak solution of the semilinear PDE

$$
-\Delta u+u^{3}=f \text { in } R^{n}
$$

where $f \in L^{2}\left(R^{n}\right)$. Prove that $u \in W^{2,2}\left(R^{n}\right)$.
Hint: mimic the proof of interior regularity but without the cut-off function.
Solutions: We follow the same proof. The problem is how to deal with the second term. Multiplying the equation by

$$
v=D_{k}^{-h}\left(D_{k}^{h} u\right)
$$

which is $W^{1,2}$, thanks to compact support of u. The rest of the proof is similar to the Theorem we proved in class. the only difference is the second term

$$
\begin{gathered}
\int u^{3} D_{k}^{-h}\left(D_{k}^{h} u\right)=-\int D_{k}^{h}\left(u^{3}\right) D_{k}^{h} u=-\int \frac{u^{3}(x+h)-u^{3}(x)}{h} \frac{u(x+h)-u(x)}{h} \\
=-\int \frac{(u(x+h)-u(x))^{2}}{h^{2}}\left(u^{2}(x+h)+u^{2}(x)+u(x+h) u(x)\right) \\
\leq 0
\end{gathered}
$$

