MATH 516-101 Solutions to Homework Five

This set of homework problems is concerned with Moser's iterations and maximum principles

1. Show that $u=\log |x|$ is in $H^{1}\left(B_{1}\right)$, where $B_{1}=B_{1}(0) \subset R^{3}$ and that it is a weak solution of

$$
-\Delta u+c(x) u=0
$$

for some $c(x) \in L^{\frac{3}{2}}\left(B_{1}\right)$ but u is not bounded.
Solutions: Direct Computations.
2. Let u be a weak sub-solution of

$$
-\sum_{i, j} \partial_{x_{j}}\left(a^{i j} \partial_{x_{i}} u\right)+\sum_{i} b^{i} \partial_{x_{i}} u+c(x) u=f
$$

where $\theta \leq\left(a^{i j}\right) \leq C_{2}<+\infty, b^{i} \in L^{\infty}$. Suppose that $c(x) \in L^{\frac{n}{2}}\left(B_{1}\right), f \in L^{q}\left(B_{1}\right)$ where $q>\frac{n}{2}$. Show that there exists a generic constant $\epsilon_{0}>0$ such that if $\int_{B_{1}}|c|^{\frac{n}{2}} d x \leq \epsilon_{0}$, then

$$
\sup _{B_{1 / 2}} u^{+} \leq C\left(\left\|u^{+}\right\|_{L^{2}\left(B_{1}\right)}+\|f\|_{L^{q}\left(B_{1}\right)}\right)
$$

Hint: following the Moser's iteration procedure.
Solutions: The proof is similar to what I did in class: we get first

$$
\int|D(w \eta)|^{2} d x \leq C \int\left(|D \eta|^{2}+\eta^{2}\right) w^{2}+\int|c| w^{2} \eta^{2}
$$

Now the last term can be estimated as

$$
\int|c| w^{2} \eta^{2} \leq\left(\int|c|^{\frac{n}{2}}\right)^{\frac{2}{n}}\left(\int(w \eta)^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \leq \epsilon_{0}^{n / 2}\|w \eta\|_{L^{\frac{2 n}{n-2}}}^{2}
$$

Since

$$
\|w \eta\|_{L^{2 n /(n-2)}}^{2} \leq C \int|D(w \eta)|^{2} \leq C \int\left(|D \eta|^{2}+\eta^{2}\right) w^{2}+C \epsilon_{0}^{n / 2}\|w \eta\|_{L^{\frac{2 n}{n-2}}}^{2}
$$

we obtain that for ϵ_{0} small

$$
\|w \eta\|_{L^{2 n /(n-2)}}^{2} \leq C \int\left(|D \eta|^{2}+\eta^{2}\right) w^{2}
$$

The rest of the proof then follows.
3. Let u be a smooth solution of $L u=-\sum_{i, j} a^{i j} u_{x_{i} x_{j}}=0$ in U and $a^{i j}$ are C^{1} and uniformly elliptic. Set $v:=$ $|D u|^{2}+\lambda u^{2}$. Show that

$$
L v \leq 0 \text { in } U, \quad \text { if } \lambda \text { is large enough }
$$

Deduce, by Maximum Principle that

$$
\|D u\|_{L^{\infty}(U)} \leq C\|D u\|_{L^{\infty}(\partial \Omega)}+C\|u\|_{L^{\infty}(\partial \Omega)}
$$

Solutions: Direct Computations. In fact we write $v=u_{k}^{2}+\lambda u^{2}$ then

$$
v_{i j}=2 u_{k i} u_{k j}+2 u_{k i j} u_{k}+2 \lambda u_{i} u_{j}+2 \lambda u u_{i j}
$$

Hence

$$
L v \leq-2 \theta \sum_{k, i}\left|u_{k i}\right|^{2}-2 \lambda \theta|\nabla u|^{2}-2 a^{i j} u_{k i j} u_{k}
$$

By the equation

$$
a^{i j} u_{k i j}=-a_{k}^{i j} u_{i j}
$$

So

$$
\begin{gathered}
L v \leq-2 \theta \sum_{k, i}\left|u_{k i}\right|^{2}-2 \lambda \theta|\nabla u|^{2}+C u_{i j} u_{k} \\
\leq 0
\end{gathered}
$$

for λ large.
4. Let u be a harmonic function in a punctured ball

$$
\Delta u=0 \text { in } B_{1}(0) \backslash\{0\}
$$

Show that if $u(x)=o(\log |x|)$ when $n=2$ and $u(x)=o\left(|x|^{2-n}\right)$ if $n \geq 3$, then u is bounded.
Solutions: We prove that u is bounded from above first. Let $n \geq 3$. Since $u(x)=o\left(|x|^{2-n}\right)$, for any $\epsilon>0$ there exists $\delta>0$ such that for all $|x|<\delta$,

$$
u(x) \leq \epsilon|x|^{2-n}
$$

Let $v=C+\epsilon|x|^{2-n}$ where $C=\sup _{x \in \partial B_{1}} u$. Consider the domain $U=B_{1} \backslash B_{r}$ where $r<\delta$. Then the function $u-v$ satisfies

$$
\Delta(u-v)=0 \text { in } U, u \leq v \text { on } \partial U
$$

By Maximum Principle,

$$
\max _{U}(u-v)=\max _{\partial U}(u-v) \leq 0
$$

Hence

$$
u \leq v=C+\epsilon|x|^{2-n}, \forall r \leq|x|<1
$$

Now letting $r \rightarrow 0$ first we obtain

$$
u \leq v=C+\epsilon|x|^{2-n}, \forall 0<|x|<1
$$

Then we let $\epsilon \rightarrow 0$.
5. Let u be a smooth function satisfying

$$
\Delta u-u=f(x),|u| \leq 1, \quad \text { in } R^{n}
$$

where

$$
|f(x)| \leq e^{-\frac{1}{2}|x|}
$$

Deduce from maximum principle that u actually decays

$$
|u(x)| \leq C e^{-\frac{1}{2}|x|}
$$

Hint: Comparing u with the following function

$$
C_{1} e^{-\frac{1}{2}|x|}+\epsilon e^{\frac{1}{2}|x|}
$$

for $|x|$ large, where C_{1} is appropriately chosen.
Solutions: The proof is similar to Problem 4. We note that since u is bounded, we have

$$
\lim _{|x| \rightarrow+\infty} \frac{u(x)}{e^{1 / 2|x|}}=0
$$

which means that for $\epsilon>0$ small there exists $R_{\epsilon}>0$ such that

$$
u(x) \leq \epsilon e^{\frac{1}{2}|x|}, \quad|x|>R_{\epsilon}
$$

Now we let

$$
v=C_{1} e^{-\frac{1}{2}|x|}+\epsilon e^{\frac{1}{2}|x|}
$$

we have

$$
\begin{aligned}
-\Delta v+v=C_{1}\left(\frac{3}{4}+\right. & \left.\frac{1}{2|x|}\right) e^{-1 / 2|x|}+\epsilon\left(\frac{3}{4}-\frac{1}{2|x|}\right) e^{1 / 2|x|} \\
& \geq \frac{3}{4} C_{1} e^{-1 / 2|x|}
\end{aligned}
$$

for $|x|>1$.
Now we let $R>R_{\epsilon}$ and $U=B_{R} \backslash B_{1}$. We compute for $x \in U$

$$
L(u-v)=-\Delta(u-v)+u-v \leq-f-\frac{3}{4} C_{1} e^{-1 / 2|x|} \leq 0
$$

if C_{1} is large. On the other hand, for $x \in \partial U$, we have either $|x|=1$,

$$
u \leq C \leq C_{1} e^{-1 / 2} \leq v
$$

if C_{1} large enough, or $|x|=R>R_{\epsilon}$,

$$
u(x) \leq \epsilon e^{1 / 2|x|} \leq v
$$

By Maximum Principle we have

$$
\max _{U}(u-v)=\max _{\partial U}(u-v) \leq 0
$$

and hence

$$
u \leq C_{1} e^{-1 / 2|x|}+\epsilon e^{1 / 2|x|}, 1 \leq|x| \leq R
$$

Now letting $R \rightarrow+\infty$ first and $\epsilon \rightarrow 0$, we obtain the desired conclusion.

