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Abstract: We prove the existence of a sequence of nondegenerate, in the sense
of Duyckaerts-Kenig-Merle [9], nodal nonradial solutions to the critical Yamabe
problem

−∆Q = |Q| 2
n−2 Q, Q ∈ D1,2(Rn).

This is the first example in the literature of nondegeneracy for nodal nonradial
solutions of nonlinear elliptic equations and it is also the only nontrivial example
for which the result of Duyckaerts-Kenig-Merle [9] applies.

1. Introduction

In this paper we consider the critical Yamabe problem

(1.1) −∆u =
n(n − 2)

4
|u| 4

n−2 u, u ∈ D1,2(Rn)

where n ≥ 3 andD1,2(Rn) is the completion of C∞0 (Rn) under the norm
√∫
Rn |∇u|2.

If u > 0 Problem (1.1) is the conformally invariant Yamabe problem. For sign-
changing u Problem (1.1) corresponds to the steady state of the energy-critical
focusing nonlinear wave equation

(1.2) ∂2
t u − ∆u − |u| 4

n−2 u = 0, (t, x) ∈ R × Rn.

These are classical problems that have attracted the attention of several researchers
in order to understand the structure and properties of the solutions to Problems
(1.1) and (1.2).

Denote the set of non-zero finite energy solutions to Problem (1.1) by

(1.3) Σ :=
{

Q ∈ D1,2(Rn)\{0} : −∆Q =
n(n − 2)

4
|Q| 4

n−2 Q
}
.

This set has been completely characterized in the class of positive solutions to
Problem (1.1) by the classical work of Caffarelli-Gidas-Spruck [5] (see also [2,
24, 31]): all positive solutions to (1.1) are radially symmetric around some point
a ∈ Rn and are of the form

(1.4) Wλ,a(x) =
( λ

λ2 + |x − a|2
) n−2

2 , λ > 0.

The research of the first author has been partly supported by Fondecyt Grant 1120151. The
research of the second author is partially supported by NSERC of Canada.
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Much less is known in the sign-changing case. A direct application of Pohozaev’s
identity gives that all sign-changing solutions to Problem (1.1) are non-radial. The
existence of elements of Σ that are nonradial sign-changing, and with arbitrary
large energy was first proved by Ding [6] using Ljusternik-Schnirelman category
theory. Indeed, via stereographic projection to S n Problem (1.1) becomes

∆S nv +
n(n − 2)

4
(|v| 4

n−2 v − v) = 0 in S n,

(see for instance [30], [14]) and Ding showed the existence of infinitely many crit-
ical points to the associated energy functional within functions of the form

v(x) = v(|x1|, |x2|), x = (x1, x2) ∈ S n ⊂ Rn+1 = Rk × Rn+1−k, k ≥ 2,

where compactness of critical Sobolev’s embedding holds, for any n ≥ 3. No
other qualitative properties are known for the corresponding solutions. Recently
more explicit constructions of sign changing solutions to Problem (1.1) have been
obtained by del Pino-Musso-Pacard-Pistoia [7, 8]. However so far only existence
is available, and there are no rigidity results on these solutions.

The main purpose of this paper is to prove that these solutions are rigid, up to the
transformations of the equation. In other words, these solutions are nondegenerate,
in the sense of the definition introduced by Duyckaerts-Kenig-Merle in [9]. Fol-
lowing [9], we first find out all possible invariances of the equation (1.1). Equation
(1.1) is invariant under the following four transformations:

(1) (translation): If Q ∈ Σ then Q(x + a) ∈ Σ,∀a ∈ Rn;

(2) (dilation): If Q ∈ Σ then λ
n−2

2 Q(λx) ∈ Σ,∀λ > 0;

(3) (orthogonal transformation): If Q ∈ Σ then Q(Px) ∈ Σ where P ∈ On and On is
the classical orthogonal group;

(4) (Kelvin transformation): If Q ∈ Σ then |x|2−N Q( x
|x|2 ) ∈ Σ.

If we denote byM the group of isometries ofD1,2(Rn) generated by the previous
four transformations, a result of Duyckaerts-Kenig-Merle [Lemma 3.8,[9]] states
thatM generates an N−parameter family of transformations in a neighborhood of
the identity, where the dimension N is given by

(1.5) N = 2n + 1 +
n(n − 1)

2
.

In other words, if Q ∈ Σ we denote

LQ := −∆ − n(n + 2)
4
|Q| 4

n−2

the linearized operator around Q. Define the null space of LQ

(1.6) ZQ =
{
f ∈ D1,2(Rn) : LQ f = 0

}
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The elements in ZQ generated by the family of transformationsM define the fol-
lowing vector space

(1.7) Z̃Q = span


(2 − n)x jQ + |x|2∂x j Q − 2x jx · ∇Q, ∂x j Q, 1 ≤ j ≤ n,

(x j∂xk − xk∂x j)Q, 1 ≤ j < k ≤ n, n−2
2 Q + x · Q

 .
Observe that the dimension of Z̃Q is at most N, but in principle it could be strictly
less than N. For example in the case of the positive solutions Q = W, it turns out
that the dimension of Z̃Q is n+ 1 as a consequence of being Q radially symmetric.
Indeed, it is known that

(1.8) Z̃W =

{
n − 2

2
W + x · ∇W, ∂x jW, 1 ≤ j ≤ n

}
.

Duyckaerts-Kenig-Merle [9] introduced the following definition of nondegener-
acy for a solution of Problem (1.1): Q ∈ Σ is said to be nondegenerate if

(1.9) ZQ = Z̃Q.

So far the only nondegeneracy example of Q ∈ Σ is the positive solution W. The
proof of this fact relies heavily on the radial symmetry of W and it is straightfor-
ward: In fact since Q = W is radially symmetric (around some point) one can de-
compose the linearized operator into Fourier modes, getting (1.9) as consequence
of a simple ode analysis. See also [27]. In the case of nodal (nonradial) solutions
this strategy no longer works out. In fact, as far as the authors know, there are no
results in the literature on nondegeneracy of nodal nonradial solutions for nonlin-
ear elliptic equations in the whole space. For positive radial solutions there have
been many results. We refer to Frank-Lenzmann [12], Frank-Lenzmann-Silvestre
[13], Kwong [21] and the references therein.

The knowledge of nondegeneracy is a crucial ingredient to show the soliton
resolution for a solution to the energy-critical wave equation (1.2) with the com-
pactness property obtained by Kenig and Merle in [16, 17]. If the dimension n
is 3, 4 or 5, and under the above nondegeneracy assumption, they prove that any
non zero such solution is a sum of stationary solutions and solitary waves that are
Lorentz transforms of the former. See also Duyckaerts, Kenig and Merle [10, 11].
Nondegeneracy also plays a vital role in the study of Type II blow-up solutions of
(1.2). We refer to Krieger, Schlag and Tataru [20], Rodnianski and Sterbenz [26]
and the references therein.

The main result of this paper can be stated as follows:

Main Result: There exists a sequence of nodal solutions to (1.1), with arbitrary
large energy, such that they are nondegenerate in the sense of (1.9).

Now let us be more precise.
Let

(1.10) f (t) = γ |t|p−1 t, for t ∈ R, and p =
n + 2
n − 2

.



4 MONICA MUSSO AND JUNCHENG WEI

The constant γ > 0 is chosen for normalization purposes to be

γ =
n(n − 2)

4
.

In [7], del Pino, Musso, Pacard and Pistoia showed that Problem

(1.11) ∆u + f (u) = 0 in Rn,

admits a sequence of entire non radial sign changing solutions with finite energy.
To give a first description of these solutions, let us introduce some notations. Fix
an integer k. For any integer l = 1, . . . , k, we define angles θl and vectors nl, tl by

(1.12) θl =
2π
k

(l − 1), nl = (cos θl, sin θl, 0), tl = (− sin θl, cos θl, 0).

Here 0 stands for the zero vector in Rn−2. Notice that θ1 = 0, n1 = (1, 0, 0), and
t1 = (0, 1, 0).

In [7] it was proved that there exists k0 such that for all integer k > k0 there exists
a solution uk to (1.11) that can be described as follows

(1.13) uk(x) = U∗(x) + ϕ̃(x)

where

(1.14) U∗(x) = U(x) −
k∑

j=1

U j(x),

while ϕ̃ is smaller than U∗. The functions U and U j are positive solutions to (1.11),
respectively defined as

(1.15) U(x) =
(

2
1 + |x|2

) n−2
2

, U j(x) = µ
− n−2

2
k U(µ−1

k (x − ξ j)).

For any integer k large, the parameters µk > 0 and the k points ξl, l = 1, . . . , k are
given by

(1.16)

 k∑
l>1

1

(1 − cos θl)
n−2

2

 µ n−2
2

k =

(
1 + O(

1
k

)
)
, for k → ∞

in particular, as k → ∞, we have

µk ∼ k−2 if n ≥ 4, µk ∼ k−2| log k|−2 if n = 3.

Furthermore

(1.17) ξl =

√
1 − µ2 (nl, 0).

The functions U, U j and U∗ are invariant under rotation of angle 2π
k in the x1, x2

plane, namely

(1.18) U(e
2π
k x̄, x′) = U(x̄, x′), x̄ = (x1, x3), x′ = (x3, . . . , xn).

They are even in the x j-coordinates, for any j = 2, . . . , n

(1.19) U(x1, . . . , x j, . . . , xn) = U(x1, . . . ,−x j, . . . , xn), j = 2, . . . , n
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and they respect invariance under Kelvin’s transform:

(1.20) U(x) = |x|2−nU(|x|−2x) .

In (1.13) the function ϕ̃ is a small function when compared with U∗. We will
further describe the function u, and in particular the function ϕ̃ in Section 2. Let us
just mention that ϕ̃ satisfies all the symmetry properties (1.18), (1.19) and (1.20).

Recall that Problem (1.11) is invariant under the four transformations mentioned
before: translation, dilation, rotation and Kelvin transformation. These invariances
will be reflected in the element of the kernel of the linear operator

(1.21) L(φ) := ∆φ + f ′(uk)φ = ∆φ + pγ|uk|p−2uφ

which is the linearized equation associated to (1.11) around uk.

From now on, for simplicity we will drop the label k in uk, so that u will denote
the solution to Problem (1.11) described in (1.13).

Let us introduce the following set of 3n functions

(1.22) z0(x) =
n − 2

2
u(x) + ∇u(x) · x,

(1.23) zα(x) =
∂

∂xα
u(x), for α = 1, . . . , n,

and

(1.24) zn+1(x) = −x2
∂

∂x1
u(x) + x1

∂

∂x2
u(x)

where u is the solution to (1.11) described in (1.13). Observe that zn+1 is given by

zn+1(x) =
∂

∂θ
[u(Rθx)]|θ=0

where Rθ is the rotation in the x1, x2 plane of angle θ. Furthermore,

(1.25) zn+2(x) = −2x1z0(x) + |x|2z1(x), zn+3(x) = −2x2z0(x) + |x|2z2(x)

for l = 3, . . . , n

(1.26) zn+l+1(x) = −xlz1(x) + x1zl(x), u2n+l−1(x) = −xlz2(x) + x2zl(x).

The functions defined in (1.25) are related to the invariance of Problem (1.11)
under Kelvin transformation, while the functions defined in (1.26) are related to the
invariance under rotation in the (x1, xl) plane and in the (x2, xl) plane respectively.

The invariance of Problem (1.11) under scaling, translation, rotation and Kelvin
transformation gives that the set Z̃Q (introduced in (1.7)) associated to the linear
operator L introduced in (1.21) has dimension at least 3n, since

(1.27) L(zα) = 0, α = 0, . . . , 3n − 1.

We shall show that these functions are the only bounded elements of the kernel of
the operator L. In other words, the sign changing solutions (1.13) to Problem (1.11)
constructed in [7] are non degenerate in the sense of Duyckaerts-Kenig-Merle [9].
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To state our result, we introduce the following function: For any positive integer i,
we define

Pi(x) =
∞∑

l=1

cos(l x)
li

and Qi(x) =
∞∑

l=1

sin(l x)
li

.

Up to a normalization constant, when n is even, Pn and Qn are related to the Fourier
series of the Bernoulli polynomial Bn(x), and when n is odd Pn and Qn are related
to the Fourier series of the Euler polynomial En(x). We refer to [1] for further
details.

We now define

(1.28) g(x) =
∞∑
j=1

1 − cos( jx)
jn

, 0 ≤ x ≤ π

which can be rewritten as

g(x) = Pn(0) − Pn(x).

Observe that
g′(x) = Qn−1(x), g′′(x) = Pn−2(x).

Theorem 1.1. Assume that

(1.29) g′′(x) <
n − 2
n − 1

(g′(x))2

g(x)
∀x ∈ (0, π).

Then all bounded solutions to the equation

L(φ) = 0

are a linear combination of the functions zα(x), for α = 0, . . . , 3n − 1.

When n = 3, condition (1.29) is satisfied. Indeed, in this case we observe
that g′′(x) = − ln(2 sin x

2 ). Thus, if we call ρ(x) = g′′(x)g(x) − 1
2 (g′(x))2, we get

ρ′(x) = g′′′(x)g(x) = −1
2 cot( x

2 )g(x) < 0. Since ρ(0) = 0, condition (1.29) is
satisfied.

When n = 4, let us check the condition (1.29): let x = 2πt, t ∈ (0, 1
2 ). Using the

explicit formula for the Bernoulli polynomial B4 we find that

(1.30) g(t) = t2(1 − t)2

and hence (1.29) is reduced to showing

(1.31) 12t2 − 12t + 2 <
8
3

(1 + t)2, t ∈ (0,
1
2

)

which is trivial to verify.
In general we believe that condition (1.29) should be true for any dimension

n ≥ 4. In fact, we have checked (1.29) numerically, up to dimension n ≤ 48.
Nevertheless, let us mention that even if (1.29) fails, our result is still valid for a
subsequence uk j , k j → +∞, of solutions (1.13) to Problem (1.11). Indeed, also in
this case, our proof can still go through by choosing a subsequence k j → +∞ in
order to avoid the resonance.

We end this section with some remarks.
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First: very few results are known on sign-changing solutions to the Yamabe
problem. In the critical exponent case and n = 3 the topology of lower energy level
sets was analyzed in Bahri-Chanillo [3] and Bahri-Xu [4]. For the construction of
sign-changing bubbling solutions we refer to Hebey-Vaugon [15], Robert-Vetois
[28, 29], Vaira [32] and the references therein. We believe that the non-degeneracy
property established in Theorem 1.1 may be used to obtain new type of construc-
tions for sign changing bubbling solutions.

Second: as far as we know the kernels due to the Kelvin transform (i.e. −2x jz0+

|x|2z j) were first used by Korevaar-Mazzeo-Pacard-Schoen [18] and Mazzeo-Pacard
([23]) in the construction of isolated singularities for Yamabe problem by using a
gluing procedure. An interesting question is to determine if and how the non-
degenerate sign-changing solutions can used in gluing methods.

Third: for the sign-changing solutions considered in this paper, the dimension
of the kernel equals 3n which is strictly less than N = 2n + 1 + n(n−1)

2 . An open
question is whether or not there are sign-changing solutions whose dimension of
kernel equals N.

Acknowledgements: The authors express their deep thanks to Professors M. del
Pino and F. Robert for stimulating discussions. We thank Professor C. Kenig for
communicating his unpublished result [9].

2. Description of the solutions

In this section we describe the solutions uk in (1.13), recalling some properties
that have already been established in [7], and adding some further properties that
will be useful for later purpose.

In terms of the function ϕ̃ in the decomposition (1.13), equation (1.11) gets re-
written as

(2.1) ∆ϕ̃ + pγ|U∗|p−1ϕ̃ + E + γN(ϕ̃) = 0

where E is defined by

(2.2) E = ∆U∗ + f (U∗)

and
N(ϕ) = |U∗ + ϕ|p−1(U∗ + ϕ) − |U∗|p−1U∗ − p|U∗|p−1ϕ.

One has a precise control of the size of the function E when measured for instance
in the following norm. Let us fix a number q, with n

2 < q < n, and consider the
weighted Lq norm

(2.3) ∥h∥∗∗ = ∥ (1 + |y|)n+2− 2n
q h∥Lq(Rn).

In [7] it is proved that there exist an integer k0 and a positive constant C such
that for all k ≥ k0 the following estimates hold true

(2.4) ∥E∥∗∗ ≤ Ck1− n
q if n ≥ 4, ∥E∥∗∗ ≤

C
log k

if n = 3.
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To be more precise, we have estimates for the ∥ · ∥∗∗-norm of the error term
E first in the exterior region

∩k
j=1{|y − ξ j| > η

k }, and also in the interior regions
{|y − ξ j| < η

k }, for any j = 1, . . . , k. Here η > 0 is a positive and small constant,
independent of k.

In the exterior region. We have

∥ (1 + |y|)n+2− 2n
q E(y)∥Lq(

∩k
j=1{|y−ξ j |> η

k })
≤ Ck1− n

q

if n ≥ 4, while

∥ (1 + |y|)n+2− 2n
q E(y)∥Lq(

∩k
j=1{|y−ξ j |> η

k })
≤ C

log k

if n = 3.

In the interior regions. Now, let |y − ξ j| < η
k for some j ∈ {1, . . . , k} fixed. It is

convenient to measure the error after a change of scale. Define

Ẽ j(y) := µ
n+2

2 E(ξ j + µy), |y| < η

µk
.

We have
∥ (1 + |y|)n+2− 2n

q Ẽ j(y)∥Lq(|y−ξ j |< η
µk ) ≤ Ck−

n
q if n ≥ 4

and

∥ (1 + |y|)n+2− 2n
q Ẽ j(y)∥Lq(|y−ξ j |< η

µk ) ≤
C

k log k
if n = 3.

We refer the readers to [7].

The function ϕ̃ in (1.13) can be further decomposed. Let us introduce some cut-
off functions ζ j to be defined as follows. Let ζ(s) be a smooth function such that
ζ(s) = 1 for s < 1 and ζ(s) = 0 for s > 2. We also let ζ−(s) = ζ(2s). Then we set

ζ j(y) =


ζ( kη−1|y|−2|(y − ξ|y|) | ) if |y| > 1 ,

ζ( kη−1 |y − ξ| ) if |y| ≤ 1 ,

in such a way that
ζ j(y) = ζ j(y/|y|2).

The function ϕ̃ has the form

(2.5) ϕ̃ =

k∑
j=1

ϕ̃ j + ψ.

In the decomposition (2.5) the functions ϕ̃ j, for j > 1, are defined in terms of ϕ̃1

(2.6) ϕ̃ j(ȳ, y′) = ϕ̃1(e
2π j
k iȳ, y′), j = 1, . . . , k − 1.

Each function ϕ̃ j, j = 1, . . . , k, is constructed to be a solution in the whole Rn to
the problem

(2.7) ∆ϕ̃ j + pγ|U∗|p−1ζ jϕ̃ j + ζ j[ pγ|U∗|p−1ψ + E + γN(ϕ̃ j + Σi, jϕ̃i + ψ)] = 0,
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while ψ solves in Rn

∆ψ + pγU p−1ψ + [ pγ (|U∗|p−1 − U p−1)(1 − Σk
j=1ζ j) + pγU p−1Σk

j=1ζ j ]ψ

(2.8) + pγ|U∗|p−1
∑

j

(1 − ζ j)ϕ̃ j + (1 − Σk
j=1ζ j) ( E + γN(Σk

j=1ϕ̃ j + ψ) ) = 0.

Define now ϕ1(y) = µ
n−2

2 ϕ̃1(µy + ξ1). Then ϕ1 solves the equation

∆ϕ1 + f ′(U)ϕ1 + χ1(ξ1 + µy)µ
n+2

2 E(ξ1 + µy)

(2.9) +γµ
n+2

2 N(ϕ1)(ξ1 + µy) = 0 in Rn

where
N(ϕ1) = p(|U∗|p−1ζ1 − U p−1

1 )ϕ̃1 + ζ1[p|U∗|p−1Ψ(ϕ1)

(2.10) +N(ϕ̃1 +
∑
j,1

ϕ̃ j + Ψ(ϕ1))]

In [7] it is shown that the following estimate on the function ψ holds true:

(2.11) ∥ψ∥n−2 ≤ Ck1− n
q if n ≥ 4, ∥ψ∥n−2 ≤

C
log k

if n = 3,

where

(2.12) ∥ϕ∥n−2 := ∥ (1 + |y|n−2)ϕ ∥L∞(Rn) .

On the other hand, if we rescale and translate the function ϕ̃1

(2.13) ϕ1(y) = µ
n−2

2 ϕ̃1(ξ1 + µy)

we have the validity of the following estimate for ϕ1

(2.14) ∥ϕ1∥n−2 ≤ Ck−
n
q if n ≥ 4, ∥ϕ1∥n−2 ≤

C
k log k

if n = 3.

Furthermore, we have

(2.15) ∥N(ϕ1)∥∗∗ ≤ Ck−
2n
q if n ≥ 4, ∥N(ϕ1)∥∗∗ ≤ C(k log k)−2 if n = 3,

see (2.10). Let us now define the following functions

(2.16)
πα(y) = ∂

∂yα
ϕ̃(y), for α = 1, . . . , n;

π0(y) = n−2
2 ϕ̃(y) + ∇ϕ̃(y) · y.

In the above formula ϕ̃ is the function defined in (1.13) and described in (2.5).
Observe that the function π0 is even in each of its variables, namely

π0(y1, . . . , y j, . . . , yn) = π0(y1, . . . ,−y j, . . . , yn) ∀ j = 1, . . . , n,

while πα, for α = 1, . . . , n is odd in the yα variable, while it is even in all the other
variables. Furthermore, all functions πα are invariant under rotation of 2π

k in the
first two coordinates, namely they satisfy (1.18). The functions πα can be further
described, as follows.
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Proposition 2.1. The functions πα can be decomposed into

(2.17) πα(y) =
k∑

j=1

π̃α, j(y) + π̂α(y)

where
π̃α, j(y) = π̃α,1(e

2π
k j iȳ, y′).

Furthermore, there exists a positive constant C so that

∥π̂0∥n−2 ≤ Ck1− n
q , ∥π̂ j∥n−1 ≤ Ck1− n

q , j = 1, . . . , k,

if n ≥ 4, and

∥π̂0∥n−2 ≤
C

log k
, ∥π̂ j∥n−1 ≤

C
log k

, j = 1, . . . , k,

if n = 3. Furthermore, if we denote πα,1(y) = µ
n−2

2 π̃α,1(ξ1 + µy), then

∥π0,1∥n−2 ≤ Ck−
n
q , ∥πα,1∥n−1 ≤ Ck−

n
q , α = 1, . . . , n

if n ≥ 4, and

∥π0,1∥n−2 ≤
C

k log k
, ∥πα,1∥n−1 ≤ C

C
k log k

, α = 1, . . . , 3

if n = 3.

The proof of this result can be obtained using similar arguments as the ones used
in [7]. We leave the details to the reader.

3. Scheme of the proof

Let φ be a bounded function satisfying L(φ) = 0, where L is the linear operator
defined in (1.21). We write our function φ as

(3.1) φ(x) =
3n−1∑
α=0

aαzα(x) + φ̃(x)

where the functions zα(x) are defined in (1.22), (1.23), (1.24) (1.25), (1.26) respec-
tively, while the constants aα are chosen so that

(3.2)
∫

up−1zα φ̃ = 0, α = 0, . . . , 3n − 1.

Observe that L(φ̃) = 0. Our aim is to show that, if φ̃ is bounded, then φ̃ ≡ 0.

For this purpose, recall that

u(x) = U(x) −
k∑

j=1

U j(x) + ϕ̃(x), with U(x) =
(

2
1 + |x|2

) n−2
2

and
U j(x) = µ

− n−2
2

k U(µ−1
k (x − ξ j)).
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We introduce the following functions

(3.3) Z0(x) =
n − 2

2
U(x) + ∇U(x) · x,

and

(3.4) Zα(x) =
∂

∂xα
U(x), for α = 1, . . . , n.

Moreover, for any l = 1, . . . , k, we define

(3.5) Z0l(x) =
n − 2

2
Ul(x) + ∇Ul(x) · (x − ξl).

Observe that, as a consequence of (1.22) and (1.23), we have that

z0(x) = Z0(x) −
k∑

l=1

[
Z0,l(x) +

√
1 − µ2 cos θl

∂

∂x1
Ul(x)

+

√
1 − µ2 sin θl

∂

∂x2
Ul(x)

]
+ π0(x),

where π0 is defined in (2.16). Define, for l = 1, . . . , k,

(3.6) Z1l(x) =
√

1 − µ2

[
cos θl

∂

∂x1
Ul(x) + sin θl

∂

∂x2
Ul(x)

]

(3.7) Z2l(x) =
√

1 − µ2

[
− sin θl

∂

∂x1
Ul(x) + cos θl

∂

∂x2
Ul(x)

]
where θl =

2π
k (l − 1). Furthermore, for any l = 1, . . . , k,

(3.8) Zα,l(x) =
∂

∂xα
U(x), for α = 3, . . . , n.

Thus, we can write

(3.9) z0(x) = Z0(x) −
k∑

l=1

[
Z0,l(x) + Z1,l(x)

]
+ π0(x),

z1(x) = Z1(x) −
k∑

l=1

∂

∂x1
Ul(x) + π1(x)(3.10)

= Z1(x) −
k∑

l=1

[cos θlZ1l(x) − sin θlZ2,l(x)]√
1 − µ2

+ π1(x)

z2(x) = Z2(x) −
k∑

l=1

∂

∂x2
U2(x) + π2(x)(3.11)

= Z2(x) −
k∑

l=1

[sin θlZ1l(x) + cos θlZ2,l(x)]√
1 − µ2

+ π2(x)
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and, for α = 3, . . . , n,

(3.12) zα(x) = Zα(x) −
k∑

l=1

Zα,l + πα(x)

Furthermore

(3.13) zn+1(x) =
k∑

l=1

Z2l(x) + x2π1(x) − x1π2(x)

zn+2(x) =
k∑

l=1

√
1 − µ2 cos θlZ0l(x) −

k∑
l=1

√
1 − µ2 cos θlZ1l(x)

−2x1π0(x) + |x|2π1(x)(3.14)

zn+3(x) =
k∑

l=1

√
1 − µ2 sin θlZ0l(x) −

k∑
l=1

√
1 − µ2 sin θlZ1l(x)

− 2x2π0(x) + |x|2π2(x)(3.15)

and, for α = 3, . . . , n,

(3.16) zn+α+1(x) =
√

1 − µ2
k∑

l=1

cos θlZαl(x) + x1πα(x)

(3.17) z2n+α−1(x) =
√

1 − µ2
k∑

l=1

sin θlZαl(x) + x2πα(x).

Let

(3.18) Zα0(x) = Zα(x) + πα(x), α = 0, . . . , n,

and introduce the (k + 1)-dimensional vector functions

Πα(x) =


Zα,0(x)
Zα1(x)
Zα2(x)

..
Zαk(x)

 for α = 0, 1, . . . , n.

For a given real vector c̄ =


c0
c1
c2
..

ck

 ∈ R
k+1, we write

c̄ · Πα(x) =
k∑

l=0

clZαl(x).
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With this in mind, we write our function φ̃ as

(3.19) φ̃(x) =
n∑
α=0

cα · Πα(x) + φ⊥(x)

where cα =


cα0
cα1
. . .
cαk

, α = 0, 1, . . . , n, are (n + 1) vectors in Rk+1 defined so that

∫
U p−1

l (x)Zαl(x)φ⊥(x) dx = 0, for all l = 0, 1, . . . , k, α = 0, . . . , n.

Observe that

(3.20) cα = 0 for all α and φ⊥ ≡ 0 =⇒ φ̃ ≡ 0.

Hence, our purpose is to show that all vector cα are zero vectors and that φ⊥ ≡ 0.
This will be consequence of the following three facts.

Fact 1. The orthogonality conditions (3.2) take the form

(3.21)
n∑
α=0

cα ·
∫
Παup−1zβ =

n∑
α=0

k∑
l=0

cαl

∫
Zαlup−1zβ = −

∫
φ⊥up−1zβ

for β = 0, . . . , 3n − 1. Equation (3.21) is a system of (n + 2) linear equations
(β = 0, . . . , 3n − 1) in the (n + 1) × (k + 1) variables cαl.

Let us introduce the following three vectors in Rk

(3.22) 1k =


1
1
. . .

1

 , cos =


1

cos θ2
. . .

cos θk−1

 , sin =


0

sin θ2
. . .

sin θk−1

 .
Let us write

cα =
[
cα,0
c̄α

]
, with cα,0 ∈ R, c̄α ∈ Rk, α = 0, 1, . . . , n,

and

c̄ =

 c̄0
..

c̄n

 ∈ Rn(k+1), ĉ =

 c0,0
..

cn,0

 ∈ Rn+1

We have the validity of the following

Proposition 3.1. The system (3.21) reduces to the following 3n linear conditions
of the vectors cα:

(3.23) c0 ·
[

1
−1k

]
+ c1 ·

[
0

−1k

]
= t0 + Θ1

k L0(c̄) + Θ2
k L̂0(ĉ),

(3.24) c1 ·
[

1
−cos

]
+ c2 ·

[
0

sin

]
= t1 + Θ1

k L1(c̄) + Θ2
k L̂1(ĉ),
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(3.25) c1 ·
[

0
−sin

]
+ c2 ·

[
1

−cos

]
= t2 + Θ1

k L2(c̄) + Θ2
k L̂2(ĉ),

for α = 3, . . . , n

(3.26) cα ·
[

1
−1k

]
= tα + Θ1

k Lα(c̄) + Θ2
k L̂α(ĉ),

(3.27) c2 ·
[

0
1k

]
= tn+1 + Θ

1
k Ln+1(c̄) + Θ2

k L̂n+1(ĉ),

(3.28) c0 ·
[

0
cos

]
− c1 ·

[
0

cos

]
= tn+2 + Θ

1
k Ln+2(c̄) + Θ2

k L̂n+2(ĉ),

(3.29) c0 ·
[

0
sin

]
− c1 ·

[
0

sin

]
= tn+3 + Θ

1
k Ln+3(c̄) + Θ2

k L̂n+3(ĉ),

for α = 3, . . . , n,

(3.30) cα ·
[

0
cos

]
= tn+α+1 + Θ

1
k Ln+α+1(c̄) + Θ2

k L̂n+α+1(ĉ),

(3.31) cα ·
[

0
sin

]
= t2n+α−1 + Θ

1
k L2n+α−1(c̄) + Θ2

k L̂2n+α−1(ĉ),

In the above expansions,


t0
t1
. . .
tn

 is a fixed vector with

∥


t0
t1
. . .
tn

 ∥ ≤ C∥φ⊥∥∗

and L j : Rk(n+1) → R3n, L̂ j : Rn → R3n are linear functions, whose coefficients
are constants uniformly bounded as k → ∞. The number q, with n

2 < q < n, is the
one already fixed in (2.3). Furthermore, Θ1

k and Θ2
k denote quantities which can be

described respectively as

Θ1
k = k−

n
q O(1), if n ≥ 4, Θ1

k = (k log k)−1O(1), if n = 3,

and
Θ1

k = k1− n
q O(1), if n ≥ 4, Θ1

k = (log k)−1O(1), if n = 3,

where O(1) stands for a quantity which is uniformly bounded as k → ∞.

We shall prove (3.23)–(3.31) in Section 8.
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Fact 2. Since L(φ̃) = 0, we have that

(3.32)
n∑
α=0

cα · L(Πα(x)) =
n∑
α=0

k∑
l=0

cαlL(Zα,l) = −L(φ⊥)

Let φ⊥ = φ⊥0 +
∑k

l=1 φ
⊥
l where

−L(φ⊥0 ) =
n∑
α=0

cα0L(Zα,0)

and for any l = 1, . . . , k

−L(φ⊥l ) =
n∑
α=0

cαlL(Zα,l).

Furthermore, let
φ̃⊥l (y) = µ

n−2
2 φ⊥l (µy + ξl),

and define

(3.33) ∥φ⊥∥∗ = ∥φ⊥∥n−2 +

k∑
l=1

∥φ̃⊥l ∥n−2

where the ∥ · ∥n−2 is defined in (2.12). A first consequence of (3.32) is that there
exists a positive constant C such that

(3.34) ∥φ⊥∥∗ ≤ Cµ
1
2

n∑
α=0

∥cα∥

for all k large. We postpone the proof of (3.34) to Section 9.

Fact 3. Let us now multiply (3.32) against Zβl, for β = 0, . . . , n and l = 0, 1, . . . , k.
After integrating in Rn we get a linear system of (n + 1) × (k + 1) equations in the
(n + 1) × (k + 1) constants cα j of the form

(3.35) M


c0
c1
..

cn

 = −

r0
r1
..
rn

 , with rα =


∫
Rn L(φ⊥)Zα,0∫
Rn L(φ⊥)Zα,1

..∫
Rn L(φ⊥)Zα,k


Observe first that relation (3.9) together with the fact that L(zα) = 0 for all α =
0, . . . , n, allow us to say that the vectors rα have the form

(3.36) row1 (r0) =
k+1∑
l=2

[rowl(r0) + rowl(r1)]

(3.37) row1 (r1) =
1√

1 − µ2

k+1∑
l=2

[cos θlrowl(r1) − sin θlrowl(r2)] ,
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(3.38) row1 (r2) =
1√

1 − µ2

k+1∑
l=2

[sin θlrowl(r1) + cos θlrowl(r2)]

(3.39) row1 (rα) =
k+1∑
l=2

rowl (rα) for all α = 3, . . . , n.

Here with rowl we denote the l-th row.
The matrix M in (3.35) is a square matrix of dimension [(n+ 1)× (k + 1)]2. The

entries of M are numbers of the form∫
Rn

L(Zαl)Zβ j dy

for α, β = 0, . . . , n and l, j = 0, 1, . . . , k.
A first observation is that, if α is any of the indeces {0, 1, 2}, and β is any of the

index in {3, . . . , n}, then by symmetry the above integrals are zero, namely∫
Rn

L(Zαl)Zβ j dy = 0 for any l, j = 0, . . . , k

This fact implies that the matrix M has the form

(3.40) M =
[

M1 0
0 M2

]
where M1 is a square matrix of dimension (3 × (k + 1))2 and M2 is a square matrix
of dimension [(n − 2) × (k + 1)]2.

Since ∫
Rn

L(Zαl)Zβ j dy =
∫
Rn

L(Zβ j)Zαl dy

for α, β = 0, . . . , n and l, j = 0, 1, . . . , k, we can write

(3.41) M1 =

 Ā B̄ C̄
B̄T F̄ D̄
C̄T D̄T Ḡ


where Ā, B̄, C̄, D̄, F̄ and Ḡ are square matrices of dimension (k + 1)2, with Ā, F̄
and Ḡ symmetric. More precisely,

(3.42) Ā =
(∫

L(Z0i)Z0 j

)
i, j=0,1,...,k

, F̄ =
(∫

L(Z1i)Z1 j

)
i, j=0,1,...,k

,

(3.43) Ḡ =
(∫

L(Z2i)Z2 j

)
i, j=0,1,...,k

, B̄ =
(∫

L(Z0i)Z1 j

)
i, j=0,1,...,k

,

and

(3.44) C̄ =
(∫

L(Z0i)Z2 j

)
i, j=0,1,...,k

, D̄ =
(∫

L(Z1i)Z2 j

)
i, j=0,1,...,k

Furthermore, again by symmetry, since∫
L(Zαi)Zβ j dx = 0, if α , β, α, β = 3, . . . , n
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the matrix M2 has the form

(3.45) M2 =


H̄3 0 0 0 0

0 H̄4 0 0 0
.. .. .. .. ..
0 0 0 H̄n−1 0
0 0 0 0 H̄n


where H̄ j are square matrices of dimension (k+1)2, and each of them is symmetric.
The matrices H̄α are defined by

(3.46) H̄α =

(∫
L(Zαi)Zα j

)
i, j=0,1,...,k

, α = 3, . . . , n.

Thus, given the form of the matrix M as described in (3.40), (3.41) and (3.45),
system (3.35) is equivalent to

(3.47) M1

c0
c1
c2

 =
 r0
r1
r2

 , H̄αcα = rα for α = 3, . . . , n,

where the vectors rα are defined in (3.47).

Observe that system (3.47) impose (n + 1) × (k + 1) linear conditions on the (n +
1) × (k + 1) constants cα j. We shall show that 3n equations in (3.47) are linearly
dependent. Thus in reality system (3.47) reduce to only (n+1)×(k+1)−3n linearly
independent conditions on the (n + 1) × (k + 1) constants cα j. We shall also show
that system (3.47) is solvable. Indeed we have the validity of the following

Proposition 3.2. There exist k0 and C such that, for all k > k0 System (3.47) is
solvable. Furthermore, the solution has the form

c0
c1
c2

 =
 v0

v1
v2

 + s1



1
−1k

0
−1k

0
0


+ s2



0
0
1

− 1√
1−µ2

cos

0
1√
1−µ2

sin


+ s3



0
0
0

− 1√
1−µ2

sin

1
− 1√

1−µ2
cos



+s4



0
0
0

0
1k


+ s5



0
cos

0
−cos

0
0


+ s6



0
sin

0
−sin

0
0


and

cα = vα + sα1

[
1

−1k

]
+ sα2

[
0

cos

]
+ sα3

[
0

sin

]
, α = 3, . . . , n

for any s1, . . . , s6, sα1, sα2, sα3 ∈ R, where the vectors vα are fixed vectors with

∥vα∥ ≤ C∥φ⊥∥, α = 0, 1, . . . , n.
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Conditions (3.23)–(3.31) guarantees that the solution cα to (3.47) is indeed unique.
Furthermore, we shall show that there exists a positive constant C such that

(3.48)
n∑
α=0

∥cα∥ ≤ C∥φ⊥∥∗.

Here ∥ · ∥ denotes the euclidean norm in Rk.

Estimates (3.48) combined with (3.34) gives that

(3.49) cα = 0 ∀α = 0, . . . , n.

Replacing equation (3.49) into (3.34) we finally get (3.20), namely

cα = 0 for all α and φ⊥ ≡ 0.

Scheme of the paper: In Section 4 we discuss and simplify system (3.47). In Sec-
tion 5 we establish an invertibility theory for solving (3.47). Section 6 is devoted
to prove Proposition 3.2. In Section 7 we prove Theorem 1.1. Section 8 is devoted
to the proof of Proposition 3.1, while Section 9 is devoted to the proof of (3.34).
Section 10 is devoted to the detailed proofs of several computations.

4. A first simplification of the system (3.47)

Let us consider system (3.47) and let us fix α ∈ {3, . . . , n}. Recall that the
function zα defined in (1.23) satisfies L(zα) = 0. Hence, by (3.9), (3.18) and (3.46)
we have that

row1(H̄α) =
k+1∑
l=2

rowl(H̄α).

This implies that
[

1
−1k

]
∈ kernel(H̄α) and thus that the system H̄α(cα) = rα is

solvable only if rα ·
[

1
−1k

]
= 0. On the other hand, this last solvability condition is

satisfied as consequence of (3.39). Thus H̄αcα = rα is solvable.
Arguing similarly, we get that

row1(M1) =
k+1∑
l=2

rowl(M1) +
2k+2∑
l=k+3

rowl(M1),

rowk+2(M1) =
1√

1 − µ2

 k∑
l=1

cos θlrowk+2+l(M1) −
k∑

l=1

sin θlrow2k+3+l(M1)

 ,
and

row2k+3(M1) =
1√

1 − µ2

 k∑
l=1

sin θlrowk+2+l(M1) +
k∑

l=1

cos θlrow2k+3+l(M1)

 .
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This implies that the vectors

w0 =



1
−1k

0
−1k

0
0


, w1 =



0
0
1

− 1√
1−µ2

cos

0
1√
1−µ2

sin


, w2 =



0
0
0

− 1√
1−µ2

sin

1
− 1√

1−µ2
cos


∈ kernel(M1)

and thus that the system M1

c0
c1
c2

 =
 r0
r1
r2

 is solvable only if

 r0
r1
r2

 · wj = 0, for j =

0, 1, 2. On the other hand, this last solvability condition is satisfied as consequence
of (3.36), (3.37) and (3.38).

We thus conclude that system (3.47) is solvable and the solution has the form

(4.1)

c0
c1
c2

 =


0
c̄0
0

c̄1
0

c̄α


+ tw0 + sw1 + rw2 for all t, s, r ∈ R

and, if α = 3, . . . , n

(4.2) cα =
[

0
c̄α

]
+ t

[
1

−1k

]
for all t ∈ R

In (4.1)-(4.2), c̄α for α = 0, . . . , n, are (n + 1) vectors in Rk, respectively given by

(4.3) c̄α =


cα1
cα2
. . .
cαk

 .
These vectors correspond to solutions of the systems

(4.4) N

 c̄0
c̄1
c̄2

 =
 r̄0
r̄1
r̄2

 , Hα [c̄α] = r̄α for α = 3, . . . , n.

In the above formula r̄α for α = 0, . . . , n, are (n + 1) vectors in Rk, respectively
given by

r̄α =


∫
Rn L(φ⊥)Zα,1

..∫
Rn L(φ⊥)Zα,k

 .
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In (4.4) the matrix N is defined by

(4.5) N :=

 A B C
BT F D
CT DT G


where A, B, C, D, F, G are k × k matrices whose entrances are given respectively
by

(4.6) A =
(∫

L(Z0i)Z0 j

)
i, j=1,...,k

, F =
(∫

L(Z1i)Z1 j

)
i, j=1,...,k

,

(4.7) G =
(∫

L(Z2i)Z2 j

)
i, j=1,...,k

, B =
(∫

L(Z0i)Z1 j

)
i, j=1,...,k

,

and

(4.8) C =
(∫

L(Z0i)Z2 j

)
i, j=1,...,k

,D =
(∫

L(Z1i)Z2 j

)
i, j=1,...,k

Furthermore, in (4.4) the matrix Hα is defined by

(4.9) Hα =

(∫
L(Zαi)Zα j

)
i, j=1,...,k

, α = 3, . . . , n.

The rest of this section is devoted to compute explicitely the entrances of the
matrices A, B, C, D, F, G, Hα and their eigenvalues.

We start with the following observation: all matrices A, B, C, D, F, G and Hα in
(4.4) are circulant matrices of dimension k×k. For properties of circulant matrices,
we refer to [19].

A circulant matrix X of dimension k × k has the form

X =



x0 x1 . . . . . . xk−2 xk−1
xk−1 x0 x1 . . . . . . xk−2
. . . xk−1 x0 x1 . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . x1
x1 . . . . . . . . . xk−1 x0


,

or equivalently, if xi j, i, j = 1, . . . , k are the entrances of the matrix X, then

xi, j = x1,|i− j|+1.

In particular, in order to know a circulant matrix it is enough to know the entrances
of its first row.

The eigenvalues of a circulant matrix X are given by the explicit formula

(4.10) ηm =

k−1∑
l=0

xle
2πm

k i l, m = 0, . . . , k − 1
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and with corresponding normalized eigenvectors defined by

(4.11) Em = k−
1
2



1
e

2πm
k i

e
2πm

k i 2

. . .

e
2πm

k i (k−1)


m = 0, . . . , k − 1.

Observe that any circulant matrix X can be diagonalized

X = P DX PT

where DX is the diagonal matrix

(4.12) DX = diag(η0, η1, . . . , ηk−1)

and P is the k × k invertible matrix defined by

(4.13) P =
[

E0
∣∣∣ E1

∣∣∣ . . . Ek−1
]
.

The matrices A, B, C, D, F, G and Hα are circulant as a consequence of the
invariance under rotation of an angle 2π

k in the (x1, x2)-plane of the functions Zα j.
This is trivial in the case of Z0l and Zα,l for all α = 3, . . . , n. On the other hand, if
we denote by R j the rotation in the (x1, x2) plane of angle 2π

k ( j − 1), then we get

Z1, j(x) = ∇U j(x) · ξ j = µ
− n−2

2 ∇U(
R j(y − ξ1)

µ
) · R jξ1

= µ−
n−2

2 R−1
j U(

R j(y − ξ1)
µ

) · ξ1, x = R jy.

Thus, for instance

(F) j j =

∫
L(Z1 j)Z1 j =

∫
L(Z11)Z11 = (F)11, j = 1, . . . , k

and, after a rotation of an angle of 2π
k (|h − j| + 1),

(F)h j =

∫
L(Z1h)Z1 j =

∫
L(Z11)Z1( j−h+1) = (F)1(| j−h|+1)

In a similar way one can show that

Z2, j(x) = µ−
n−2

2 R−1
j U(

R j(y − ξ1)
µ

) · ξ⊥1 , x = R jy.

With this in mind, it is straightforward to show that also the matrices B, C, D and
G are circulant.

A second observation we want to make is that

A, B, F,G,Hα are symmetric

while
C,D are anti-symmetric.
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The fact that A, F, G and Hα are symmetric follows directly from their definition.
On the other hand, we have

Z1 j(x) = µ−
n−2

2 R−1
2 j∇U(

R2 j(y − ξk− j+1)
µ

) · ξk− j+1, x = R2 jy

thus

B1, j =

∫
L(Z0,1)Z1, j =

∫
L(Z0,1)Z1,k− j+2 = B1,k− j+2.

Furthermore,

Z2 j(x) = µ−
n−2

2 R−1
2 j∇U(

R2 j(y − ξk− j+1)
µ

) · (−ξk− j+1)⊥, x = R2 jy

and thus

C1, j =

∫
L(Z0,1)Z2, j = −

∫
L(Z0,1)Z2,k− j+2 = −C1,k− j+2,

and

D1, j =

∫
L(Z1,1)Z2, j = −

∫
L(Z1,1)Z2,k− j+2 = −D1,k− j+2,

for j ≥ 2. Combining this property with the property of being circulant, we get
that B is symmetric, while C and D are anti-symmetric.

Let us now introduce the following positive number

(4.14) Ξ = p γ
(n − 2)

2

(
−

∫
y1 U p−1 Z1(y) dy

)
.

Next we describe the entrances of the matrices A, F, G, B, C , D and Hα, together
with their eigenvalues. We refer the reader to Section 10 for the detailed proof of
the following expansions. With O(1) we denotes a quantity which is uniformly
bounded, as k → ∞.

The matrix A. The matrix A = (Ai j)i, j=1,...,k defined by

Ai j =

∫
Rn

L(Z0i)Z0 j

is symmetric. We have

(4.15) A11 = kn−2µn−1O(1)

and for any integer l > 1,

(4.16) A1l = Ξ

 − (n−2)
2

(1 − cos θl)
n−2

2

 µn−2 + µn−1kn−2O(1),

where O(1) is bounded as k → ∞.
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Eigenvalues for A: A direct application of (4.10) gives that the eigenvalues of the
matrix A are given by

am = −
n − 2

2
Ξ µn−2

 k∑
l>1

cos(mθl)

(1 − cos θl)
n−2

2

 (
1 + O(

1
k

)
)

= Ξ ām µ
n−2

(
1 + O(

1
k

)
)

(4.17)

for m = 0, 1, . . . , k − 1, where

ām = −
n − 2

2
kn−2

(
√

2π)n−2
g′′(

2π
k

m)(4.18)

where g is the function defined in (1.28).

The matrix F. The matrix F = (Fi j)i, j=1,...,k defined by

Fi j =

∫
Rn

L(Z1i)Z1 j

is symmetric. We have

(4.19) F11 = Ξ

 k∑
l>1

cos θl

(1 − cos θl)
n
2

 µ n−2
2 + O(µ

n
2 )

and, for any l > 1

(4.20) F1l = Ξ

 n−2
2 cos θl − n

2

(1 − cos θl)
n
2

 µn−2 + O(µ
n
2 )

where O(1) is bounded as k → 0.

Eigenvalues for F. For any m = 0, . . . , k − 1, the eigenvalues of F are

(4.21) fm = Ξ f̄m µn−2.

where

f̄m =

 k∑
l>1

cos θl

(1 − cos θl)
n−2

2

+

k∑
l>1

n−2
2 cos θl − n

2

(1 − cos θl)
n
2

cos mθl

 (1 + O(
1
k

)
)
.(4.22)

The matrix G. The matrix G = (Gi j)i, j=1,...,k defined by

Gi j =

∫
Rn

L(Z2i)Z2 j

is symmetric. We have

(4.23) G11 = Ξ

 k∑
l>1

n−2
2 cos θl +

n
2

(1 − cos θl)
n
2

 µ n−2
2 + µ

n
2 O(1)
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and, for l > 1,

(4.24) G1l = −Ξ
 n−2

2 cos θl +
n
2

(1 − cos θl)
n
2

 µn−2 + O(µ
n
2 )

Again O(1) is bounded as k → ∞.

Eigenvalues for G. The eigenvalues of G are given by

gm = −Ξ µn−2

 k∑
l>1

(
n−2

2 cos θl +
n
2

)
(1 − cos mθl)

(1 − cos θl)
n
2

 (1 + O(
1
k

)
)

= Ξḡm µ
n−2

(
1 + O(

1
k

)
)
,(4.25)

for m = 0, . . . , k − 1 where

ḡm =
kn

(
√

2π)n
(n − 1) g(

2π
k

m)(4.26)

see (1.28) for the definition of g.

The matrix B. The matrix B = (Bi j)i, j=1,...,k defined by

Bi j =

∫
Rn

L(Z0i)Z1 j

is symmetric. We have

(4.27) B11 = µ
n−1kn−2O(1)

and, for any l > 1,

(4.28) B1l = Ξ

 n−2
2

(1 − cos θl)
n−2

2

 µn−2 + µn−1kn−2O(1).

Eigenvalues for B. For any m = 0, . . . , k − 1

bm = Ξ µ
n−2 n − 2

2

k∑
l>1

cos mθl

(1 − cos θl)
n−2

2

(
1 + O(

1
k

)
)

= Ξ b̄m µ
n−2

(
1 + O(

1
k

)
)

(4.29)

with

b̄m =
n − 2

2
kn−2

(
√

2π)n−2
g′′(

2π
k

m)(4.30)

see (1.28) for the definition of g.

The matrix C. The matrix C = (Ci j)i, j=1,...,k defined by

Ci j =

∫
Rn

L(Z0i)Z2 j

is anti symmetric. We have

(4.31) C11 = kn−2µn−1O(1)
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and, for l > 1,

(4.32) C1l = Ξ

 n−2
2 sin θl

(1 − cos θl)
n
2

 µn−2 + kn−2µn−1O(1).

Eigenvalues for C. For any m = 0, . . . , k − 1

cm = Ξ i µn−2 n − 2
2

 k∑
l>1

sin θl sin mθl

(1 − cos θl)
n
2

 (
1 + O(

1
k

)
)

= Ξ i c̄m µ
n−2

(
1 + O(

1
k

)
)

(4.33)

where

c̄m =
n − 2

2

√
2kn−1

(
√

2π)n−1
g′(

2π
k

m)(4.34)

see (1.28) for the definition of g.

The matrix D. The matrix D = (Di j)i, j=1,...,k

Di j =

∫
Rn

L(Z1i)Z2 j

is anti symmetric. We have

(4.35) D11 = kn−1µn−1O(1)

and, for l > 1,

(4.36) D1l = −Ξ
 n−2

2 sin θl

(1 − cos θl)
n
2

 µn−3 + kn−1µnO(1).

Eigenvalues for D. For any m = 0, . . . , k − 1

dm = i Ξ µn−2 n − 2
2

 k∑
l>1

sin θl sin mθl

(1 − cos θl)
n
2

 (
1 + O(

1
k

)
)

(4.37)

= −i Ξ d̄m µ
n−2

(
1 + O(

1
k

)
)

(4.38)

with

d̄m = −
n − 2

2

√
2kn−1

(
√

2π)n−1
g′(

2π
k

m)

see (1.28) for the definition of g.

The matrix Hα, for α = 3, . . . , n. Fix α = 3. The other dimensions can be treated
in the same way. The matrix H3 = (H3,i j)i, j=1,...,k defined by

H3,i j =

∫
Rn

L(Z3i)Z3 j
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is symmetric. We have

(4.39) H3,11 = Ξ µ
n−2

2

 k∑
l>1

− cos θl

(1 − cos θl)
n
2

 + O(µ
n
2 )

and, for l > 1,

(4.40) H3,1l = Ξ

[
1

(1 − cos θl)
n
2

]
µn−2 + O(µ

n
2 ).

Eigenvalues for H3. For any m = 0, . . . , k − 1

(4.41) h3,m = Ξ h̄3,m µ
n−2

where

h̄3,m =

 k∑
l>1

− cos θl + cos mθl

(1 − cos θl)
n
2

 (
1 + O(

1
k

)
)
.

5. Solving a linear system.

This section is devoted to solve system (4.4), namely

N

 c̄0
c̄1
c̄2

 =
 s̄0
s̄1
s̄2

 , Hα [c̄α] = s̄α for α = 3, . . . , n.

for a given right hand side

 s̄0
s̄1
s̄2

 ∈ R3k, and s̄α ∈ Rk, where N is the matrix defined

in (4.5) and Hα are the matrices defined in (4.9).

Let

(5.1) Υ =
(
√

2π)n−2

pγ n−2
2 Ξ

,

where Ξ is defined in (4.14). We have the validity of the following

Proposition 5.1. Part a.
There exist k0 and C > 0 such that, for all k > k0 , System

(5.2) N

 c̄0
c̄1
c̄2

 =
 s̄0
s̄1
s̄2


is solvable if

(5.3) s̄2 · 1k = (s̄0 + s̄1) · cos = (s̄0 + s̄1) · sin = 0.

Furthermore, the solutions of System (5.2) has the form

(5.4)

 c̄0
c̄1
c̄2

 =
 w̄0
w̄1
w̄2

 + t1

 0
0

1k

 + t2

 cos
−cos

0

 + t3

 sin
−sin

0
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for all t1, t2, t3 ∈ R, and with

 w̄0
w̄1
w̄2

 a fixed vector such that

(5.5) ∥

 w̄0
w̄1
w̄2

 ∥ ≤ C
knµn−2 ∥

 s̄0
s̄1
s̄2

 ∥.
Part b. Let α = 3, . . . , n. There exist k0 and C such that, for any k > k0, system

(5.6) Hα [c̄α] = s̄α

is solvable only if

(5.7) s̄α · cos = s̄α · sin = 0.

Furthermore, the solutions of System (5.6) has the form

(5.8) c̄α = w̄α + t1cos + t2sin

for all t1, t2 ∈ R, and with
[
w̄α

]
a fixed vector such that

(5.9) ∥
[
w̄α

]
∥ ≤ C

knµn−2 ∥
[
s̄α

]
∥.

Proof. Part a.
Define

P =

 P 0 0
0 P 0
0 0 P


where P is defined in (4.13), a simple algebra gives that

N = PDPT

where

D =

 DA DB DC
DB DF DD

D−C D−D DG

 .
Here DX denotes the diagonal matrix of dimension k× k whose entrances are given
by the eigenvalues of X. For instance

DA = diag (a0, a1, . . . , ak−1)

where a j are the eigenvalues of the matrix A, defined in (4.17). Using the change
of variables

(5.10)

 ȳ0
ȳ1
ȳ2

 = PT

 c̄0
c̄1
c̄2

 ;

 s̄0
s̄1
s̄2

 = P
 h̄0
h̄1
h̄2

 ,
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with ȳα =


yα,1
yα,2
. . .

yα,k

 , h̄α =


hα,1
hα,2
. . .

hα,k

 ∈ Rk, α = 0, 1, 2, one sees that solving

N

 c̄0
c̄1
c̄2

 =
 s̄0
s̄1
s̄2


is equivalent to solving

(5.11) D

 ȳ0
ȳ1
ȳ2

 =
 h̄0
h̄1
h̄2

 .
Furthermore, observe that

(5.12) ∥ȳα∥ = ∥c̄α∥, and ∥h̄α∥ = ∥s̄α∥, α = 0, 1, 2.

Let us now introduce the matrix

D =


D0 0 . . . 0

0 D1 0 . . .
. . . . . . . . . . . .
. . . 0 0 Dk−1


where for any m = 0, . . . , k − 1, Dm is the 3 × 3 matrix given by

(5.13) Dm =

 am bm cm
bm fm dm
−cm −dm gm

 = Ξ µn−2

 ām b̄m ic̄m
b̄m f̄m id̄m
−ic̄m −id̄m ḡm


where am, bm, cm, fm, gm, dm are the eigenvalues of the matrices A, B, C, F, G
and D respectively. In the above formula we have used the computation for the
eigenvalues am, bm, cm, dm, fm and gm that we obtained in (4.17), (4.29), (4.33),
(4.37), (4.21) and (4.25).

An easy argument implies that system (5.11) can be re written in the form

(5.14) Dm

 y0,m+1
y1,m+1
y2,m+1

 =
h0,m+1

h1,m+1
h2,m+1

 m = 0, 1, . . . , k − 1.

Taking into account that ām = −b̄m and c̄m = −d̄m, a direct algebraic manipulation
of the system gives that (5.14) reduces to the simplified system

(5.15)

 −b̄m 0 ic̄m
0 f̄m + b̄m 0

−ic̄m 0 ḡm


 y0,m+1 − y1,m+1

y1,m+1
y2,m+1

 = 1
Ξµn−2

 h0,m+1
h1,m+1 + h0,m+1

h2,m+1

 .
Let, for any m = 0, . . . , k − 1,

(5.16) ℓm := −
(
b̄m + f̄m

) [
ḡmb̄m + c̄2

m

]
,

being ℓm the determinant of the above matrix.

We have the following cases



NONDEGENERACY OF NONRADIAL NODAL SOLUTIONS TO YAMABE PROBLEM 29

Case 1. If m = 0, we have that ḡ0 = c̄0 = 0 and so ℓ0 = 0. Furthermore,

b̄0 =
n − 2

2
kn−2

(
√

2π)n−2
g′′(0)

(
1 + O(

1
k

)
)

and

f̄0 + b̄0 = −
kn−2

(
√

2π)n−2
g′′(0)

(
1 + O(

1
k

)
)
.

We conclude that System (5.15) for m = 0 is solvable if

h21 = 0

and there exists a positive constant C, independent of k, such that the solution has
the form  y0,1

y1,1
y2,1

 =
 ŷ0,1

ŷ1,1
ŷ2,1

 + t

0
0
1


for any t ∈ R and for a fixed vector

 ŷ0,1
ŷ1,1
ŷ2,1

 with

∥

 ŷ0,1
ŷ1,1
ŷ2,1

 ∥ ≤ C
µn−2kn−2 ∥

h0,1
h1,1
h2,1

 ∥.
Case 2. If m = 1, we have that f̄1 + b̄1 = 0. By symmetry, for m = k − 1 we also
have f̄k−1 + b̄k−1 = 0. Furthermore

b̄1 = b̄k−1 =
n − 2

2
kn−2

(
√

2π)n−2
g′′(0)

(
1 + O(

1
k

)
)
,

ḡ1 = ḡk−1 = −(n − 1)
kn−2

(
√

2π)n−2
g′′(0)

(
1 + O(

1
k

)
)
,

and

c̄1 = −c̄k−1 = (n − 2)
kn−2

(
√

2π)n−2
g′′(0)

(
1 + O(

1
k

)
)
.

We conclude that System (5.15) for m = 1 is solvable if

h02 + h12 = 0

and there exists a positive constant C, independent of k, such that the solution has
the form  y0,2

y1,2
y2,2

 =
 ŷ0,2

ŷ1,2
ŷ2,2

 + t

 1
−1

0
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for any t ∈ R and for a fixed vector

 ŷ0,2
ŷ1,2
ŷ2,2

 with

∥

 ŷ0,2
ŷ1,2
ŷ2,2

 ∥ ≤ C
µn−2kn−2 ∥

h0,2
h1,2
h2,2

 ∥.
On the other hand, when m = k − 1 System (5.15) is solvable if

h0,k + h1,k = 0

and there exists a positive constant C, independent of k, such that the solution has
the form  y0,k

y1,k
y2,k

 =
 ŷ0,k

ŷ1,k
ŷ2,k

 + t

 1
−1

0


for any t ∈ R and for a fixed vector

 ŷ0,k
ŷ1,k
ŷ2,k

 with

∥

 ŷ0,k
ŷ1,k
ŷ2,k

 ∥ ≤ C
µn−2kn−2 ∥

h0,k
h1,k
h2,k

 ∥.
Case 3. Let now m be , 0, 1, k − 1. In this case we have

b̄m =
n − 2

2
kn−2

(
√

2π)n−2
g′′(

2π
k

m)
(
1 + O(

1
k

)
)
,

f̄m + b̄m =
kn

(
√

2π)n
g′′(

2π
k

m)
(
1 + O(

1
k

)
)
,

ḡm = −(n − 1)
kn

(
√

2π)n
g(

2π
k

m)
(
1 + O(

1
k

)
)
,

and

c̄m =
n − 2

2

√
2kn−1

(
√

2π)n−1
g′(

2π
k

m)
(
1 + O(

1
k

)
)
.

In particular

ℓm = −
n − 2

2
k3n−2

(
√

2π)3n−2
g′′(

2π
m

) ×[
−(n − 1)g(

2π
k

m)g′′(
2π
k

m) + (n − 2)(g′(
2π
k

m))2
] (

1 + O(
1
k

)
)

Thus under condition (1.29), we have that

ℓm < 0 ∀m = 2, . . . , k − 2.
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Hence, for all m , 0, 1, k − 1, System (5.15) is uniquely solvable and there exists a

positive constant C, independent of k, such that the solution

 ŷ0,1
ŷ1,1
ŷ2,1

 satisfies

∥

 ŷ0,1
ŷ1,1
ŷ2,1

 ∥ ≤ C
µn−2kn ∥

h0,1
h1,1
h2,1

 ∥.
Going back to the original variables, and applying a fixed point argument for con-
traction mappings we get the validity of Part a of Proposition 5.1.

Part b. Fix α = 3, . . . , n. We have

Hα = PDαPT

where P is defined in (4.13), and

Dα = diag
(
hα,0, hα,1, . . . , hα,k−1

)
where hα, j are the eigenvalues of the matrix Hα, defined in (4.41). Using the change
of variables ȳα = PT cα and s̄α = PT hα, we have to solve Dαyα = hα.

Recall that, for any m = 0, . . . , k − 1

hα,m = Ξ h̄α,m µn−2

where

h̄α,m =

 k∑
l>1

− cos θl + cos mθl

(1 − cos θl)
n
2

 (
1 + O(

1
k

)
)
.

If m = 1 or m = k−1, we have that
∑k

l>1
− cos θl+cos mθl

(1−cos θl)
n
2
= 0, so the system is solvable

only if hα,2 = hα,k−1 =. On the other hand we have

hα,0 = Ξµn−2 kn−2

(
√

2π)n−2

(
1 + O(

1
k

)
)

and for m = 2, . . . , k − 2

hα,m = Ξµn−2 kn

(
√

2π)n
g(

2π
k

m)
(
1 + O(

1
k

)
)

Going back to the original variables, we get the validity of Part b, and this con-

cludes the proof of Proposition 5.1. �
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6. Proof of Proposition 3.2

A key ingredient to prove Proposition 3.2 is the estimates on the right hand sides
of sistems (4.4). We have

Proposition 6.1. There exists a positive constant C such that, for any α = 0, 1, . . . , n,

(6.1) ∥r̄α∥ ≤ C µ
n−2

2 ∥φ⊥∥∗
for any k sufficiently large.

Proof. We prove (6.1), only for α = 0.
Recall that

r̄0 =


∫
Rn L(φ⊥)Z01

. . .∫
Rn L(φ⊥)Z0k

 .
Then estimate (6.1) will follows from

(6.2)
∣∣∣∣∣∫
Rn

L(φ⊥)Z0 j

∣∣∣∣∣ ≤ C µ
n−2

2 ∥φ∥∗,

for any j = 1, . . . , k. To prove (6.2), we fix j = 1 and we write∫
Rn

L(φ⊥)Z01 dx =
∫
Rn

L(Z01)φ⊥

=

∫
Rn\∪B(ξ j,

η

k1+σ )
L(Z01)φ⊥ +

k∑
j=1

∫
B(ξ j,

η

k1+σ )
L(Z01)φ⊥

where η and σ are small positive numbers, independent of k.
We start to estimate

∫
B(ξ1,

η

k1+σ ) L(Z01)φ⊥. We have L(Z01) = [ f ′(u)− f ′(U1)] Z01.

As we have already observed very close to ξ1, U1(x) = O(µ−
n−2

2 ) and so in B(ξ1,
η

k1+σ )
the function U1 dominates globally the other terms, provided η is chosen small
enough. Thus, after the change of variable x = ξ1 + µy,∣∣∣∣∣∣∣

∫
B(ξ1,

η

k1+σ )
L(Z01)φ⊥

∣∣∣∣∣∣∣ ≤ C
∫

B(0, η

k1+σµ
)

f ′′(U)|Υ(y)|Z0(y)[µ
n−2

2 |φ⊥(ξ1 + µy)|] dy

≤ C∥φ⊥∥∗
∫

B(0, η

k1+σµ
)

f ′′(U)|Υ(y)|Z0(y) dy

where
Υ(y) = µ

n−2
2 U(ξ1 + µy) +

∑
l,1

U(y + µ−1(ξ1 − ξl))

A direct consequence of (10.2) is then that∣∣∣∣∣∣∣
∫

B(ξ1,
η

k1+σ )
L(Z01)φ⊥

∣∣∣∣∣∣∣ ≤ Cµ
n−2

2 ∥φ⊥∥∗.
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Let now j , 1 and consider
∫

B(ξ j,
η

k1+σ ) L(Z01)φ⊥. In this case, after the change of

variables x = ξ j + µy, we get∣∣∣∣∣∣∣
∫

B(ξ j,
η

k1+σ )
L(Z01)φ⊥

∣∣∣∣∣∣∣
≤ C

∫
B(0, η

µk1+σ )
U p−1Z1(y + µ−1(ξ1 − ξ j))[µ−

n−2
2 φ⊥(ξ j + µy)]

≤ C∥φ⊥∥∗
(∫
Rn

U p−1 1
(1 + |y|)n−2

)
µn−2

(1 − cos θ j)
n−2

2

where we used (10.5). Thus we estimate∣∣∣∣∣∣∣∣
∑
j>1

∫
B(ξ j,

η

k1+σ )
L(Z01)φ⊥

∣∣∣∣∣∣∣∣ ≤ Cµ
n−2

2 ∥φ⊥∥∗.

Finally, in the exterior region Rn \ ∪B(ξ j,
η

k1+σ ) we can estimate∣∣∣∣∣∣∣
∫
Rn\∪B(ξ j,

η

k1+σ )
L(Z01)φ⊥

∣∣∣∣∣∣∣ ≤ C∥φ⊥∥∗
∫
Rn\∪B(ξ j,

η

k1+σ )

U p−1

(1 + |y|)n−2 Z01(y) dy

≤ Cµ
n
2 ∥φ⊥∥∗.

Thus we have proven (6.1) for α = 0. The other cases can be treated similarly. �

We have now the tools for the

Proof of Proposition 3.2. System (3.47) is solvable only if the following orthog-
onality conditions are satisfied:

(6.3)

 r̄0
r̄1
r̄2

 ·


1
−1k

0
−1k

0
0


=

 r̄0
r̄1
r̄2

 ·


0
0
1

− 1√
1−µ2

cos

0
1√
1−µ2

sin


=

 r̄0
r̄1
r̄2

 ·


0
0
0

− 1√
1−µ2

sin

1
− 1√

1−µ2
cos


= 0,

(6.4)

 r̄0
r̄1
r̄2

 ·


0
0
0

0
1k


=

 r̄0
r̄1
r̄2

 ·


0
cos

0
−cos

0
0


=

 r̄0
r̄1
r̄2

 ·


0
sin

0
−sin

0
0


= 0

and

(6.5) r̄α ·
[

1
−1k

]
= r̄α ·

[
0

cos

]
= r̄α ·

[
0

sin

]
= 0 α = 3, . . . , n
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We recall that r̄α =


∫
Rn L(φ⊥)Zα,1

..∫
Rn L(φ⊥)Zα,k

 . As we already mentioned at the beginning of

Section 4, the orthogonality conditions (6.3) are satisfied as consequence of (3.36),
(3.37) and (3.38). Similarly, the first orthogonality condition in (6.5) is satisfied as
consequence of (3.39).

Let us recall from (3.32) that

L(φ⊥) = −
n∑
α=0

k∑
l=0

cαlL(Zα,l).

Thus the function x → L(φ⊥)(x) is invariant under rotation of angle 2π
k in the

(x1, x2)-plane. Thus

0 =
k∑

l=1

∫
L(φ⊥)Z2l(x) dx = r̄2 · 1k

and, for all α = 3, . . . , n,

k∑
l=1

cos θl

∫
L(φ⊥)Zαl(x) dx =

(∫
L(φ⊥)Zα1(x) dx

)  k∑
l=1

cos θl

 = 0,

thus r̄α · cos = 0, and similarly

0 =
k∑

l=1

sin θl

∫
L(φ⊥)Zαl(x) dx = r̄α · sin

namely the first orthogonality condition in (6.4) and the remaining orthogonality
conditions in (6.5) are satisfied. Let us check that also the last two orthogonality
conditions in (6.4) are verified.

Observe that L(φ⊥)(x) = |x|−2−n L(φ⊥)( x
|x|2 ). The remaining orthogonality con-

ditions in (6.4) are consequence of the following

Lemma 6.1. Let h be a function in Rn such that h(y) = |y|−n−2h( y
|y|2 ). Then

(6.6) µ

∫
Rn

∂

∂µ

(
Uµ(x − ξl)

)
h(y) dy = ξl ·

∫
Rn
∇Uµ(x − ξl)h(y) dx

We postpone the proof of the above Lemma to the end of this Section.

Combining the result of Proposition 5.1 and the a-priori estimates in Proposition
6.1, a direct application of a fixed point theorem for contraction mapping readily
gives the proof of Proposition 3.2.

We conclude this section with
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Proof of Lemma 6.1.
Proof of (6.6). Assume l = 1. Define

I(t) =
∫
Rn
ωµ(y − tξ1)h(y) dy where ωµ(y − t ξ1) = µ−

n−2
2 U(

y − t ξ1

µ
).

We have

(6.7)
d
dt

I(t) = −
∫
Rn
∇ωµ(y − t ξ1) · ξ1 h(y) dy,

and (
d
dt

I(t)
)

t=1
= −

∫
Rn
∇ωµ(y − ξ1) · ξ1 h(y) dy.

On the other hand, using the change of variables y = x
|x|2 , we have

I(t) =
∫
Rn
ωµ(

x
|x|2 − t ξ1)h(

x
|x|2 )|x|−2n dx =

∫
Rn
ωµ(

x
|x|2 − t ξ1)h(x)|x|2−n dx =

=

∫
Rn
ωµ̄(x − p̄)h(x) dx

where

µ̄(t) =
µ

µ2 + t2|ξ1|2
, p̄(t) =

t
µ2 + t2|ξ1|2

ξ1.

Observe that µ̄(1) = µ, p̄(1) = ξ1,

d
dt
µ̄(t) =

−2tµ
µ2 + t2|ξ1|2

,
d
dt

p̄(t) =
[

1
µ2 + t2|ξ1|2

− 2t2|ξ1|2
µ2 + t2|ξ1|2

]
ξ1.

Hence

d
dt

I(t) =
d
dt
µ̄(t)

∫
Rn

∂

∂µ̄
ωµ̄(x − p̄)h(x) dx − d

dt
p̄(t)

∫
Rn
∇ωµ̄(x − p̄)h(x) dx.

This gives (
d
dt

I(t)
)

t=1
= −2µ|ξ1|2

∫
Rn

∂

∂µ
ωµ(x − ξ1)h(x) dx

(6.8) −(1 − 2|ξ1|2)
∫
Rn
∇ωµ(x − ξ1) · ξ1 h(x) dx.

¿From (6.7) and (6.8) we conclude with the validity of (6.6).

If l > 1 in (6.6), the same arguments hold true. The thus conclude with the proof
of the Lemma. �
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7. Final argument.

Let



c̄0
c̄1
c̄2
c̄3
. . .
c̄n


be the solution to (3.47) predicted by Proposition 3.2, given by

c0
c1
c2

 =
 v0

v1
v2

 + s1



1
−1k

0
−1k

0
0


+ s2



0
0
1

− 1√
1−µ2

cos

0
1√
1−µ2

sin


+ s3



0
0
0

− 1√
1−µ2

sin

1
− 1√

1−µ2
cos



+s4



0
0
0

0
1k


+ s5



0
cos

0
−cos

0
0


+ s6



0
sin

0
−sin

0
0


and

cα = vα + sα1

[
1

−1k

]
+ sα2

[
0

cos

]
+ sα3

[
0

sin

]
, α = 3, . . . , n

A direct computation shows that there exists a unique

(s∗1, . . . , s∗6, s
∗
3,1, s

∗
3,2, s

∗
3,3, . . . , s∗n,1, s

∗
n,2, s

∗
n,3) ∈ R2n

for which the above solution satisfies all the 2n conditions of Proposition 3.1. Fur-
thermore, one can see that

∥(s∗1, . . . , s∗6, s
∗
3,1, s

∗
3,2, s

∗
3,3, . . . , s∗n,1, s

∗
n,2, s∗n,3)∥ ≤ C

√
µ∥φ⊥∥∗.

Hence, there exists a unique solution



c̄0
c̄1
c̄2
c̄3
. . .
c̄n


to systems (4.4), satisfying estimates

in Proposition 3.1. Furthermore, one has

∥



c̄0
c̄1
c̄2
c̄3
. . .
c̄n


∥ ≤ C∥φ⊥∥∗
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for some positive constant C independent of k. On the other hand, from (3.34) we
conclude that

(7.1) ∥φ⊥∥∗ ≤ Cµ
1
2 ∥



c̄0
c̄1
c̄2
c̄3
. . .
c̄n


∥

where again C denotes a positive constant, independent of k. Thus we conclude
that

cα, j = 0, for all α = 0, 1, . . . , n, j = 0, . . . , k.

Plugging this information into (7.1), we conclude that φ⊥ ≡ 0 and this proves
Theorem 1.1.

8. Proof of Proposition 3.1

We will give the proof of Proposition 3.1 when dimension n ≥ 4. The estimates
for dimension n = 3 can be obtained with similar arguments.

The key ingredient to prove Proposition 3.1 are the folllowing estimates∫
|u|p−1Zα,lZ0 =

∫
U p−1Z2

0 dy + O(µ
n−2

2 ) if α = 0, l = 0

= O(µ
n−2

2 ) otherwise(8.1) ∫
|u|p−1Zα,lZβ =

∫
U p−1Z2

1 dy + O(µ
n−2

2 ) if α = β, l = 0

= O(µ
n−2

2 ) otherwise(8.2) ∫
|u|p−1Zα,lZ0, j =

∫
U p−1Z2

0 dy + O(µ
n−2

2 ) if α = 0, l = j

= O(µ
n−2

2 ) otherwise(8.3) ∫
|u|p−1Zα,lZβ, j =

∫
U p−1Z2

1 dy + O(µ
n−2

2 ) if α = β, l = j

= O(µ
n−2

2 ) otherwise(8.4)

We prove (8.3).
Let η > 0 be a small number, fixed independently from k. We write∫

|u|p−1ZαlZ0 j =

∫
B(ξl,

η
k )
|u|p−1ZαlZ0l +

∫
Rn\B(ξl,

η
k )
|u|p−1ZαlZ0, j

= i1 + i2.
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We claim that the main term is i1. Performing the change of variable x = ξl + µy,
we get

i1 =
∫

B(0, ηµk )
|u|p−1(ξl + µy)Zα(y)Z0(y)dy

=

(∫
U p−1Z2

0 + O((µk)n)
)

if α = 0

= 0 if α , 0.

On the other hand, to estimate i2, we write

i2 =
∫
Rn\∪k

j=1 B(ξ j,
η
k )
|u|p−1ZαlZ0, j +

∑
j,l

∫
B(ξ j,

η
k )

up−1ZαlZ0, j = i21 + i22

The first integral can be estimated as follows

|i21| ≤ C
∫
Rn\∪k

j=1 B(ξ j,
η
k )

µ
n+2

2

|x − ξl|n−2

1
(1 + |x|)n+2 dx ≤ Cµ

n−2
2

while the second integral can be estimated by

|i22| ≤ C
∑
j,l

∫
B(ξ j,

η
k )

µ
n−2

2

|x − ξl|n
|u|p−1Z0 j dx ≤ Cµ

n−2
2

where again C denotes an arbitrary positive constant, independent of k. This con-
cludes the proof of (8.3). The proofs of (8.1), (8.2) and (8.4) are similar, and left
to the reader.

Now we claim that

(8.5)
∫

U p−1Z2
0 =

∫
U p−1Z2

1 = 2
n−4

2 n (n − 2)2 Γ(
n
2 )2

Γ(n + 2)
.

The proof of identity (8.5) is postponed to the end of this section.

Let us now consider (3.21) with β = 0, that is

n∑
α=0

k∑
l=0

cαl

∫
Zαlup−1z0 = −

∫
φ⊥up−1z0.

First we write t0 = − 1∫
U p−1Z2

0

∫
φ⊥up−1z0. A straightforward computation gives that

|t0| ≤ C∥φ⊥∥∗, for a certain constant C independent from k. Second, we observe
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that, direct consequence of (8.1) – (8.4), of (3.9) and Proposition 2.1 is that

n∑
α=0

k∑
l=0

cαl

∫
Zαlup−1z0 = c00

∫
U p−1Z2

0

−
k∑

l=1

[
c0l

∫
U p−1Z2

0 − c1l

∫
U p−1Z2

1

]

+ O(k−
n
q )L(


c̄0
c̄1
. . .
c̄n

) + O(k1− n
q )L̂(


c00
c10
. . .
cn0

)
where L and L̂ are linear function, whose coefficients are uniformly bounded in
k, as k → ∞. Here we have used the fact that there exists a positive constant C
independent of k such that∣∣∣∣∣∫ |u|p−1Zαlπ0(x) dx

∣∣∣∣∣ ≤ C∥π̂0∥n−2

and ∣∣∣∣∣∫ |u|p−1Zαlπ0(x) dx
∣∣∣∣∣ ≤ C∥π̂01∥n−2,

together with the result in Proposition 2.1. The condition (3.23) follows readily.
The proof of (3.24) – (3.31) is similar to that performed above, and we leave it to
the reader.

We conclude this section with the proof of (8.5). Using the definition of Z0 and Z1,
we have that ∫

U p−1Z2
1 = an

(n − 2)2

n

∫ |x|2
(1 + |x|2)n+2 dx

and ∫
U p−1Z2

0 = an
(n − 2)2

4

∫
(1 − |x|)2

(1 + |x|2)n+2 dx,

for a certain positive number an that depends only on n. Using the formula∫ ∞

0

( r
1 + r2

)q 1
r1+α dr =

Γ( q+α
2 )Γ( q−α

2 )
2Γ(q)

we get

(8.6)
∫

1
(1 + |x|2)n+2 dx =

n
2 ( n

2 + 1)Γ( n
2 )2

2Γ(n + 2)
,

and

(8.7)
∫ |x|2

(1 + |x|2)n+2 dx =
( n

2 )2Γ( n
2 )2

2Γ(n + 2)
.
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Replacing (8.6), (8.7) in
∫

U p−1Z2
1 and

∫
U p−1Z2

0 we obtain∫
U p−1Z2

1 −
∫

U p−1Z2
0 = (n − 2)2 an

n
2Γ(

n
2 )2

2Γ(n + 2)
×[

1
2
− 1

4
(
n
2
+ 1) +

n
4
− 1

4
(
n
2
+ 1)

]
= 0,

thus (8.5) is proven.

9. Proof of (3.34).

We start with the following

Proposition 9.1. Let

L0(ϕ) = ∆ϕ + pγU p−1ϕ + a(y)ϕ in Rn.

Assume that a ∈ L
n
2 (Rn). Assume furthermore that h is a function in Rn with

∥h∥
L

2n
n+2 (Rn)

bounded and such that |y|−n−2h(|y|−2y) = ±h(y). Then there exists a
positive constant C such that any solution ϕ to

(9.1) L0(ϕ) = h

satisfies
∥ϕ∥n−2 ≤ C∥h∥∗∗.

Proof. Since a ∈ L
n
2 (Rn) and U p−1 = O(1 + |y|4), the operator L0 is a compact

perturbation of the Laplace operator in the space D1,2(Rn). Thus standard argument
gives that

∥∇ϕ∥L2(Rn) + ∥ϕ∥L 2n
n−2 (Rn)

≤ C∥h∥
L

2n
n+2 (Rn)

where the last inequality is a direct consequence of Holder inequality. Being ϕ a
weak solution to (9.1), local elliptic estimates yields

∥D2ϕ∥Lq(B1) + ∥Dϕ∥Lq(B1) + ∥ϕ∥L∞(B1) ≤ C∥h∥
L

2n
n+2 (Rn)

.

Consider now the Kelvin’s transform of ϕ, ϕ̂(y) = |y|2−nϕ(|y|−2y). This function
satisfies

(9.2) ∆ϕ̂ + pU p−1ϕ̂ + |y|−4a(|y|−2y)ϕ̂ = ĥ in Rn \ {0}
where ĥ(y) = |y|−n−2h(|y|−2y). We observe that

∥ĥ∥Lq(|y|<2) = ∥ |y|n+2− 2n
q h∥Lq(|y|> 1

2
≤ C∥h∥

L
2n

n+2 (Rn)
,

∥ |y|−4 a(|y|−2y)∥
L

n
2 (|y|<2)

= ∥a∥
L

n
2 (|y|> 1

2 )

and
∥∇ϕ̂∥L2(Rn) + ∥ϕ̂∥L 2n

n−2 (Rn)
≤ C∥h∥

L
2n

n+2 (Rn)
.

Applying then elliptic estimates to (9.2), we get

∥D2ϕ̂∥Lq(B1) + ∥Dϕ̂∥Lq(B1) + ∥ϕ̂∥L∞(B1) ≤ CC∥h∥
L

2n
n+2 (Rn)

.

This concludes the proof of the proposition since ∥ϕ̂∥L∞(B1) = ∥ϕ∥L∞(Rn\B1). �
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We have now the tools to give the
Proof of (3.34). We start with the estimate on φ⊥0 . We write

φ⊥0 =
n∑
α=0

cα0φ
⊥
α0

where
L(φ⊥α0) = −L(Zα0).

We write the above equation in the following way

∆(φ⊥α0) + pγU p−1(φ⊥α0) + p(|u|p−1 − U p−1)︸               ︷︷               ︸
:=a0(y)

φ⊥α0 = −L(Zα0).

Observe that
|y|−n−2 L(Z0,0)( |y|−2 y) = −L(Z0,0)(y),

while
|y|−n−2 L(Zα,0)( |y|−2 y) = L(Zα,0)(y) α = 1, . . . , n.

We claim that a0 ∈ L
n
2 (Rn),

(9.3) ∥a0∥L n
2 (Rn)

≤ Ck
2
n , and ∥L(Zα0)∥

L
2n

n+2 (Rn)
≤ Cµ

n−1
n ,

where we take into account that ∥h∥∗∗ ≤ C∥h∥
L

2n
n+2 (Rn)

. Let η > 0 be a fixed positive
number, independent of k. We split the integral all over Rn into a first integral over
Rn \∪k

j=1 B(ξ j,
η
k ) and a second integral over

∪k
j=1 B(ξ j,

η
k ). We write then

∥a0∥
n
2

L
n
2 (Rn)

=

∫
Rn\∪k

j=1 B(ξ j,
η
k )
|a0(y)| n2 dy +

k∑
j=1

∫
B(ξ j,

η
k )
|a0(y)| n2 dy

(9.4) = i1 + i2.

In the region Rn \∪k
j=1 B(ξ j,

η
k ), we have that

|a0(y)| = p
∣∣∣|u|p−1 − U p−1

∣∣∣ ≤ CU p−2
k∑

j=1

µ
n−2

2

|y − ξ j|n−2 ,

for some positive convenient constant C. Thus∫
Rn\∪k

j=1 B(ξ j,
η
k )
|a0(y)| n2 dy ≤ Cµ

n−2
2

n
2

k∑
j=1

∫
Rn\∪k

j=1 B(ξ j,
η
k )

U(p−2) n
2

1

|y − ξ j|(n−2) n
2

dy

≤ C k µ
n−2

2
n
2

∫ 1

1
k

tn−1

t(n−2) n
2

dt ≤ C k µ
n−2

2
n
2 k

n
2 (n−2)−n.

We conclude that

(9.5)
∫
Rn\∪k

j=1 B(ξ j,
η
k )
|a0(y)| n2 dy ≤ Cµ

n−1
2

Let us now fix j ∈ {1, . . . , k} and consider y ∈ B(ξ j,
η
k ). In this region we have

|a0(y)| ≤ C|U j|p−1,
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for some proper positive constant C. Recalling that U j(y) = µ−
n−2

2 U( y−ξ j
µ ), we

easily get ∫
B(ξ j,

η
k )
|a0(y)| n2 dy ≤ C

and thus

(9.6)
k∑

j=1

∫
B(ξ j,

η
k )
|a0(y)| n2 dy ≤ Ck.

We conclude then that a0 ∈ L
n
2 (Rn), and from (9.4), (9.5) and (9.6) we conclude

the first estimate in (9.3).

We prove the second estimate in (9.3) for α = 0. Analogous computations give the
estimate for α , 0. We write

(9.7)
∫
Rn
|L(Z00)| 2n

n+2 dy =
∫
Rn\∪k

j=1 B(ξ j,
η
k )
+

k∑
j=1

∫
B(ξ j,

η
k )
= i1 + i2

Since L(Z00) = p(|u|p−1 − U p−1) Z00 = a0(y)Z00, a direct application of Holder
inequality gives

|i1| ≤ C

∫
Rn\∪k

j=1 B(ξ j,
η
k )
|a0(y)| n2


4

n+2
∫
Rn\∪k

j=1 B(ξ j,
η
k )
|Z00(y)| 2n

n−2


n−2
n+2

Taking into account that
(∫
Rn\∪k

j=1 B(ξ j,
η
k ) |Z00(y)| 2n

n−2

)
≤

(∫
Rn |Z00(y)| 2n

n−2
)

and the va-

lidity of (9.5), we get

(9.8) |i1| ≤ Cµ2 n−1
n+2 .

Let us fix now j ∈ {1, . . . , k}. Using now that∣∣∣∣∣∣∣
∫

B(ξ j,
η
k )
|L(Z00)| 2n

n+2

∣∣∣∣∣∣∣ ≤ C
∫

B(ξ j,
η
k )
|a0(y)| n2

 4
n+2

∫
B(ξ j,

η
k )
|Z00(y)| 2n

n−2

 n−2
n+2

together with the fact that ∫
B(ξ j,

η
k )
|Z00(y)| 2n

n−2 ≤ Ck−n,

we conclude that

(9.9) |i2| ≤ Cµ
n
2

n−2
n+2−

1
2

¿From (9.7), (9.8) and (9.9) we conclude that

∥L(Z00)∥
L

2n
n+2 (Rn)

≤ Cµ
n−1

n

thus completing the proof of (9.3).
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Let us now fix l ∈ {1, . . . , k}. Say l = 1. We write

φ⊥1 =
n∑
α=0

cα1φ
⊥
α1

where

L(φ⊥α1) = −L(Zα1).

After the change of variable φ̃⊥α1(y) = µ
n−2

2 φ⊥α1(µy + ξ1), the above equation gets
rewritten as

∆(φ̃⊥α1) + pU p−1(φ̃⊥α1) + p[(µ−
n−2

2 |u|(µy + ξ1))p−1 − U p−1]︸                                     ︷︷                                     ︸
:=a1(y)

φ̃⊥α1 = h(y)

where

h(y) = −µ n+2
2 L(Zα1)(µy + ξ1).

We claim that a1 ∈ L
n
2 (Rn).

(9.10) ∥a1∥L n
2 (Rn)

≤ Cµ, and ∥h∥
L

2n
n+2 (Rn)

≤ Cµ.

We leave the details to the reader. The proof of (3.34) follows by (9.3), (9.10) and
a direct application of Proposition 9.1.

10. Appendix

In this section we perform the computations of the entrances of the matrices A,
F, G, B, C, D and Hα, α = 3, . . . , n. The results of this section are valid for any
dimension n ≥ 3. We start with proving some usefull expansions and a formula.

Some usefull expansions.
Let η > 0 and σ > 0 be small and fixed numbers, independent of k. Assume
that y ∈ B(0, η

µk1+σ ). We will provide usefull expansions of some functions in this
region.

We start with the function, for y ∈ B(0, η

µk1+σ ),

(10.1) Υ(y) := µ
n−2

2 U(ξ1 + µy) −
∑
l>1

U(y + µ−1(ξ1 − ξl)).
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We have the validity of the following expansion

Υ(y) = −n − 2
2

µ
n
2

y1 − µ
n−2

2

k∑
l>1

1

(1 − cos θl)
n−2

2

(y1 −
sin θl

1 − cos θl
y2)

 ×
(1 + µ2O(|y|))

+
n − 2

4
µ

n+2
2

[
ny2

1

2
− |y|2 − µ n−2

2

∑
l>1

1

(1 − cos θl)
n
2
×

(
−1 − |y|2 + n

2
(1 − cos θl)y2

1 +
n
2

(1 + cos θl)y2
2 + n sin θly1y2

) ]
×

(1 + µ2O(|y|2))

+ µ
n+4

2 O(1 + |y|3) + O(µ
n+2

2 )(10.2)

for a fixed constant A. Formula (10.2) is a direct application of the fact that

µ
n−2

2

(
2

1 + |ξ1|2

) n−2
2

− µn−2
k∑

l>1

1

(1 − cos θl)
n−2

2

= O(µ
n+2

2 )

and of Taylor expansion applied separatedly to µ
n−2

2 U(ξ1 + µy) and
∑k

l>1 U(y +
µ−1(ξ1 − ξl)) in the considered region y ∈ B(0, η

µk1+σ ). Indeed, we have

U(ξ1 + µy) = µ
n−2

2

(
2

(1 + |ξ1|2)

) n−2
2

[
1 − (n − 2)

2
y1 µ +

n − 2
4

(
n(y · ξ1)2

2
− |y|2

)
µ2

+ µ3O(|y|3)
]

(1 + O(µ2))(10.3)

and

U(y + µ−1(ξ1 − ξl)) =
µn−2

(1 − cos θl)
n−2

2

[
1 − (n − 2)

2
(ξ1 − ξl) · y
(1 − cos θl)

µ

+
n − 2

4
µ2

(1 − cos θl)

−1 − |y|2 + n
(
(ξ1 − ξl) · y
|ξ1 − ξl|

)2 (10.4)

+ µ3 O(1 + |y|3)
|ξ1 − ξl|3

]
.

Recall now the definition of the functions Zα, α = 0, . . . , n in (3.3). In the region
y ∈ B(0, η

µk1+σ ), we need to describe the functions

Zα(y + µ−1(ξl − ξ1)), α = 0, 1, . . . , n.
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A direct application of Taylor expansion gives

Z0(y + µ−1(ξl − ξ1)) = −n − 2
2

µn−2

(1 − cos θl)
n−2

2

[
1 − (n − 2)

(ξl − ξ1) · y
|ξl − ξ1|2

µ

+
µ2

|ξl − ξ1|2
O(1 + |y|2)

]
,(10.5)

Z1(y + µ−1(ξl − ξ1)) = −n − 2
2

µn

(1 − cos θl)
n
2

[
µ−1(cos θl − 1) + [1 − n

2
(1 − cos θl)] y1

− n
2

sin θl y2 + µO(1 + |y|)
]

(10.6)

Z2(y + µ−1(ξl − ξ1)) = −n − 2
2

µn

(1 − cos θl)
n
2

[
µ−1 sin θl + [1 − n

2
(1 + cos θl)] y2

+
n
2

sin θl y1 + µO(1 + |y|)
]

(10.7)

and for α = 3, . . . , n

(10.8) Zα(y + µ−1(ξl − ξ1)) = −n − 2
2

µn

(1 − cos θl)
n
2

yα (1 + µ2O(1 + |y|)).

We have now the tools to give the proofs of (4.15), (4.16), (4.19), (10.23), (4.23),
(4.24), (4.27), (4.28), (4.31), (4.32), (4.35) and (4.36).

Computation of A11. Let η > 0 and σ > 0 be small and fixed numbers. We write

A11 =

∫
Rn

( f ′(u) − f ′(U1))Z2
01

= [
∫

B(ξ1,
η

k1+σ )
+

∫
Rn\B(ξ1,

η

k1+σ )
]( f ′(u) − f ′(U1))Z2

01

= I1 + I2

We claim that the main part of the above expansion is I1. Note that very close to
ξ1, U1(x) = O(µ−

n−2
2 ). More in general, taking η small if necessary, we have that

U1 dominates globally the other terms. We thus have
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I1 =

∫
B(ξ1,

η

k1+σ )
f
′′
(U1)[U(x) −

∑
l>1

Ul(x) + ϕ̃(x)]Z2
01(x) dx + O(kn−2µn−1)

( x = ξ1 + µy)

=

∫
B(0, η

µk1+σ )
f
′′
(U)

[
Υ(y)

]
Z2

0 dx

+

∫
B(0, η

µk1+σ )
f
′′
(U)

[
µ

n−2
2 ϕ̃(µy + ξ1)]

]
Z2

0 dy + O(kn−2µn−1)

=

∫
B(0, η

µk1+σ )
f
′′
(U)

[
Υ(y)

]
Z2

0

+ p(p − 1)γ
∫

B(0, η

µk1+σ )
U p−2ϕ1(y)Z2

0 dx + O(kn−2µn−1)

where Υ(y) is defined in (10.1) and ϕ1(y) = µ
n−2

2 ϕ̃(µy+ξ1). Using (1.16), expansion
(10.3) and (10.4), we get

I1 = O(kn−2µn−1).
On the other hand, we have that

(10.9) I2 = O(kn−2µn−1)

Indeed, we first write

I2 = [
∑
j>1

∫
B(ξ j,

η

k1+σ )
+

∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
]( f ′(u) − f ′(U1))Z2

01

Fix now j > 1. In the ball B(ξ j,
η

k1+σ ), u ∼ U j = O(µ−
n−2

2 ) and U j dominates all the
other terms. Taking this into consideration, we have that∣∣∣∣∣∣∣

∫
B(ξ j,

η

k1+σ )
[ f ′(u) − f ′(U1)]Z2

01

∣∣∣∣∣∣∣ ≤
∫

B(ξ j,
η

k1+σ )
f ′(U j)Z2

01

≤ C
∫

B(0, η

µk1+σ )

1
(1 + |y|2)2 Z2

0(y + µ−1(ξ j − ξ1)) dy

(using(10.5))

≤ C
µ2(n−2)

(1 − cos θ j)n−2

∫
B(0, η

µk1+σ )

1
(1 + |y|2)2 dy

≤ C
µ2(n−2)

(1 − cos θ j)n−2

1
(µk1+σ)n−4

where C is an appropiate positive constant independent of k. Thus we conclude
that

(10.10)

∣∣∣∣∣∣∣∣
∑
j>1

∫
B(ξ j,

η

k1+σ )
[ f ′(u) − f ′(U1)]Z2

01

∣∣∣∣∣∣∣∣ ≤ Cµn−1kn−2,
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where again C is an appropiate positive constant independent of k.
On the other hand∣∣∣∣∣∣∣

∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
( f ′(u) − f ′(U1))Z2

01

∣∣∣∣∣∣∣ ≤ Cµ−n+2
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )

1
(1 + |x|2)2 Z2

0(
x − ξ1

µ
)

≤ Cµn−2
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )

1
(1 + |x|2)2

1
|x − ξ1|2(n−2) dx

≤ Cµn−2k(n−4)(1+σ)

Thus we conclude that

(10.11)

∣∣∣∣∣∣∣
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
( f ′(u) − f ′(U1))Z2

01

∣∣∣∣∣∣∣ ≤ Cµn−1kn−2

Formulas (10.10) and (10.11) imply (10.9). Thus we get (4.15).

Computation of A1l. Let l > 1 be fixed. Let again η > 0 and σ > 0 be small and
fixed numbers. In this case we write

A1l =

∫
Rn

( f ′(u) − f ′(U1))Z01Z0l

= [
∫

B(ξl,
η

k1+σ )
+

∫
Rn\B(ξl,

η

k1+σ )
]( f ′(u) − f ′(U1))Z01Z0l

= I1 + I2

We start with the expansion of I1. Using again the fact that in B(ξl,
η

k1+σ ) the leading

term in u is Ul, which is of order µ−
n−2

2 , and dominates all the other terms in the
definition of u, we get that

I1 =

∫
B(ξl,

η
k )

[ f ′(u) − f ′(U1)]Z01Z0l dx

= −pγ
∫

B(ξl,
η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−n+2Z0(

x − ξ1

µ
)Z0(

x − ξl

µ
) + R1

(x = µy + ξl)

= −pγ
∫

B(0, ηµk )
U p−1(y) Z0(y) Z0(y + µ−1(ξl − ξ1)) dy + R1

where R1 = I1 − pγ
∫

B(ξl,
η
k )[µ

− n−2
2 U( x−ξl

µ )]p−1 µ−n+2Z0( x−ξ1
µ )Z0( x−ξl

µ ). Now using the
expansion (10.5), together with formula (10.13), we get, for any integer l > 1

(10.12) I1 = −pγ
n − 2

2
(−

∫
Rn

U p−1Z0 dy)
 1

(1 − cos θl)
n−2

2

 µn−2 + O(µn−1kn−2).

Observe that

(10.13)
∫
Rn

U p−1Z0 dy = −n − 2
2

(−
∫
Rn

y1U p−1Z1(y) dy)
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Indeed, ∫
Rn

U p−1Z0 dy =
n − 2

2

∫
U p + U p−1∇U · y

=
n − 2

2

∫
U p + n

∫
U p−1y1Z1(y) dy(10.14)

On the other hand, we have

p
∫

U p−1y1Z1(y) = −
∫

U p

We thus conclude (10.13) from (10.14). Replacing (10.13) in (10.12) we get
(10.15)

I1 = pγ(
n − 2

2
)2(−

∫
Rn

U p−1y1Z1 dy)
 1

(1 − cos θl)
n−2

2

 µn−2 + O(µn−1kn−2).

On the other hand, a direct computation gives that

(10.16) R1 = O(µn−1kn−2).

We now estimate the term I2. We write

I2 = [
∑
j,l

∫
B(ξ j,

η

k1+σ )
+

∫
Rn\∪ j B(ξ j,

η

k1+σ )
]( f ′(u) − f ′(U1))Z01Z0l

Fix now j , l. In the ball B(ξ j,
η

k1+σ ), u ∼ U j = O(µ−
n−2

2 ) and U j dominates all the
other terms. Taking this into consideration, we have that∣∣∣∣∣∣∣

∫
B(ξ j,

η

k1+σ )
[ f ′(u) − f ′(U1)]Z01Z0l

∣∣∣∣∣∣∣ ≤
∫

B(ξ j,
η

k1+σ )
f ′(U j)Z01Z0l

≤ C
∫

B(0, η

µk1+σ )

1
(1 + |y|2)2 Z0(y + µ−1(ξ j − ξ1)) Z0(y + µ−1(ξ j − ξl)) dy

(using(10.5))

≤ C
µ2(n−2)

(1 − cos θ j)n−2

∫
B(0, η

µk1+σ )

1
(1 + |y|2)2 dy if j , 1

while

≤ C
µ2(n−2)

(1 − cos θ j)
n−2

2

if j = 1

Thus we conclude that

(10.17)

∣∣∣∣∣∣∣∣
∑
j,l

∫
B(ξ j,

η

k1+σ )
[ f ′(u) − f ′(U1)]Z01Z0l

∣∣∣∣∣∣∣∣ ≤ Cµn−1kn−2,

where again C is an appropiate positive constant independent of k.
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On the other hand∣∣∣∣∣∣∣
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
( f ′(u) − f ′(U1))Z01Z0l

∣∣∣∣∣∣∣
≤ Cµ−n+2

∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )

1
(1 + |x|2)2 Z0(

x − ξ1

µ
)Z0(

x − ξl

µ
)

≤ Cµn−2
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )

1
(1 + |x|2)2

1
|x − ξ1|(n−2)

1
|x − ξl|(n−2) dx

Thus we conclude that

(10.18)

∣∣∣∣∣∣∣
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
( f ′(u) − f ′(U1))Z2

01

∣∣∣∣∣∣∣ ≤ Cµn−1kn−2

Summing up the information in (10.15), (10.16), (10.24) and (10.25), we con-
clude that the validity of (4.16).

Computation of F11. Let η > 0 and σ > 0 be small and fixed numbers. We write

F11 =

∫
Rn

[ f ′(u) − f ′(U1)]Z2
11 dx

=

∫
B(ξ1,

η

k1+σ )
+

∫
Rn\B(ξ1,

η

k1+σ )

 [ f ′(u) − f ′(U1)]Z2
11 dx = I1 + I2

We claim that the main part of the above expansion is I1. In B(ξ1,
η

k1+σ ), the main

part in u is given by U1, which is of size µ−
n−2

2 in this region, and which dominates
all the other terms of u. Thus we can perform a Taylor expansion of the function

f ′(u) − f ′(U1) = f
′′
(U1 + s(u − U1))[u − U1] for some 0 < s < 1,

so we write

I1 =

∫
B(ξ1,

η

k1+σ )
f
′′
(U1)

U(x) −
k∑

l>1

Ul(x) + ϕ̃(x)

 Z2
11 dx + R1,

Performing the change of variables x = ξ1 + µy, and recalling that Z11(x) =
µ−

n
2 Z1( x−ξ1

µ )(1 + O(µ2)), we get

I1 − R1 = µ
−2

∫
B(0, η

µk1+σ )
f
′′
(U1)Υ(y) Z2

1(y) dy

+µ−2
∫

B(0, η

µk1+σ )
f
′′
(U1)µ

n−2
2 ϕ̃(ξ1 + µy) Z2

1(y) dy + O(µ
n
2 )

where we recall that

Υ(y) =

µ n−2
2 U(ξ1 + µy) −

k∑
l>1

U(y + µ−1(ξ1 − ξl))

 .
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Recall now that ϕ̃1(y) = µ
n−2

2 ϕ̃1(µy + ξ1) solves the equation

∆ϕ1 + f ′(U)ϕ1 + χ1(ξ1 + µy)µ
n+2

2 E(ξ1 + µy) + γµ
n+2

2 N(ϕ1)(ξ1 + µy) = 0 in Rn

Hence we observe that

p(p − 1)γ
∫
Rn

U p−2ϕ1Z2
1 = pγ

∫
Rn

∂

∂y1
(U p−1)ϕ1Z1

= −pγ
∫
Rn

U p−1ϕ1(∂1Z1) − pγ
∫
Rn

U p−1(∂1ϕ1)Z1

=

∫
Rn
χ1(ξ1 + µy)µ

n+2
2 E(ξ1 + µy)∂1Z1 dy + γµ

n+2
2

∫
Rn
N(ϕ1)(ξ1 + µy)∂1Z1

+

∫
Rn

[
∆ϕ1(∂1Z1) + ∆Z1(∂1ϕ1)

]
︸                                ︷︷                                ︸

=0

= µ
n+2

2

∫
B(0, η

µk1+σ )
E(ξ1 + µy)(∂1Z1) dy + γµ

n+2
2

∫
Rn
N(ϕ1)(ξ1 + µy)(∂1Z1) + O(µ

n
2 )

Taking this into account, we first observe that

I1 − R1 = pγµ−2
∫

B(0, η

µk1+σ )
Υ(y) ∂1(U p−1Z1) dy + O(µ

n
2 )

On the other hand recall that

R1 =

∫
B(ξ1,

η

k1+σ )
[ f
′′
(U1 + s(u − U1)) − f

′′
(U1)]

U(x) −
k∑

l>1

Ul(x) + ϕ̃(x)

 Z2
11 dx

Thus we have

|R1| ≤ C
∫

B(ξ1,
η

k1+σ )
U p−2

1 |(1+ sU−1
1 (u−U1))p−2−1|

∣∣∣∣∣∣∣U(x) −
k∑

l>1

Ul(x) + ϕ̃(x)

∣∣∣∣∣∣∣ Z2
11 dx

≤ Cµ
n−2

2

∫
B(ξ1,

η

k1+σ )
U p−2

1

∣∣∣∣∣∣∣U(x) −
k∑

l>1

Ul(x) + ϕ̃(x)

∣∣∣∣∣∣∣
2

Z2
11 dx

Arguing as before, we get that

R1 = µ
n
2 O(1)
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where O(1) is bounded as k → 0. Using the definition of µ and the expansions
(10.3), (10.4) we conclude that

I1 = pγµ
n−2

2
n − 2

4

∫
Rn

(
n
2

y2
1 − |y|2)∂1(U p−1Z1)

− µn−2 n − 2
4

∑
l>1

1

(1 − cos θl)
n
2

∫
Rn

[−1 − |y|2 + n
2

(1 − cos θl)y2
1 +

n
2

(1 + cos θl)y2
2]∂1(U p−1Z1)

+ O(µ
n
2 )

= p γ
n − 2

4
µ

n−2
2

(n − 2) + µ
n−2

2

k∑
l>1

n cos θl − (n − 2)

(1 − cos θl)
n
2

 (−
∫
Rn

y1U p−1Z1)

+ O(µ
n
2 ) (10.19)

On the other hand, we have that

(10.20) I2 = µ
n
2 O(1)

where O(1) is bounded as k → 0. Indeed, we first write

I2 = [
∑
j>1

∫
B(ξ j,

η

k1+σ )
+

∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
]( f ′(u) − f ′(U1))Z2

11

Fix now j > 1. In the ball B(ξ j,
η

k1+σ ), u ∼ U j = O(µ−
n−2

2 ) and U j dominates all the
other terms. Taking this into consideration, we have that∣∣∣∣∣∣∣
∫

B(ξ j,
η

k1+σ )
[ f ′(u) − f ′(U1)]Z2

11

∣∣∣∣∣∣∣ ≤
∫

B(ξ j,
η

k1+σ )
f ′(U j)Z2

11

≤ Cµ−2
∫

B(0, η

µk1+σ )

1
(1 + |y|2)2 Z2

1(y + µ−1(ξ j − ξ1)) dy

(using(10.5))

≤ C
µ2n−2

(1 − cos θ j)n

∫
B(0, η

µk1+σ )

1
(1 + |y|2)2 dy

≤ C
µ2n−2

(1 − cos θ j)n
1

(µk1+σ)n−4

where C is an appropiate positive constant independent of k. Thus we conclude
that

(10.21)

∣∣∣∣∣∣∣∣
∑
j>1

∫
B(ξ j,

η

k1+σ )
[ f ′(u) − f ′(U1)]Z2

11

∣∣∣∣∣∣∣∣ ≤ Cµ
n
2 ,

where again C is an appropiate positive constant independent of k.
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On the other hand∣∣∣∣∣∣∣
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
( f ′(u) − f ′(U1))Z2

11

∣∣∣∣∣∣∣ ≤ Cµ−n
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )

1
(1 + |x|2)2 Z2

1(
x − ξ1

µ
)

≤ Cµn−2
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )

1
(1 + |x|2)2

1
|x − ξ1|2(n−1) dx

≤ Cµn−2k(n−2)(1+σ)

Thus we conclude that

(10.22)

∣∣∣∣∣∣∣
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
( f ′(u) − f ′(U1))Z2

11

∣∣∣∣∣∣∣ ≤ Cµ
n
2

¿From (10.21) and (10.22) we get (10.20). From (10.19) and (10.20) we con-
clude (4.19).
Computation of F1l. Let l > 1 be fixed. Let again η > 0 and σ > 0 be small and
fixed numbers. In this case we write

F1l =

∫
Rn

( f ′(u) − f ′(U1))Z11Z1l

= [
∫

B(ξl,
η

k1+σ )
+

∫
Rn\B(ξl,

η

k1+σ )
]( f ′(u) − f ′(U1))Z11Z1l

= I1 + I2

We start with the expansion of I1. Recall that

Z1l(x) =
[
cos θlµ

− n
2 Z1(

x − ξl

µ
) + sin θlµ

− n
2 Z2(

x − ξl

µ
)
] (

1 + O(µ2)
)
.

Using again the fact that in B(ξl,
η

k1+σ ) the leading term in u is Ul, which is of order

µ−
n−2

2 , and dominates all the other terms in the definition of u, we get that

I1 = −p cos θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−nZ1(

x − ξ1

µ
)Z1(

x − ξl

µ
)

− p sin θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−nZ1(

x − ξ1

µ
)Z2(

x − ξl

µ
) + R1

(x = µy + ξl)

= −pγµ−2 cos θl

∫
B(0, ηµk )

U p−1Z1Z1(y + µ−1(ξl − ξ1)) dy

− pγµ−2 sin θl

∫
B(0, ηµk )

U p−1Z1Z2(y + µ−1(ξl − ξ1)) dy + R1
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Now using the expansion (10.7) we get, for any l > 1

I1 − R1 = p γ
n − 2

4
Ξ cos θl

[
n − 2 − n cos θl

(1 − cos θl)
n
2

]
µn−2

− p γ
n − 2

4
Ξ sin θl

[
n sin θl

(1 − cos θl)
n
2

]
µn−2 + O(µ

n
2 )

= p γ
n − 2

2
Ξ

 n−2
2 cos θl − n

2

(1 − cos θl)
n
2

 µn−2 + O(µ
n
2 )(10.23)

On the other hand we directly compute

R1 = µ
n
2 O(1)

where O(1) is bounded as k → 0. We now estimate the term I2. We write

I2 = [
∑
j,l

∫
B(ξ j,

η

k1+σ )
+

∫
Rn\∪ j B(ξ j,

η

k1+σ )
]( f ′(u) − f ′(U1))Z11Z1l

Fix now j , l. In the ball B(ξ j,
η

k1+σ ), u ∼ U j = O(µ−
n−2

2 ) and U j dominates all the
other terms. Taking this into consideration, we have that∣∣∣∣∣∣∣

∫
B(ξ j,

η

k1+σ )
[ f ′(u) − f ′(U1)]Z01Z0l

∣∣∣∣∣∣∣ ≤
∫

B(ξ j,
η

k1+σ )
f ′(U j)Z11Z1l

≤ Cµ−2
∫

B(0, η

µk1+σ )

1
(1 + |y|2)2 Z1(y + µ−1(ξ j − ξ1)) Z1(y + µ−1(ξ j − ξl)) dy

(using(10.7))

≤ C
µ2n−2

(1 − cos θ j)n

∫
B(0, η

µk1+σ )

1
(1 + |y|2)2 dy if j , 1

while

≤ C
µ2n−2

(1 − cos θ j)
n
2

if j = 1

Thus we conclude that

(10.24)

∣∣∣∣∣∣∣∣
∑
j,l

∫
B(ξ j,

η

k1+σ )
[ f ′(u) − f ′(U1)]Z11Z1l

∣∣∣∣∣∣∣∣ ≤ Cµ
n
2 ,

where again C is an appropiate positive constant independent of k.
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On the other hand∣∣∣∣∣∣∣
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
( f ′(u) − f ′(U1))Z11Z1l

∣∣∣∣∣∣∣
≤ Cµ−n

∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )

1
(1 + |x|2)2 Z1(

x − ξ1

µ
)Z1(

x − ξl

µ
)

≤ Cµn−4
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )

1
(1 + |x|2)2

1
|x − ξ1|(n−1)

1
|x − ξl|(n−1) dx

Thus we conclude that

(10.25)

∣∣∣∣∣∣∣
∫
Rn\∪ j≥1 B(ξ j,

η

k1+σ )
( f ′(u) − f ′(U1))Z2

01

∣∣∣∣∣∣∣ ≤ Cµ
n
2

Computation of G11. Let η > 0 and σ > 0 be small and fixed numbers. We write

G11 =

∫
Rn

( f ′(u) − f ′(U1))Z2
21

= [
∫

B(ξ1,
η

k1+σ )
+

∫
Rn\B(ξ1,

η

k1+σ )
]( f ′(u) − f ′(U1))Z2

21

= I1 + I2

Recall that Z21(x) = µ−
n
2 Z2( x−ξ1

µ ). We claim that the main part of the above expan-
sion is I1. Arguing as in the expansion of F11, in the set B(ξ1,

η

k1+σ ) we perform a
Taylor expansion of the function ( f ′(u) − f ′(U1)) so that

I1 =

∫
B(ξ1,

η

k1+σ )
f
′′
(U1)[U(x) −

k∑
l>1

Ul(x) + ϕ̃(x)]Z2
21(x) dx + R1

( changing variables x = ξ1 + µy)

= µ−2
∫

B(0, η

µk1+σ )
f
′′
(U)Υ(y) Z2

2

+ µ−2
∫

B(0, η

µk1+σ )
f
′′
(U)µ

n−2
2 ϕ̃(µy + ξ1)Z2

2 dx + R1

= µ−2
∫

B(0, η

µk1+σ )
f
′′
(U)Υ(y)Z2

2

+ p(p − 1)γµ−2
∫

B(0, η

µk1+σ )
U p−2ϕ1(y)Z2

2 dx + R1

where ϕ1(y) = µ
n−2

2 ϕ̃(µy+ξ1) andΥ(y) =
[
µ

n−2
2 U(ξ1 + µy) −∑k

l>1 U(y + µ−1(ξ1 − ξl))
]
.
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Using the equation satisfied by ϕ1 and by Z2 in Rn, we get

p(p − 1)γ
∫

U p−2ϕ1Z2
2 = pγ

∫
∂

∂y2
U p−1 ϕ1Z2

= −pγ
∫

U p−1∂y2ϕ1Z2 − pγ
∫

U p−1ϕ1∂y2Z2

=

∫
ζ1(ξ1 + µy)µ

n+2
2 E(ξ1 + µy)∂y2 Z2 + γµ

n+2
2

∫
N(ϕ1)(ξ1 + µy)∂y2Z2

= pγ
∫

B(0, η

µk1+σ )
U p−1

µ n−2
2 U(ξ1 + µy) −

∑
l>1

U(y + µ−1(ξ1 − ξl))

 ∂y2Z2

+ O(µ
n
2 )

Thus we conclude that

I1 = pγµ−2
∫

B(0, η

µk1+σ )
Υ(y) ∂y2

(
U p−1Z2

)
dy + O(µ

n
2 )

Using the definition of µ in (1.16), we see that the first order term in expansions
(10.3) and (10.4) gives a lower order contribution to I1. Furthermore, by symme-
try, also the second order term in the expansions (10.3) and (10.4) gives a small
contribution. Thus, the third order term in the above mentioned expansions is the
one that counts. We get indeed

I1 = p γ
n − 2

4
µ

n−2
2

∫
[
n
2

y2
1 − |y|2]∂y2(U p−1Z2)

− p γ
n − 2

4
µn−2

k∑
l>1

1

(1 − cos θl)
n
2

∫ [
−1 − |y|2

+
n
2

(1 − cos θl)y2
1 +

n
2

(1 + cos θl)y2
2

]
∂y2(U p−1Z2) + O(µ

n
2 )

= −pγ
n − 2

4
µ

n−2
2

2 + µ n−2
2

k∑
l>1

−2 + n(1 + cos θl)

(1 − cos θl)
n
2

 (−
∫

y2U p−1Z2) + O(µ
n
2 )

On the other hand, arguing as in the proof of estimate (10.20), we have that

I2 = µ
n
2 O(1)

where O(1) is bounded as k → ∞. Thus we conclude (4.23).

Computation of G1l. Let l > 1 be fixed. Arguing as in the computation of F1l, we
first observe that

G1l =

∫
B(ξl,

η
k )

[ f ′(u) − f ′(U1)]Z21Z2l dy + O(µ
n
2 )

Recall that

Z2l(x) =
[
− sin θl µ

− n
2 Z1(

x − ξl

µ
) + cos θl µ

− n
2 Z2(

x − ξl

µ
)
] (

1 + O(µ2)
)
.



56 MONICA MUSSO AND JUNCHENG WEI

In the ball B(ξl,
η
k ), we expand as before in Taylor, and we get

G1l = −p γ cos θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−nZ2(

x − ξ1

µ
)Z2(

x − ξl

µ
)

+ p γ sin θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−nZ2(

x − ξ1

µ
)Z1(

x − ξl

µ
)

+ O(µ
n
2 )

(x = µy + ξl)

= −p γ µ−2 sin θl

∫
B(0, ηµk )

U p−1Z2Z2(y + µ−1(ξl − ξ1)) dy

+ p γ µ−2 cos θl

∫
B(0, ηµk )

U p−1Z2Z1(y + µ−1(ξl − ξ1)) dy + O(µ
n
2 ).

Now using the expansion (10.7) we get, for any l > 1, the validity of (4.24).

Computation of B11. Let η > 0 and σ > 0 be small and fixed numbers. We write

B11 =

∫
Rn

( f ′(u) − f ′(U1))Z01Z11

= [
∫

B(ξ1,
η

k1+σ )
+

∫
Rn\B(ξ1,

η

k1+σ )
]( f ′(u) − f ′(U1))Z01Z11

= I1 + I2

We claim that the main part of the above expansion is I1. We have

I1 =

∫
B(ξ1,

η

k1+σ )
f
′′
(U1)[U(x) −

k∑
l>1

Ul(x) + ϕ̃(x)]Z01Z11 dx + O(µ
n
2 )

( x = ξ1 + µy)

= µ−2
∫

B(0, η

µk1+σ )
f
′′
(U)Υ(y) Z0Z1 dy

+ µ−2
∫

B(0, η

µk1+σ )
f
′′
(U)

[
µ

n−2
2 ϕ̃(µy + ξ1)]Z0Z1 dx

]
+ O(µ

n
2 )

= µ−2
∫

B(0, η

µk1+σ )
f
′′
(U)[µ

n−2
2 U(ξ1 + µy) −

k∑
l>1

U(y + µ−1(ξ1 − ξl))]Z0Z1 dy

+ p(p − 1)γµ−2

∫
B(0, η

µk1+σ )
U p−2ϕ1(y)Z0Z1 dy

 + O(µ
n
2 )

where ϕ1(y) = µ
n−2

2 ϕ̃(µy + ξ1).
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Using the equation satisfied by ϕ1 and by Z0 , Z1 in Rn, we have that

p(p − 1)γ
∫

U p−2ϕ1Z0Z1 = pγ
∫

∂

∂y1
U p−1 ϕ1Z0

= −pγ
∫

U p−1∂y1ϕ1Z0 − pγ
∫

U p−1ϕ1∂y1Z0

= pγ
∫

B(0, η

µk1+σ )
U p−1Υ(y)∂y1(U p−1Z0)

whereΥ(y) =
[
µ

n−2
2 U(ξ1 + µy) −∑k

l>1 U(y + µ−1(ξ1 − ξl))
]
. Using expansions (10.3)

and (10.4), and taking into account that ∂y1

(
U p−1Z0

)
= (p−1)U p−1Z0Z1+U p−1∂y1Z0,

I1 = pγµ−2
∫

B(0, η

µk1+σ )
Υ(y)∂y1

(
U p−1Z0

)
= pγ

n − 2
2

[
−µ n−4

2

∫
y1∂y1(U p−1Z0) dy

+ µn−3
k∑

l>1

1

(1 − cos θl)
n−2

2

∫
y1∂y1(U p−1Z0)

]
+O(µ

n
2 )

= O(µ
n
2 ).

On the other hand, arguing as in the expansion of A11, one can easily prove that

I2 = O(µ
n
2 ).

Taking into account (10.13), we conclude (4.27).
Computation of B1l. Let l > 1 be fixed. We have

B1l =

∫
B(ξl,

η
k )

[ f ′(u) − f ′(U1)]Z01Z1l dx + O(µ
n
2 )

= −pγ cos θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−nZ0(

x − ξ1

µ
)Z1(

x − ξl

µ
)

− pγ sin θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−nZ0(

x − ξ1

µ
)Z2(

x − ξl

µ
)

+ O(µ
n
2 )

(x = µy + ξl)

= −pγµ−1 cos θl

∫
B(0, ηµk )

U p−1Z1Z0(y + µ−1(ξl − ξ1)) dy

− pγµ−1 sin θl

∫
B(0, ηµk )

U p−1Z2Z0(y + µ−1(ξl − ξ1)) dy + O(µ
n
2 ).

Now using the expansion (10.5) we get, for any l > 1, (4.28).
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Computation of C11. Arguing as in the computation of G11, we are led to

C11 = pγµ−1

∫
B(0, ηµk )

Υ(y) ∂y2(U p−1Z0) dy

 (1 + O(µ))

+ kn−2µn−1O(1)

= −pγµn

 k∑
l>1

sin θl

(1 − cos θl)
n
2

 ∫ U p−1Z0 + kn−2µn−1O(1),

where

Υ(y) =

µ n−2
2 U(ξ1 + µy) −

k∑
l>1

U(y + µ−1(ξ1 − ξl))


so that we conclude, by cancellation, the validity of (4.31).

Computation of C1l. Let l > 1 be fixed. We have

C1l =

∫
B(ξl,

η
k )

[ f ′(u) − f ′(U1)]Z01Z2l dx + kn−2µn−1O(1)

= −pγ cos θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−n+Z0(

x − ξ1

µ
)Z2(

x − ξl

µ
) dx

+ pγ sin θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−n+1Z0(

x − ξ1

µ
)Z1(

x − ξl

µ
) dx

+ kn−2µn−1O(1)
(x = µy + ξl)

= −pγµ−1 cos θl

∫
B(0, ηµk )

U p−1Z2Z0(y + µ−1(ξl − ξ1)) dy

+ pγµ−1 sin θl

∫
B(0, ηµk )

U p−1Z2Z0(y + µ−1(ξl − ξ1)) dy + kn−2µn−1O(1).

Now using the expansion (10.5) we get, for any l > 1, (4.32).

Computation of D11. Arguing as in the computation of G11, we are led to

D11 = pγµ−2
∫
Υ(y) ∂y1(U p−1Z2) dy

+ kn−1µnO(1)

= pγ
n − 2

4
nµn−2

 k∑
l>1

sin θl

(1 − cos θl)
n
2

 ∫ y2U p−1Z2 + kn−1µnO(1)

so that we conclude (4.35).



NONDEGENERACY OF NONRADIAL NODAL SOLUTIONS TO YAMABE PROBLEM 59

Computation of D1l. Let l > 1 be fixed. We have

D1l =

∫
B(ξl,

η
k )

[ f ′(u) − f ′(U1)]Z11Z2l dx + kn−1µnO(1)

= −pγ cos θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−nZ1(

x − ξ1

µ
)Z2(

x − ξl

µ
) dx

+ pγ sin θl

∫
B(ξl,

η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−nZ1(

x − ξ1

µ
)Z1(

x − ξl

µ
) dx

+ kn−1µnO(1)
(x = µy + ξl)

= −pγµ−2 cos θl

∫
B(0, ηµk )

U p−1Z2Z1(y + µ−1(ξl − ξ1)) dy

+ pγµ−2 sin θl

∫
B(0, ηµk )

U p−1Z2Z2(y + µ−1(ξl − ξ1)) dy + kn−1µnO(1).

Now using the expansion (10.7) we get (4.36).
Computation of H3,11. Let η > 0 and σ > 0 be small and fixed numbers. We write

H3,11 =

∫
Rn

( f ′(u) − f ′(U1))Z2
31

= [
∫

B(ξ1,
η

k1+σ )
+

∫
Rn\B(ξ1,

η

k1+σ )
]( f ′(u) − f ′(U1))Z2

31

= I1 + I2

Arguing as before one can show that

I2 = O(µ
n
2 ).

In B(ξ1,
η

k1+σ ) we can perform a Taylor expansion of the function ( f ′(u) − f ′(U1))
so that

I1 =

∫
B(ξ1,

η

k1+σ )
f
′′
(U1)[U(x) −

k∑
l>1

Ul(x) + ϕ̃(x)]Z2
31(x) dx + O(µ

n
2 )

( x = ξ1 + µy)

= µ−2
∫

B(0, η

µk1+σ )
f
′′
(U)Υ(y) Z2

3

+ µ−2
∫

B(0, η

µk1+σ )
f
′′
(U)µ

n−2
2 ϕ̃(µy + ξ1)Z2

3 dx + O(µ
n
2 )

= µ−2
∫

B(0, η

µk1+σ )
f
′′
(U)Υ(y)Z2

3

+ p(p − 1)γµ−2
∫

B(0, η

µk1+σ )
U p−2ϕ1(y)Z2

3 dx + O(µ
n
2 )
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where ϕ1(y) = µ
n−2

2 ϕ̃(µy + ξ1). Using the equation satisfied by ϕ1 and by z2 in Rn,
and arguing as in the previous steps, we get

p(p − 1)γ
∫

U p−2ϕ1Z2
3 = pγ

∫
B(0, η

µk1+σ )
U p−1Υ(y)∂y3Z3

where we recall that

Υ(y) =

µ n−2
2 U(ξ1 + µy) −

k∑
l>1

U(y + µ−1(ξ1 − ξl))

 .
Thus we conclude that

I1 = pγµ−2
∫

B(0, η

µk1+σ )
Υ(y) ∂y3

(
U p−1Z3

)
dy + O(µ

n
2 ).

Using the definition of µ in (1.16), we see that the first order term in expansions
(10.3) and (10.4) gives a lower order contribution to I1. Furthermore, by symme-
try, also the second order term in the expansions (10.3) and (10.4) gives a small
contribution. Thus, the third order term in the above mentioned expansions is the
one that counts. We get indeed

I1 = p γ
n − 2

4
µ

n−2
2

∫
[
n
2

y2
1 − |y|2]∂y3(U p−1z3)

− p γ
n − 2

4
µn−2

k∑
l>1

1

(1 − cos θl)
n
2

∫ [
−1 − |y|2 + n

2
(1 − cos θl)y2

1

+
n
2

(1 + cos θl)y2
2

]
∂y3(U p−1Z3) + O(µ

n
2 )

= pγ
n − 2

2
µ

n−2
2

1 − µ n−2
2

k∑
l>1

1

(1 − cos θl)
n
2

 (−
∫

y3U p−1Z3) + O(µ
n
2 )

Thus we conclude (4.39).

Computation of H3,1l. Let l > 1 be fixed. Arguing as before, we get

H3,1l =

∫
B(ξl,

η
k )

[ f ′(u) − f ′(U1)]Z31Z3l + O(µ
n
2 )

= −p γ
∫

B(ξl,
η
k )

[µ−
n−2

2 U(
x − ξl

µ
)]p−1 µ−nZ3(

x − ξ1

µ
)Z3(

x − ξl

µ
)

+ O(µ
n
2 )

(x = µy + ξl)

= −p γ µ−2
∫

B(0, ηµk )
U p−1Z3(y)Z3(y + µ−1(ξl − ξ1)) dy + O(µ

n
2 )

Now using the expansion (10.8) we get (4.40).
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