## MATH 516-101 Homework Six

Due Date: December 14, 2015

1. Assume that $u$ is a smooth solution of

$$
\begin{gathered}
L u=-a^{i j} u_{i j}=f \text { in } U \\
\mathbf{u}=\mathbf{0} \text { on } \partial \mathbf{U}
\end{gathered}
$$

In this and next exercise we obtain boundary gradient estimate at $x^{0} \in \partial U$.
A barrier at $x^{0}$ is a $C^{2}$ function $w$ such that

$$
L w \geq 1 \text { in } U w\left(x^{0}\right)=0, w \geq 0 \text { on } \partial U
$$

Show that if $w$ is a barrier at $x^{0}$, there exists a constant $C$ such that

$$
\left|D u\left(x^{0}\right)\right| \leq C\left|\frac{\partial w}{\partial \nu}\left(x^{0}\right)\right|
$$

Hint: Since $u=0$ on $\partial \Omega,\left|D u\left(x^{0}\right)\right|=\left|\frac{\partial u}{\partial \nu}\left(x^{0}\right)\right|$.
2. Continue from Problem 1. Suppose that $U$ satisfies exterior ball property at $x^{0}$, i.e., there exists $B_{R}(y) \subset U^{c}$ and $\bar{B}_{R}(y) \cap \bar{U}=\left\{x^{0}\right\}$. Find a barrier $w$ of the following type

$$
w(x)=\psi(d(x)), \text { where } d(x)=|x-y|-R
$$

Hint: Compute (letting $y=0$ )

$$
\psi_{i}=\psi^{\prime} \frac{x_{i}}{|x|}, \psi_{i j}=\psi^{\prime \prime} \frac{x_{i} x_{j}}{|x|^{2}}+\psi^{\prime} \frac{1}{|x|}\left(\delta_{i j}-\frac{x_{i} x_{j}}{|x|^{2}}\right)
$$

Find $\psi$ such that

$$
\begin{gathered}
\psi(0)=0 \\
\psi^{\prime} \geq 0 \\
\psi^{\prime \prime}+C \frac{\psi^{\prime}}{d+R}=-1
\end{gathered}
$$

Solve the above ODE.
Reference: Chapter 2 of Han-Lin's book.
3. (Kelvin transform of Laplace equation) The Kelvin transform $K u$ is defined as $K u=|x|^{2-n} u\left(\frac{x}{|x|^{2}}\right)$. Show that if $u$ satisfies

$$
\Delta u+f(u)=0
$$

then $K u$ satisfies

$$
\Delta K u+\frac{1}{|x|^{n+2}} f\left(|x|^{n-2} K u\right)=0
$$

4. Use direct method to prove the existence of a smooth solution to

$$
\Delta u+\lambda u-u^{3}=0 \text { in } U, \quad u=0 \text { on } \partial U
$$

where

$$
\lambda>\lambda_{1}
$$

Show all details. Prove the uniqueness of the solution.
Hint: 1. Show that the minimum of the energy

$$
J[u]=\frac{1}{2} \int_{U}|\nabla u|^{2}-\frac{\lambda}{2} \int_{U} u^{2}+\frac{1}{4} \int_{U} u^{4}
$$

is attained in the following Banach space

$$
X=H_{0}^{1}(U) \cap L^{4}(U)
$$

Use Fatou's Lemma:

$$
\int_{U} \lim _{n} G\left(u_{n}\right) \leq \lim _{n} \int_{U} G(u)
$$

where $G(u)=|\nabla u|^{2}$ or $G(u)=u^{4}$.
2. Show that the energy is negative by taking a test function $t \phi$ where $\phi$ is the first eigenfunction.
3. Uniqueness follows from the class work, since $f(u) / u=\lambda-u^{2}$ is decreasing in $u$.
5. Use Mountain-Pass Lemma to prove the existence of a positive solution to

$$
\begin{gathered}
\epsilon^{2} \Delta u+u\left(u-\frac{1}{3}\right)(1-u)=0 \text { in } U \\
0<u<1 \text { in } U \\
u=0 \text { on } \partial U
\end{gathered}
$$

where $\epsilon>0$ is sufficiently small.
Hint: 1. modify the nonlinearity to be zero for $u>1$ and $u<0$. 2. Show that the Mountain Pass Lemma is satisfied. To show that $J(e)<0$. Choose a function $e=1$ in most of the part of $U$ except a thin part near the boundary. Then for $\epsilon$ sufficiently small, $J(e)<0$. 3. Use Maximum Principle to show that $0 \leq u \leq 1$. In fact if the minimum is negative at some place $p$ then $\Delta u=0$ in a neighborhood of $p$. By Maximum Principle for harmonic function this is not possible. 4. Use Strong Maximum Principle to show that $0<u<1$.

