MATH 516-101 Solutions to Homework Six
1. Assume that v is a smooth solution of -
Lu=—a"uj=f inU
u=0 on 9oU

In this and next exercise we obtain boundary gradient estimate at z° € OU.
A barrier at 20 is a C? function w such that

Lw>1in Uw(z®) = 0,w > 0 on OU
Show that if w is a barrier at 20, there exists a constant C' such that
Du)] < €192 a0)
Hint: Since u = 0 on 9, [Du(z°)| = |5%(2)|.
Solutions: Consider the following function v — Cw(x). It satisfies
Lu—Cw)=f-CLw< f-C<0
if C > maxy | f|. By Maximum Principle, we have
mszaLx(u - Cw)t = r%%x(u —Cw)t = r%%x(—Cw)Jr =0

and hence
u<winU

and so
u(z) — u(zo) = u(z) < Clw(x) — w(zo))

Let © =y — tv(xp). Then we obtain
u(zo — tr(xo)) — u(zo) < C(w(zg — tr(xg)) — w(xo))

u(xo — tv(xo)) — u(zg) (w(zo — tr(zg)) — w(xo))

<C

t t
Letting t — 0+, we get
ou ow
2= < 0=
ov (w0) = =C ov (%)
Similarly we get
ou ow
5( 0) < _CE(QCO)
Hence 9 9
U w
[Duteo)] = 50 (wo)| < €152 (o)



2. Continue from Problem 1. Suppose that U satisfies exterior ball property at 20, i.e., there exists Br(y) C U¢ and
Br(y) N U = {2°}. Find a barrier w of the following type

w(z) = ¥(d()), where d(z) = |v — y| - R

Hint: Compute (letting y = 0)

1T 1 TiT 1 TiTj
i = — i = (i —
V=V RpYe =Y Lp T g% )
Find % such that
¥(0) =0
Y >0
" i
c-Y -
v YR

Solve the above ODE.

Solution: We compute as in the hint:

/

g "o w Z(xz_yl)(m_y) ’(/}7/ .
alii; = (¥ |x7y|)ZaJ |x7y]|2 J +|x|¥am

Assume that

v <0, >0
. Then in order that N
—aY; > 1
we need ,
w// + C ’l/) S 1
|z -yl
which is )
1" 'll)
C——< -1
Y+ i1R =
where C' can be chosen to be large.
Now solving the above ODE, we have
1
=_———[R?—(d+R)*| - A[(d+ R)"“*! - R~¢H!
V= sl - R - A+ B |
where A is a free parameter. We need
/ 1
0<y (d)= fm(m R)+ A(C —1)(d+ R)™ ¢

which is possible if A is large enough.



3. (Kelvin transform of Laplace equation) The Kelvin transform Ku is defined as Ku = |x\2*"u(ﬁ). Show that if u
satisfies
Au+ f(u)=0
then Ku satisfies )
AKu+ ——— f(|z|"2Ku) =0

|CC‘”+2

Solution: Direct computations. One way is to use the following formula

_1 A’Vl*
Au:um«+nr w + gn—1U

r2
where 1
Ku(r,0) = r2""u(-, )

r

4. Use direct method to prove the existence of a smooth solution to
Au+du—u>=0inU, uw=0ondU
where
A > A\

Show all details. Prove the uniqueness of the solution.
Hint: 1. Show that the minimum of the energy

1 A 1

is attained in the following Banach space
X = H}(U)n L*(U)

Use Fatou’s Lemma:
/limG(un) glim/ G(u)
un n Ju

where G(u) = |Vu|? or G(u) = u*.
2. Show that the energy is negative by taking a test function t¢ where ¢ is the first eigenfunction.
3. Uniqueness follows from the class work, since f(u)/u = A — u? is decreasing in wu.

Solution: We first prove the existence. Let

1 A 1
J[u}:i/U|Vu|275/Uu2+Z/Uu4

ue X =HYU)NLYU)

where

Note that X is a Banach space under the following norm:

lull = llullmg ) + el



Step 1: we prove the existence of a minimizer

¢ = inf J[u]
ueX

In fact, by any test function, it is easy to see that c is bounded. On the other hand, since

ut =22 > —-C

we obtain that
lc] < C < 400

Let {u,} be a sequence of minimizing sequence. Then we have

1 5 1 4 1 9 )\/ 9 1/ 4
- Vu,|* + = -C< = Vul® — = + - <C
2/\ U | 8/” 2/| ul 5 [ utg [ u

/|Vun|2§0,/ufl§0
U U

Thus w, contains a subsequence u,, such that u,, — ug in L2, by Sobolev embedding.

But by Fatou’s Lemma
/ |Vuol? < lim / |V, |2
U k—+oo Jir

ué < lim ufl_
U k——+4o00 U k

ug € X

o
Juo < T Jfun,]

which implies that

Hence

By the definition, ug is a minimizer in X.

Step 2: Let ¢ € C§°(U). Then
Juo + tg] < Jlugl, vt

Thus

’

0= [uo)(¢) = /U ViV — Augd + 1l

Hence ug is a weak solution to
Au0+)\u0—u8:0

Step 3: ug >0
First of all, let ey be a test function, where ¢; is the first positive eigenfunction. Then we have

< Tleo) ([ V0112 = At) + 0(e!) <0
< 12 . 1 1 €)<

since A > A;. Thus ug # 0.



Next, replacing ug by |ug|, we can assume that ug > 0. Since wug satisfies
—Aug + Aug = —ug <0

we infer that ug is a weak sub-solution, hence by Moser’s iteration ug € L>. By W?? theory, u € C*“. By Schauder,
Ug € c?e,
Finally by Maximum Principle, ug > 0.

Step 4: We show uniqueness.
Writing f(u) = M — u3, then by Picone’s identity we get

/U(f(ull) _ f(UQ))(m — u) —/E)Uuﬂvﬂﬁ 7/6Uu§‘vﬂ|2 _0

U (5 U7 U2

Now note that f(u)/u = Au — u? is decreasing. All the three terms in the above equality are negative, and hence
uniqueness follows.
5. Use Mountain-Pass Lemma to prove the existence of a positive solution to

1
e Au 4 u(u — 5)(1 —u)=0 inU

O<u<l1l inU
u=0 on U

where ¢ > 0 is sufficiently small.

Hint: 1. modify the nonlinearity to be zero for © > 1 and v < 0. 2. Show that the Mountain Pass Lemma is satisfied.
To show that J(e) < 0. Choose a function e = 1 in most of the part of U except a thin part near the boundary. Then
for € sufficiently small, J(e) < 0. 3. Use Maximum Principle to show that 0 < u < 1. In fact if the minimum is negative
at some place p then Au = 0 in a neighborhood of p. By Maximum Principle for harmonic function this is not possible.
4. Use Strong Maximum Principle to show that 0 < u < 1.

Solution: Let f(u) = u(u —1/3)(1 — u). We first modify

F=4 0,u<0

and F(u) = [} f(s)ds. Certainly

Let

sziéww—éﬂm

We now check that J and F satisfies the Mountain-Pass Lemma
(1) J[o] =0



(2) Ju] > ¢l|u|]? for ||u] = r << 1. In fact, for u small, F(u) ~ f (0)u?/2 + O(u?) and hence

2
szi/ww
2 U

(3) There exists e € H} such that J[e] < 0. In fact we choose e = 1 when d(z,0U) > 6 > 0 and 0 < e < 1 for

d(xz,U) < 6. Then we compute
2
s =5 [ e~ [ Fe)
2 U U

< Ceé* — / F(1)<o0
d(z,U)>é
if € is sufficiently small.

(4) F satisfies |F(u)| < C(1+ |u|P) for p < 2£2. This is trivial since f is bounded and hence |F(u)| < C(1 + |ul).

(5) F satisfies the (PS) condition: First of all, Ju,] — ¢ and J [tn] — 0. Then g Jo IVun|? < Jun] + C < C and
hence u,, is bounded in H{. Since f is bounded, we have the convergence of f(u,)u, and F(u,).
By Mountain-Pass-Lemma, we obtain the existence of a critical point of J[u] and hence a weak solution to

E2AU0 + f(UO) =0

We then claim that 0 < ug < 1. In fact, if ming up = uo(p) < 0, then f(ug(x)) = 0 for ug(z) < 0. By Maximum
Principle, it is impossible. This implies that ug > 0. Similarly we can prove that maxwuy < 1. Finally by Strong
Maximum Principle, 0 < ug < 1.



