NONDEGENERACY OF NONRADIAL NODAL SOLUTIONS TO
YAMABE PROBLEM

MONICA MUSSO AND JUNCHENG WEI

Abstract: We prove the existence of a sequence of nondegenerate, in the sense
of Duyckaerts-Kenig-Merle [9], nodal nonradial solutions to the critical Yamabe
problem

~AQ = 10770, Qe DR,
This is the first example in the literature of nondegeneracy for nodal nonradial

solutions of nonlinear elliptic equations and it is also the only nontrivial example
for which the result of Duyckaerts-Kenig-Merle [9] applies.

1. INTRODUCTION

In this paper we consider the critical Yamabe problem

-2
(1.1) —Au = n(n4 )Iulﬁu, u e D2RY

where n > 3 and D2(R") is the completion of C*(R") under the norm / fR,, |Vul?.

If u > 0 Problem (1.1) is the conformally invariant Yamabe problem. For sign-
changing u Problem (1.1) corresponds to the steady state of the energy-critical
focusing nonlinear wave equation

(1.2) 0%u — Au—|ul2u = 0, (1,x) € R X R".

These are classical problems that have attracted the attention of several researchers
in order to understand the structure and properties of the solutions to Problems
(1.1) and (1.2).

Denote the set of non-zero finite energy solutions to Problem (1.1) by

n(n-2) 4
o Q}.

This set has been completely characterized in the class of positive solutions to
Problem (1.1) by the classical work of Caffarelli-Gidas-Spruck [5] (see also [2,
24, 31]): all positive solutions to (1.1) are radially symmetric around some point
a € R" and are of the form

(1.4) Wia(x) = (

(1.3) Y= {Q e D2RMH\{0} : —AQ =

A

n-2
2
L 7 s
A2 +|x—al?
The research of the first author has been partly supported by Fondecyt Grant 1120151. The
research of the second author is partially supported by NSERC of Canada.
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Much less is known in the sign-changing case. A direct application of Pohozaev’s
identity gives that all sign-changing solutions to Problem (1.1) are non-radial. The
existence of elements of X that are nonradial sign-changing, and with arbitrary
large energy was first proved by Ding [6] using Ljusternik-Schnirelman category
theory. Indeed, via stereographic projection to S” Problem (1.1) becomes

n(n—2)

4 .

Agnv + (=2v-v)=0 inS",

(see for instance [30], [14]) and Ding showed the existence of infinitely many crit-
ical points to the associated energy functional within functions of the form

v(x) = v(lxil, [xal),  x=(x,x) € S" c R = REXR™IR D k>0,

where compactness of critical Sobolev’s embedding holds, for any n > 3. No
other qualitative properties are known for the corresponding solutions. Recently
more explicit constructions of sign changing solutions to Problem (1.1) have been
obtained by del Pino-Musso-Pacard-Pistoia [7, 8]. However so far only existence

is available, and there are no rigidity results on these solutions.

The main purpose of this paper is to prove that these solutions are rigid, up to the
transformations of the equation. In other words, these solutions are nondegenerate,
in the sense of the definition introduced by Duyckaerts-Kenig-Merle in [9]. Fol-
lowing [9], we first find out all possible invariances of the equation (1.1). Equation
(1.1) is invariant under the following four transformations:

(1) (translation): If Q € X then Q(x + a) € Z,Va € R";
(2) (dilation): If Q € X then 17 O(dx) e Z,Y1 > 0;

(3) (orthogonal transformation): If Q € ¥ then Q(Px) € X where P € O,, and O, is
the classical orthogonal group;

(4) (Kelvin transformation): If Q € X then |x[>¥ Q( ﬁ) €.

If we denote by M the group of isometries of D'2(R") generated by the previous
four transformations, a result of Duyckaerts-Kenig-Merle [Lemma 3.8,[9]] states
that M generates an N—parameter family of transformations in a neighborhood of
the identity, where the dimension N is given by

-1
(1.5) N:2n+1+”(”2 ).
In other words, if Q € X we denote
nn+2) 4
LQ = —A — 4 |Q|)L*2

the linearized operator around Q. Define the null space of Ly

(1.6) Zo={feD?®"): Lof =0}
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The elements in Zp generated by the family of transformations M define the fol-
lowing vector space

B (2 _n)xJQ + |x|26)CjQ - 2.Xj.x : VQa aij, 1 < ] <n,
(1.7) Zo = span
iy = %02 )0, 1< j<ks<n "P20+x-0Q

Observe that the dimension of ZQ is at most N, but in principle it could be strictly
less than N. For example in the case of the positive solutions Q = W, it turns out
that the dimension of Z o i1s n+ 1 as a consequence of being Q radially symmetric.
Indeed, it is known that

~ -2
(18) .ZW:{n2 W+ x-VW, axj"v’ lstn}.

Duyckaerts-Kenig-Merle [9] introduced the following definition of nondegener-
acy for a solution of Problem (1.1): Q € X is said to be nondegenerate if

(1.9) Zo=Zo

So far the only nondegeneracy example of Q € X is the positive solution W. The
proof of this fact relies heavily on the radial symmetry of W and it is straightfor-
ward: In fact since Q = W is radially symmetric (around some point) one can de-
compose the linearized operator into Fourier modes, getting (1.9) as consequence
of a simple ode analysis. See also [27]. In the case of nodal (nonradial) solutions
this strategy no longer works out. In fact, as far as the authors know, there are no
results in the literature on nondegeneracy of nodal nonradial solutions for nonlin-
ear elliptic equations in the whole space. For positive radial solutions there have
been many results. We refer to Frank-Lenzmann [12], Frank-Lenzmann-Silvestre
[13], Kwong [21] and the references therein.

The knowledge of nondegeneracy is a crucial ingredient to show the soliton
resolution for a solution to the energy-critical wave equation (1.2) with the com-
pactness property obtained by Kenig and Merle in [16, 17]. If the dimension n
is 3,4 or 5, and under the above nondegeneracy assumption, they prove that any
non zero such solution is a sum of stationary solutions and solitary waves that are
Lorentz transforms of the former. See also Duyckaerts, Kenig and Merle [10, 11].
Nondegeneracy also plays a vital role in the study of Type II blow-up solutions of
(1.2). We refer to Krieger, Schlag and Tataru [20], Rodnianski and Sterbenz [26]
and the references therein.

The main result of this paper can be stated as follows:

Main Result: There exists a sequence of nodal solutions to (1.1), with arbitrary
large energy, such that they are nondegenerate in the sense of (1.9).

Now let us be more precise.

Let

n+2
n—2

(1.10) f@) =ylP~'e, for teR, and p=
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The constant y > 0 is chosen for normalization purposes to be

_n(n-12)

= R
In [7], del Pino, Musso, Pacard and Pistoia showed that Problem
(1.11) Au+ fu)=0 in R",

admits a sequence of entire non radial sign changing solutions with finite energy.
To give a first description of these solutions, let us introduce some notations. Fix
an integer k. For any integer [ = 1,. .., k, we define angles 6; and vectors n;, {; by

2
(1.12) 0, = % (I-1), n;=(cosb,sinb;,0), t;=(—sinb;,cosb;,0).

Here 0 stands for the zero vector in R”~2. Notice that §; = 0, n; = (1,0,0), and
t1 =(0,1,0).

In [7] it was proved that there exists kg such that for all integer k > kg there exists
a solution u; to (1.11) that can be described as follows

(1.13) up(x) = U (x) + $(x)
where
k
(1.14) U.(0) = U) = Y U,
j=1

while ¢ is smaller than U,. The functions U and U; are positive solutions to (1.11),
respectively defined as

2 \7T _u2
(1.15) U(x)=(T|x|2) . Ui =, 2 UG (x =€)

For any integer k large, the parameters u; > 0 and the k points &, [ = 1,...,k are
given by

n=2
2

k
(1.16) [Z% 1, :(1+0(%)), for k — oo

=1 (1 —cosé) 7

in particular, as k — oo, we have

we~k2 if n>4, e~k logkl? if n=3.
Furthermore
(1.17) &= /1 =12 (n,0).

The functions U, U, and U, are invariant under rotation of angle 27” in the x1, xp
plane, namely

(1.18) UETx )= URX), %=@,x), X =(@5....%)
They are even in the x;-coordinates, for any j =2,...,n
(1.19) Ui, oo Xjyoo 0y X)) = UL, oy =Xjy ooy Xn),  J=2,...,0
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and they respect invariance under Kelvin’s transform:
(1.20) Ux) = |xP"U(x%x) .

In (1.13) the function ¢ is a small function when compared with U,. We will
further describe the function u, and in particular the function ¢ in Section 2. Let us
just mention that ¢ satisfies all the symmetry properties (1.18), (1.19) and (1.20).

Recall that Problem (1.11) is invariant under the four transformations mentioned
before: translation, dilation, rotation and Kelvin transformation. These invariances
will be reflected in the element of the kernel of the linear operator

(1.21) L(p) := A + f'(u)p = Mg + pylunl”Pu g
which is the linearized equation associated to (1.11) around uy.

From now on, for simplicity we will drop the label k in uy, so that u will denote
the solution to Problem (1.11) described in (1.13).

Let us introduce the following set of 3n functions

(1.22) 2000 = P20 + Vul) - x,
0
(1.23) Zo(x) = —u(x), for a=1,...,n,
0x,
and
(1.24) Zns1(X) = —xziu(X) + miu(X)

6x1 8x2
where u is the solution to (1.11) described in (1.13). Observe that z,,.; is given by

0
Znt1(x) = 70 [u(Rgx)]j9=0

where Ry is the rotation in the x1, x; plane of angle 6. Furthermore,

(1.25)  zps2(x) = —2x120(%) + [x21 (%), zns3(X) = —22220(x) + [x[*22(x)
forl=3,...,n
(1.26) Zni+1(X) = =x3z1(%) + x127(%),  U2p41-1(x) = —x122(X) + x2277(X).

The functions defined in (1.25) are related to the invariance of Problem (1.11)
under Kelvin transformation, while the functions defined in (1.26) are related to the
invariance under rotation in the (x1, x;) plane and in the (x;, x;) plane respectively.

The invariance of Problem (1.11) under scaling, translation, rotation and Kelvin
transformation gives that the set Zp (introduced in (1.7)) associated to the linear
operator L introduced in (1.21) has dimension at least 3n, since

1.27) L(zg) =0, «=0,...,3n-1.

We shall show that these functions are the only bounded elements of the kernel of
the operator L. In other words, the sign changing solutions (1.13) to Problem (1.11)
constructed in [7] are non degenerate in the sense of Duyckaerts-Kenig-Merle [9].
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To state our result, we introduce the following function: For any positive integer i,
we define

Pix) = Z cosl(il X) and  Qi(x) = Z sm;l x).
=1 =1
Up to a normalization constant, when n is even, P, and Q, are related to the Fourier
series of the Bernoulli polynomial B, (x), and when n is odd P, and Q, are related
to the Fourier series of the Euler polynomial E,(x). We refer to [1] for further
details.
We now define

(1.28) g(x)zzw, O<x<n

j=1
which can be rewritten as
g(x) = Py(0) = Pp(x).
Observe that
g ()= 0p-1(x), g"(x) = Ppa(x).
Theorem 1.1. Assume that
n=2(gw)”

(1.29) g (x) < Vx € (0, m).
n—1 g
Then all bounded solutions to the equation
L) =0
are a linear combination of the functions z,(x), fora =0,...,3n — 1.

When n = 3, condition (1.29) is satisfied. Indeed, in this case we observe
that g”(x) = —In(2sin 5). Thus, if we call p(x) = g"”"(x)g(x) — %(g’(x))z, we get
o'(x) = g"x)gkx) = —%cot(%)g(x) < 0. Since p(0) = 0, condition (1.29) is
satisfied.

When n = 4, let us check the condition (1.29): let x = 2xt,t € (0, %). Using the
explicit formula for the Bernoulli polynomial B4 we find that
(1.30) g() =11 -1)?

and hence (1.29) is reduced to showing
8 1
(1.31) 1262 - 121+ 2 < 30 +1%, te(0, 3

which is trivial to verify.

In general we believe that condition (1.29) should be true for any dimension
n > 4. In fact, we have checked (1.29) numerically, up to dimension n < 48.
Nevertheless, let us mention that even if (1.29) fails, our result is still valid for a
subsequence uy;, kj — +0o, of solutions (1.13) to Problem (1.11). Indeed, also in
this case, our proof can still go through by choosing a subsequence k; — +oo in
order to avoid the resonance.

We end this section with some remarks.
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First: very few results are known on sign-changing solutions to the Yamabe
problem. In the critical exponent case and n = 3 the topology of lower energy level
sets was analyzed in Bahri-Chanillo [3] and Bahri-Xu [4]. For the construction of
sign-changing bubbling solutions we refer to Hebey-Vaugon [15], Robert-Vetois
[28, 29], Vaira [32] and the references therein. We believe that the non-degeneracy
property established in Theorem 1.1 may be used to obtain new type of construc-
tions for sign changing bubbling solutions.

Second: as far as we know the kernels due to the Kelvin transform (i.e. —2x;zo +
X%z ;) were first used by Korevaar-Mazzeo-Pacard-Schoen [18] and Mazzeo-Pacard
([23]) in the construction of isolated singularities for Yamabe problem by using a
gluing procedure. An interesting question is to determine if and how the non-
degenerate sign-changing solutions can used in gluing methods.

Third: for the sign-changing solutions considered in this paper, the dimension
of the kernel equals 3n which is strictly less than N = 2n + 1 + @ An open
question is whether or not there are sign-changing solutions whose dimension of
kernel equals N.

Acknowledgements: The authors express their deep thanks to Professors M. del
Pino and F. Robert for stimulating discussions. We thank Professor C. Kenig for
communicating his unpublished result [9].

2. DESCRIPTION OF THE SOLUTIONS

In this section we describe the solutions u in (1.13), recalling some properties
that have already been established in [7], and adding some further properties that
will be useful for later purpose.

In terms of the function ¢ in the decomposition (1.13), equation (1.11) gets re-
written as

2.1 Ap+ pY U6 + E+yN(@) =0
where FE is defined by

(2.2) E =AU, + f(U.)

and

N(@) = U, + P (U, + ¢) = UL'U, = plUIP .

One has a precise control of the size of the function £ when measured for instance
in the following norm. Let us fix a number g, with 5 < g < n, and consider the
weighted L7 norm

_
(2.3) IAlle = 111+ D™ 274 Bllzagan,-

In [7] it is proved that there exist an integer kg and a positive constant C such
that for all k > kg the following estimates hold true

. c .
(2.4) NElle <Ck'™0 if n>4, ||Ell<— if n=
og
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To be more precise, we have estimates for the || - ||..-norm of the error term
E first in the exterior region ﬂ’;zl{ly =&l > %}, and also in the interior regions

{ly—¢jl < %}, forany j = 1,...,k. Here n > 0 is a positive and small constant,
independent of k.

In the exterior region. We have

2n 1=2

72—
I+ D™ EOMgaqry-gopn < Ck

if n > 4, while

o-_2n C
T+ DD EOMlpar -3 < log k
ifn=3.
In the interior regions. Now, let [y — &;| < % for some j € {1,...,k} fixed. Itis

convenient to measure the error after a change of scale. Define

~ n+2
Ej(y) =u 2 E¢& +uny), < ;%

We have .
+2-2 ~ -4 .
I+ |Y|)n K Ej(y)||Lq(|y_§j\<;%) <Ckaa if n>4
and

o .
I+ D" 279 Ej0)lagy-¢ < if n=3

We refer the readers to [7].

< C
i) = klogk

The function ¢ in (1.13) can be further decomposed. Let us introduce some cut-
off functions £ to be defined as follows. Let {(s) be a smooth function such that
{(s) =1for s < 1and {(s) =0for s> 2. Wealsolet {7(s) = {(2s). Then we set

LCa Py = €D 1) if Iyl > 1,
gy =
Lkt y =€) iffyl <1,
in such a way that
£ = GO/

The function ¢ has the form
k

(2.5) $=>8+v.
j=1

In the decomposition (2.5) the functions ¢;, for j > 1, are defined in terms of ¢,

T (= ’ It m'— ’ .
(2.6) ¢;53.Y)=di1e*'y,y), j=1,...,k-1
Each function ¢ j» J = 1,...,k, is constructed to be a solution in the whole R" to
the problem

Q27)  Ad;+ pyIULPTEd; + Gl py UL + E + yN(@; + Ziz i + ¥)] = O,
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while i solves in R”

Ay + pyUP~ly + [py (WU~ = 0P =25 ) + pyUP 'S5 451y

@28)  +pyUPT Y (1= g+ (-5 (E+yNEL 8 +9) = 0.
J

Define now ¢,(y) = ,u%q?)l(yy + £&1). Then ¢; solves the equation
, 2
A1 + [/ + x1(E1 + py)p 2 E@E) + py)

(2.9) T N@GDE +py) =0 in R
where
N($1) = pQU.IP~' 5 = UP g1 + QlplUL (1)

(2.10) +N(@1+ ) §;+ B
j#l

In [7] it is shown that the following estimate on the function ¢ holds true:

_n C
(2.11) Wllor < CK'"0 if n>4, |Wlho < — if n=3,
logk
where
(2.12) IBlln—2 == 11+ ") Nl -
On the other hand, if we rescale and translate the function ¢,
n=2 ~
(2.13) () =2 $1(61 + py)
we have the validity of the following estimate for ¢
_n C )
(2.14) p1lli2 <Ck ¢ if n>4, |lgillh2 < —— if n=3.
klogk

Furthermore, we have
(2.15) [IN(@Dllss < Ck_% it n>4, [IN@DIl < Clklog K2 if n=3,
see (2.10). Let us now define the following functions
Ta(y) = %[b(y), for a=1,...,n;
(2.16)
1) = 12 90) + V() - y.
In the above formula ¢ is the function defined in (1.13) and described in (2.5).
Observe that the function 7 is even in each of its variables, namely
7T0()’1,---,)’j,---,)’n) =7T0(y1’---,_)’j’---,)’n) v]= 1,...,”,

while 7., fora = 1,...,nis odd in the y, variable, while it is even in all the other
variables. Furthermore, all functions 7, are invariant under rotation of 27” in the
first two coordinates, namely they satisfy (1.18). The functions r, can be further
described, as follows.
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Proposition 2.1. The functions nt, can be decomposed into
k
2.17) 7o) = ) o j00) + ()
j=1
where

~ ~ zEji— ’
Ra,j(y) = Raa(e® 7'y, y).

Furthermore, there exists a positive constant C so that

Iollna < CK' ™0, ljllar <CK'0,  j=1,....k
ifn>4, and
C C
T - <_’ A. - S_’ .=1""’k’
lI7tolln—2 < logk 172 ll—1 logk J
if n = 3. Furthermore, if we denote m, 1(y) = ,u%fra,l(fl + wy), then
Iollna < Ck0, Iimali <CK 0, a=1,....n
ifn >4, and
C C
< —, -1 £ C———, =1,...,3
lI7o,1lln—2 < Klogk 7, 1111 Klogk @
ifn=73.

The proof of this result can be obtained using similar arguments as the ones used
in [7]. We leave the details to the reader.

3. SCHEME OF THE PROOF
Let ¢ be a bounded function satisfying L(¢) = 0, where L is the linear operator
defined in (1.21). We write our function ¢ as
3n—-1

(3.1) P = ) duza(X) + P(x)

a=0
where the functions z,(x) are defined in (1.22), (1.23), (1.24) (1.25), (1.26) respec-
tively, while the constants a, are chosen so that

(3.2) fup—lzm:o, a=0,...,3n— 1.

Observe that L(@) = 0. Our aim is to show that, if ¢ is bounded, then @ = 0.

For this purpose, recall that

. n=2
~ . 2 2
u(x) = Ux) - ; Ui+ ¢, with  U(x) = (quz)

and
n=2
-2

Uj0) =k » UG (x = €).
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We introduce the following functions

-2
(3.3) Zo(x) = nTU(x) +VU>) - x,
and
0

(3.4) Zy(x)=—U(x), for a=1,...,n

0x,
Moreover, forany [ = 1, ..., k, we define

n —
(3.5) Zoi(x) = Ui(x) + VU (x) - (x = &).

Observe that, as a consequence of (1.22) and (1.23), we have that
k

0
20(x) = Zo(x) = ) [Zo,l(x) + 1 =42 o7 = Un(2)

=1

[ 0
+ 1 —/12 sin GI—UZ(X)
0x>

where 7 is defined in (2.16). Define, forl =1, ...k,

+ mo(x),

(3.6) Z”(x) = \/1 - ,u2 Ccos 91iU1(x) + sin GliUl(x)

8x1 axZ

. 0 0

(3.7) Zzl(x) = 1- /.12 — S 91—U1(x) + COS 91—Ul(x)

(9)61 6x2
where ; = 27” (I = 1). Furthermore, forany / = 1,...,k,

0
(3.8) Zyi(x) = —Ux), for a=3,...,n
0x,

Thus, we can write
k

(3.9) 20(x) = Zo(x) = D [Z04(x) + Z1 1)) + 0(),
=1
S
(3.10) 21(x) = Z1(x) - Z ., J10) + ()
= oM
k .
[cos 0;Z1/(x) — sin 6,73 1(x)]
=Zi(x) = — +m(x)
; VI-p?
S
(3.11) 2(x) = Z5(x) - Z o 200 + ma(x)
=1 o2
- Z": [sin 01Zu(x) + c0sOZ0,0]

=1 VI-p?
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and, fora =3,...,n,
k
(3.12) 2(X) = Zo(0) = ) Zowt + Mal)
=1
Furthermore
k
(3.13) Zns1(X) = Z Z51(x) + xpm1(x) — x1m2(X)
=1
k k
Zn42(X) = Z 1 =p? cosbZy(x) - Z 1 = u? cos 6 Zy(x)
=1 =1
(3.14) —2x170(x) + |x|>71 (x)
k k
Zn+3(x) = Z A1 =12 sin 6, Zoi(x) — Z A1 =2 sin6,Zy(x)
=1 =1
(3.15) — 2x0070(x) + |x7a(x)
and, fora =3,...,n,

k
(3.16) a1 (0= 1 =42 ) €08 1Z0t(3) + x170(2)
=1
k
(3.17) nra1 () = 1= 2 D" $i0 0201 (x) + X270 ).
=1

Let
(3.18) Zoo(X) = Zy(x) + (), a=0,...,n,
and introduce the (k + 1)-dimensional vector functions
Z,0(x)
Zy1(x)

II,(x) = | Zpp(x) for a=0,1,...,n.

€0
C1
For a given real vector ¢ = | ¢; | € RM!, we write

Ck

k

& Tly(x) = ) ciZa().

=0
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With this in mind, we write our function ¢ as

n
(3.19) Fx) = > Co - Ta(x) + 9 (1)
a=0
Ca0
where ¢, = Cal ,a=0,1,...,n, are (n + 1) vectors in R¥*! defined so that
Cak

fo_l(x)Zal(X)SDL(x)dsz forall [=0,1,....k, a@=0,...,n

Observe that
(3.20) Co=0 forall @ and ¢ =0= §=0.

Hence, our purpose is to show that all vector ¢, are zero vectors and that ¢* = 0.
This will be consequence of the following three facts.

Fact 1. The orthogonality conditions (3.2) take the form

n n k
(3.21) ZCQ . fﬂau”_lzﬁ = Zanlealup_lzﬁ = —ftplup_lzﬁ
a=0

a=0 1=0
for § = 0,...,3n — 1. Equation (3.21) is a system of (n + 2) linear equations
(B8=0,...,3n—1)in the (n + 1) X (k + 1) variables c;.

Let us introduce the following three vectors in R¥

| 1 0
(3.22) =| M|, cos=| %] gn=| SO
1 cos Br_1 sin O_;

Let us write

c . _
Ca=[%’0], with co0€R, G €RY, a=0,1,....n,

a

Co
c=| ..
Cn

We have the validity of the following

and
€0,0
eRMD s

Cn,0

c Rn+l

Proposition 3.1. The system (3.21) reduces to the following 3n linear conditions
of the vectors Cq:

(3.23) Co - [—111{

0 _ A A
+cp- [_lk] = [0 + @}( LO(C) + Gi -LO(C)y

1

(3.24) ci - [_COS

0 _ P
+0 - [sin] =1+ 0, L1(C) + 0] L1(2),
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0 1 _ PO
(3.25) cl- [_Sin] +0- [_COS] =1 + 0 Lo(0) + 07 Lr(d),
fora=3,...,n
(3.26) Co- [—111(] =1y + O} L(C) + OF L4(8),
0 _ A
(3.27) C - [lk] =Ipe1 t+ ®/1C L,4+1(0) + ®i L4+1(0),

0 0 ) A
(3.28) Co - [ COS] -c - [ COS] =ty + @) L12(C) + 07 L,12(2),

0 0 _ A
(3.29) Co - [Sin] —Ci - [Sin] = tns3 + Op L1430 + 07 L,43(0),

fora=3,...,n,

0 - A A
(330) Co - [COS] = Ipta+l T ®]l( -£n+a+1(c) + ®1% £n+a+l(c)’
0 - A R
(331) Co - [sin} = Dpta-1 7+ ®]]( £2n+a—l(c) + ®]% £2n+a—l(c)’
fo

. fi|. .
In the above expansions, Hisa fixed vector with
ta

to
t

ta

| I < Clig™ |l

and L; : RK+D 5 R -Z:j : R" — R are linear functions, whose coefficients
are constants uniformly bounded as k — co. The number g, with 5 < q < n, is the
one already fixed in (2.3). Furthermore, (9,,1c and @i denote quantities which can be
described respectively as

@l =k 10(1), if n=4, O =(klogh o), if n=3,

and
el =k'"10(1), if n=4, Ol =dogh'O(1), if n=3,

where O(1) stands for a quantity which is uniformly bounded as k — oo.

We shall prove (3.23)—(3.31) in Section 8.
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Fact 2. Since L(p) = 0, we have that

n n k
(3.32) Do La(0) = 3" carlZay) = ~L(g*)
a=0 a=0 [=0
Let o' = ¢f + 3, ¢ where

n

~Lp§) = ) ca0l(Za)

a=0

andforany /=1,...,k

n

~L(p}) = ) ol Zarp).

a=0
Furthermore, let

n=2
&) =p 7 @ (uy + &),
and define

k
(3.33) ™l = Nl lhaa + D 161 o
=1

where the || - ||,—2 is defined in (2.12). A first consequence of (3.32) is that there
exists a positive constant C such that

(3.34) kgl < Cu2 > lical
a=0

for all k large. We postpone the proof of (3.34) to Section 9.

Fact 3. Let us now multiply (3.32) against Zg, for § =0,...,nand [ =0,1,..., k.
After integrating in R” we get a linear system of (n + 1) X (k + 1) equations in the
(n+ 1) X (k + 1) constants ¢, of the form

Co ro ﬁ L(¢™)Za0
1
(3.35) M| =", with 1, = |Je HEDZa
Cn Iy fn L((pJ‘)ka
Observe first that relation (3.9) together with the fact that L(z,) = O for all @ =
0,...,n, allow us to say that the vectors r, have the form
k+1
(3.36) row; (rp) = Z [row;(rg) + row,(r{)]
=2
k+1
(3.37) rowq (r) = ——— Z [cos Grow;(ry) — sin Grow;(rp)],

V-2 53
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k+1
(3.38) row; () = —— Z [sin 8;row;(ry) + cos irow;(rp)]
V- =
k+1
(3.39) row; (ry) = Z row;(r,) forall a=3,...,n.
=2

Here with row; we denote the [-th row.
The matrix M in (3.35) is a square matrix of dimension [(n + 1) X (k + D]?. The
entries of M are numbers of the form

f L(Zo1)Zgj dy
R’l

fora,=0,...,nand[,j=0,1,...,k.
A first observation is that, if @ is any of the indeces {0, 1,2}, and § is any of the
index in {3, ..., n}, then by symmetry the above integrals are zero, namely

fL(Zal)Zlgjdyzo forany [,j=0,...,k

This fact implies that the matrix M has the form

M, 0]

(3.40) M= [ 0 M,

where M is a square matrix of dimension (3 X (k + 1))? and M, is a square matrix
of dimension [(n — 2) X (k + 1)]%.

Since
[ veizyas = [ 1z
Rn R}l
fora,=0,...,nand [, j=0,1,...,k, we can write
A BC
(3.41) M, =|B" FD
CT D' G

where A, B, C, D, F and G are square matrices of dimension (k + 1), with A, F
and G symmetric. More precisely,

(3.42) A= (fL(ZOi)ZOj) JF = (fL(Zli)le) ,
i,j=0,1,...k i,j=0,1,...k

(3.43) G= (f L(ZZi)ZZj) ,B= (fL(ZOi)le) ,
i,j=0,1,...k i,j=0,1,...k

and

G4d)  C-= ( f L<20i)zz,~) D= ( f L(Zli)sz)
i,j=0,1,...k i,j=0,1,...k

Furthermore, again by symmetry, since

fL(Zm')Z/gjdX:O, if a#B, aB=3,...,n
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the matrix M, has the form

Hy 00 0 O

0H,0 0 0

(3.45) M,=| .. ... .
0 00H,.; O

0 00 O0H,

where H; are square matrices of dimension (k+ 1)2, and each of them is symmetric.
The matrices H, are defined by

I‘_IQ = (fL(Zai)Zaj) , a= 3, e
i,j=0,1,....k

Thus, given the form of the matrix M as described in (3.40), (3.41) and (3.45),
system (3.35) is equivalent to

Co ro
Mi|ci|=|n
C2 r

where the vectors r, are defined in (3.47).

(3.46)

.

(3.47) , HaCq =Ty

Observe that system (3.47) impose (n + 1) X (k + 1) linear conditions on the (n +
1) X (k + 1) constants c¢,;. We shall show that 3n equations in (3.47) are linearly
dependent. Thus in reality system (3.47) reduce to only (n+ 1) X (k+1)—3n linearly
independent conditions on the (n + 1) X (k + 1) constants ¢, ;. We shall also show
that system (3.47) is solvable. Indeed we have the validity of the following

Proposition 3.2. There exist kg and C such that, for all k > ko System (3.47) is
solvable. Furthermore, the solution has the form

1 0 0]
0 0
~1,
Co Vo 0 1 0
cil=|vi|+s + 5| ——~—cos | + 53| ——2—sin
c v —1x 142 12
2 2 0 0 1
0] L__sin —-—L_cos
i 1_'“2 1_,“2
[ O] 0] 0]
0 cos sin
+S 0 + 0 + s 0
4 3| —cos 6| —sin
0 0 0
[ 1 | 0] 0)
and
Co=Vo+3s ! +s 0 + s 0 a=3 n
a — Va al _lk a2 oS a3 sin |’ LR
forany sy, ..., 86, Sal, Sa2, Sa3 € R, where the vectors v, are fixed vectors with

Ivell < Clig™,

a=0,1,...

,Nn.
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Conditions (3.23)—(3.31) guarantees that the solution c, to (3.47) is indeed unique.
Furthermore, we shall show that there exists a positive constant C such that

(3.48) > licall < Clig™le.
a=0
Here || - || denotes the euclidean norm in RX.

Estimates (3.48) combined with (3.34) gives that
(3.49) Ce=0 Va=0,...,n
Replacing equation (3.49) into (3.34) we finally get (3.20), namely

Ce=0 forall o and ¢ =0.

Scheme of the paper: In Section 4 we discuss and simplify system (3.47). In Sec-
tion 5 we establish an invertibility theory for solving (3.47). Section 6 is devoted
to prove Proposition 3.2. In Section 7 we prove Theorem 1.1. Section 8 is devoted
to the proof of Proposition 3.1, while Section 9 is devoted to the proof of (3.34).
Section 10 is devoted to the detailed proofs of several computations.

4. A FIRST SIMPLIFICATION OF THE SYSTEM (3.47)

Let us consider system (3.47) and let us fix @ € {3,...,n}. Recall that the
function z, defined in (1.23) satisfies L(z,) = 0. Hence, by (3.9), (3.18) and (3.46)

we have that
k+1

row;(H,) = Zrowl(ﬁa).
=3

This implies that [ 11] € kernel(H,) and thus that the system H,(C,) = r, is
-1k

solvable only if r,, - 1
-1k

satisfied as consequence of (3.39). Thus H,c, = I, is solvable.
Arguing similarly, we get that

! ] = 0. On the other hand, this last solvability condition is

k+1 2k+2
row; (M) = Zrowl(Ml) + Z row;(My),
= I=k+3
| k k
roWi42(My) = —— Z cos Orowy24/(M1) — Z sin Orowox 341(M 1)] ,
V1-p = =1
and

k k
rowo43(M1) = > [Z sin @rowyy24/(My) + Z COS Oirow213+1(M )} .

1 —p |15 =1
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This implies that the vectors

Wwo =

1]

~1i
0
~1i
0

0]

w1 =

1

sin

W2

Vi—2

Ccos

€ kernel(M)

1 ] ] 1

Co ro ro

and thus that the system M [01‘ = ln‘ is solvable only if [n‘ -wj =0, for j =
Cy B r

0, 1,2. On the other hand, this last solvability condition is satisfied as consequence

of (3.36), (3.37) and (3.38).

We thus conclude that system (3.47) is solvable and the solution has the form

0
Co 08
“4.1) c|= & +twg + swy +rwp forall f,s,reR
1
Co 0
[ Co |
and,ifa=3,...,n
0 1
“4.2) Co=|= |+t forall reR
(% _lk
In (4.1)-(4.2), 8, fora = 0,...,n, are (n + 1) vectors in R, respectively given by
Cal
(4.3) Gy = |
Cak

These vectors correspond to solutions of the systems

Co fo
4.4 N|Ci|=|f]|, Hy[C,=F, for a=3,...,n.
Ca D)
In the above formula 7, for @« = 0,...,n, are (n + 1) vectors in Rk, respectively
given by
Jon L) Za

ly =

Jon LM Zak
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In (4.4) the matrix N is defined by

A BC
4.5) N:=|B" FD
c' D' G

where A, B, C, D, F, G are k X k matrices whose entrances are given respectively
by

(4.6) A= (fL(ZOi)ZOj) F = (fL(Zli)le) ,
ij=1...k 6.j=1,k

...........

4.7) G = (fL(ZZi)ZZj) ,B = (fL(ZOi)le) ,
i j=1ok =1k

...........

and

(4.8) C= (fL(ZOi)ZZj)
=1

4.9) H, = (fL(Zm)Zaj) , a=3,...,n.
ij=1,.k

.....

,,,,,,,,,,,

The rest of this section is devoted to compute explicitely the entrances of the
matrices A, B, C, D, F, G, H, and their eigenvalues.

We start with the following observation: all matrices A, B, C, D, F, G and H, in
(4.4) are circulant matrices of dimension k X k. For properties of circulant matrices,
we refer to [19].

A circulant matrix X of dimension k X k has the form

X0 X1 ..o Xk—=2 Xk—1 1
Xk—1 X0 X1 +-0 oo Xk=2
Xk—1 X0 X
X = k-1 A0 X1 ,
......... X1
X1 vee e Xk—1 X0 |

or equivalently, if x;;, i, j = 1,..., k are the entrances of the matrix X, then

Xij = X1 )i-jl+1-
In particular, in order to know a circulant matrix it is enough to know the entrances
of its first row.
The eigenvalues of a circulant matrix X are given by the explicit formula

k-1
(4.10) anszeb/r<m”, m=0,... k-1
=0
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and with corresponding normalized eigenvectors defined by

4.11) E,=kz2| eoZi2| m=0,.. . k-1.
%i(k'—'l)'

e

Observe that any circulant matrix X can be diagonalized

X =PDxP'
where Dy is the diagonal matrix
(4.12) Dx = diag(no,m, - - - Mk-1)
and P is the k X k invertible matrix defined by
(4.13) P=|E|Ei|... E].

The matrices A, B, C, D, F, G and H, are circulant as a consequence of the
invariance under rotation of an angle 27” in the (x1, x2)-plane of the functions Z,;.
This is trivial in the case of Zy; and Z,; for all @ = 3, ...,n. On the other hand, if
we denote by R; the rotation in the (x1, x2) plane of angle 27”( j— 1), then we get

n-2 R -
Z1i(x) = VU;(x) - &; = u‘zvv<¥) ‘Ri€|

- TRIU
=Hu j (

R. —
%) €1, x=Rjy.

Thus, for instance
(F)jj:fL(le)le:fL(le)le =(F)h, Jj=1,....k

and, after a rotation of an angle of 27”(|h —jl+ 1),

(F)nj = fL(Zlh)le = fL(Zn)Zuj-/m) = (F)1j-h1+1)

In a similar way one can show that

e . Riy—&)
Zoj(x)=p T RIU(—) &, x=Rjy.
! H

With this in mind, it is straightforward to show that also the matrices B, C, D and
G are circulant.
A second observation we want to make is that
A,B,F,G,H, aresymmetric

while
C,D are anti-symmetric.
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The fact that A, F, G and H, are symmetric follows directly from their definition.
On the other hand, we have

a2 Ryi(y — &k—js1)
710 = u T RIVU(—E— 0 g i, x = Ryyy
! H

thus
By ;= fL(ZO,l)Zl,j = fL(ZO,l)Zl,k—j+2 = Bij—js2.

Furthermore,

Roj(y — &k—j+1)

_n=2
Zoj(x) = u” 7 Ry VU( ) (=&-js1)t, x=Ryjy

and thus

Cij= f L(Zo) 22, =~ f L(Zo,) 20 j—j+2 = —C1p—js2,
and

Dy ;= fL(Zl,l)Zz,j = —fL(Zl,l)Zz’k_jJrz = —Diijs2,

for j > 2. Combining this property with the property of being circulant, we get
that B is symmetric, while C and D are anti-symmetric.

Let us now introduce the following positive number

-2
=P’}’(n )(_fyl Up_lzl(Y)dY)-

(4.14) >

[1]

Next we describe the entrances of the matrices A, F, G, B, C, D and H,, together
with their eigenvalues. We refer the reader to Section 10 for the detailed proof of
the following expansions. With O(1) we denotes a quantity which is uniformly
bounded, as k — oo.

The matrix A. The matrix A = (A4;)); j=1,...x defined by

,,,,,

Aij= f L(Zoi)Zo
is symmetric. We have
(4.15) A = K2 oq1)

and for any integer [ > 1,

_(n=2)
(4.16) Ay =E [—2 W P00,
(

1 —cos 6’1)%

where O(1) is bounded as k — 0.
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Eigenvalues for A: A direct application of (4.10) gives that the eigenvalues of the
matrix A are given by

k
2 6 1
ay = _n =2 M’)n_z (1 + 0(_))
2 =1 (L —cosé) 2 k
1
4.17) =Za, )" (1 + 0(%))
form=0,1,...,k— 1, where
n-2 k2 2w
4.18 ap = —————g"'(—
(4.18) am > (ﬁ”)n_zg (=™

where g is the function defined in (1.28).
The matrix F. The matrix F = (F};); j=1

,,,,,

Fij:f L(Z\i)Zyj

is symmetric. We have

k
0 - n
(4.19) Fi =E [Z L‘uzz +O(u?)

= (1 —cos 6’1)%

and, forany / > 1

n-2 n
==cosf— 5 2
(4.20) Fiy= 8| 20— 2| + 0u?)
(1 —cos6))2
where O(1) is bounded as k — 0.
Eigenvalues for F. For any m = 0, ...,k — 1, the eigenvalues of F are
(4.21) S = Efui".
where
k
_ cos 6
I = Z PPEAN=)
51 (1 —cosf) 2
k n-2 n
==cosf— 5 1
(4.22) + 32— cosmb (1 + 0(—)).
= (1 —cos6))? k
The matrix G. The matrix G = (Gj;); j=1,..x defined by

Gij = f L(Z21)Z,

is symmetric. We have
k  n=2 n
T=cosf+ =
(4.23) Gu=g|) 22—
=7 (1 —cos6))?

n=2
2

pT o+ pro(l)
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and, for / > 1,

(4.24) Gy =-

[1]

n—2 n
=2 cosO + 5 "
[ 2 T3 12+ Out)

(1 —cos 91)%
Again O(1) is bounded as k — oo.

Eigenvalues for G. The eigenvalues of G are given by

k(22 cos @) + 2) (1 — cos mb)) 1
gn=-Z "> 5 ) . (1 - 0(—))
= (1 —cos@))2 k
1
(4.25) = Ega u" (1 + 0(%)),
form=0,...,k— 1 where
k" 2
(4.26) 8m = (n—1)g(=m)
(V2n) k

see (1.28) for the definition of g.

The matrix B. The matrix B = (B;); j-1,...x defined by

.....

Bij = f L(Zoi)Z1
Rﬂ
is symmetric. We have
(4.27) Bi = /"' 0(1)

and, for any [ > 1,

n=2
(4.28) By=E [% 1724 2o,
(1 —=cosf) 2
Eigenvalues for B. Forany m =0,...,k—1
k
_ . ,n—=2 cos mé), 1
b = B — L (1 + O(Z))
51 (I —cosf) 2
_ 1
(4.29) = Eb, u"? (1 + 0(%))
with
- on=-2 k"2 27
4.30 b, = ot
(4.30) m=— (\/z,r)n—zg(k’")

see (1.28) for the definition of g.

.....

Cij= f L(Zoi)2Z,j
is anti symmetric. We have
4.31) Ci = K2d" o)
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and, for [ > 1,

”7_2 sin ;
(4.32) Ciu=E

n-2 n-2, n-1
—_— + Kk o(1).
(1 — cos )2 K K

Eigenvalues for C. Foranym =0,...,k—1

ko )
o on=2 sin 6; sin mé; ( 1 )
in? 11+ 0(-)
K 2 ; (1—cos9;)2] k

[1]

Cm =

(4.33) = Bicu ) (1 + 0(%))

where

n-2 \2k"' 2n
(4.34) Cm = ——g'(—m)
2 (V2my 1Tk

see (1.28) for the definition of g.

is anti symmetric. We have
(4.35) Dy = K7 on)

and, for / > 1,

(4.36) Dy = - W73+ o).

[1]

”2;2 sin ;
(1 —cos 6’1)%

Eigenvalues for D. Foranym =0, ..., k-1

437) 4 o g =2 Zk:sinélsinmﬁl (1+O(1))
. =1 = m —
" H 2 = (1 —cos )2 k

(4.38) =i Ed, "> (1 + O(%))

with

- n—2 2k, on
dy = — —g (—m)
2 (Napym1” ok

see (1.28) for the definition of g.

25

The matrix H,, for a = 3, ...,n. Fix @ = 3. The other dimensions can be treated

in the same way. The matrix H3 = (H3;); j=1,..x defined by

.....

H3,ij:f L(Z31)Z3
Rn
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is symmetric. We have

— 122 a —cos b, n
(4.39) Hsi = Ep ; m + O(u?)
and, for [ > 1,

1 n

(4.40) H3y=E [m} W+ 0u2).
Eigenvalues for H3. Foranym =0,...,k—1
(4.41) By = Ehyp ™
where

o Zk: —cos 8 + cos mb; (1 N 0(1))
o ~ (1 -cos )2 k')

5. SOLVING A LINEAR SYSTEM.

This section is devoted to solve system (4.4), namely

Co So
N|Ci|=|S1|, HylC, =8, for a=3,...,n.
C S,
So
for a given right hand side | §1 | € R3* and 5, € R¥, where N is the matrix defined
S
in (4.5) and H, are the matrices defined in (4.9).
Let
2 n-2
5.1 T = (\/_%,
Py ==

where E is defined in (4.14). We have the validity of the following

Proposition 5.1. Part a.
There exist kg and C > 0 such that, for all k > ko , System

Co S0
(5.2) N|c |=]5
G )
is solvable if
(5.3) §2'1k=(§0+§1)-COS=(§o+§1)'sin=0.

Furthermore, the solutions of System (5.2) has the form

Co Wy 0 cos sin
5.4 Cil=|wi|+#H]| O[+12|—cos|+t;3]|—sin
o)) 2] 1; 0 0
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Wy
forallt,t,t3 € R, and with l\?ﬁ a fixed vector such that
W

2

Wy c S0
(5.5) I w1 IISWII SRl
Wy H S

Partb. Leta =3,...,n. There exist ky and C such that, for any k > ko, system
(5.6) Hy [Co] = 8¢
is solvable only if
(5.7 S, €0S = §, -sin = 0.
Furthermore, the solutions of System (5.6) has the form
(5.8) Cqy = Wy + 1€OS + 1Sin

forallt),t, € R, and with [V_Va] a fixed vector such that

(5.9) 111 = s[5 0

Proof. Part a.

Define
POO
0OPO
O0P

where P is defined in (4.13), a simple algebra gives that
N = PDP"

P =

where
Dy Dg D¢
Dpg Dr Dp
D_c D_p Dg

Here Dy denotes the diagonal matrix of dimension k X kK whose entrances are given
by the eigenvalues of X. For instance

D=

Dy = diag(ag,ay, ..., ax-1)

where a; are the eigenvalues of the matrix A, defined in (4.17). Using the change
of variables

Yo Co So ho
(5.10) yi|=P' e |: [S8i|=P|h],
¥a & 8 ha
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Ya,1 ha,l
s | Ya2| £ ha,2 k _ .
withy, = ,he = e R*, @ =0,1,2, one sees that solving
Ya k ha,k
Co So
N|Ci|=]|51
C S,
is equivalent to solving
Yo ho
(5.11) DIy |=|h|.
Y2 ha

Furthermore, observe that
(5.12) IVoll = I€ell, and [Iholl = [ISoll, @ =0,1,2.

Let us now introduce the matrix

Dy O... 0
D= 0D; O
0 0Dy

where forany m =0,...,k— 1, D, is the 3 X 3 matrix given by

am, bm Cm qm b_m ZE_‘m
(513) D, = bm fm dm = E/Jn_2 bm .]_Cm idm
—Cm —dp, 8m —iCpy —idp, 8m

where a,,, by, Cim> fim> &m» dm are the eigenvalues of the matrices A, B, C, F, G
and D respectively. In the above formula we have used the computation for the
eigenvalues a,,, by, C, dy, fm and g, that we obtained in (4.17), (4.29), (4.33),
(4.37), (4.21) and (4.25).

An easy argument implies that system (5.11) can be re written in the form

Yom+1 ho m+1
Vimel | = hima| m=0,1,... k-1
Yom+l ho a1

(5.14) D,

Taking into account that &@,, = —b,, and ¢,, = —d,,, a direct algebraic manipulation
of the system gives that (5.14) reduces to the simplified system

_Em _ _0 iEm Yo,m+1 — Yl,m+1 1 hO,m+l
(515) 0 fm + bm 0 Yim+l | = = 2 hl,m+1 + hO,m+l .

_iz'm 0 gm Y2.m+1 =H hZ,m+l

Let, foranym =0,..., k-1,
(5.16) b 2= = (b + fin) [Gmbm + 2]
being ¢,, the determinant of the above matrix.

We have the following cases
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Case 1. If m = 0, we have that gg = ¢y = 0 and so ¢y = 0. Furthermore,

3 :n—2 k2

1
g"(0) (1 + 0(%))

2 ( \/zﬂ-)n—Z
and
fo+b K7 o) (1 + 0(1))
0 0=—"T"—=—__-§ =)|.
(V2myr=2 k
We conclude that System (5.15) for m = 0 is solvable if
h21 =0
and there exists a positive constant C, independent of &, such that the solution has
the form
Yo,1 Jo,1 0
yiu = || +1]0
Y21 P21 1
Jo,1
for any ¢ € R and for a fixed vector | $;,1 | with
Y21
Jo,1 C ho,1
I S (Il < WH hia |l
V2,1 ha,1

Case 2. If m = 1, we have that f; + b; = 0. By symmetry, for m = k — 1 we also
have fi_1 + by_1 = 0. Furthermore
n-2 k?

NI e

1
g"(O)(l + 0(%)),

k=2 1
o1 = 0 1 = - —1 ——— " O 1 0 - Py
81 =8k-1=—(n )(\/Qﬂ)n—zg ( )( + (k))

and

cl=—Cre1 =(n— 2)—kn_2 ”(0)(1 + 0(l )
1 k-1 (\/Eﬂ-)n—Zg Pk

We conclude that System (5.15) for m = 1 is solvable if
hop + hip =0
and there exists a positive constant C, independent of &, such that the solution has
the form
0,2 o2 1
yiz|= |52 -1
0

2.2 2.2

+1
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o2
for any ¢ € R and for a fixed vector [)71,2 with
Y22
):’0,2 c ho2
I 912 (1 < Wll hia |l
Y22 2,2
On the other hand, when m = k — 1 System (5.15) is solvable if
h()7k + hl,k =0
and there exists a positive constant C, independent of &, such that the solution has
the form
Yok Jok 1
ik | =P |+1| -1
Y2k Y2k 0
Yok
for any 7 € R and for a fixed vector | y1 4 | with
Yok
):’O,k c ho
I Yik Il < W” b [l
Y2k ha g

Case3. Letnowmbe # 0,1,k — 1. In this case we have

_ -2 kv 2 1
b = %Wg“(fm)(l + 0(%)),
_ n 2 1

m+ by = "(— 1+0()]|,
Jm + (\@T)ng (km)( + (k))
o = —(n-1)—K " 1
gm=-(n 1)(\/§ﬂ)ng(km)(1+0(k))’

and

o _n=2 N2k ox 1
n=— (\/iﬂ)nlg(km)(l+0(k))'

In particular
n-2 k"2 2n
£, = — "(—) x
m 71 \/Eﬂ)3n—2g )

2, 2m , 2T,
~(n = Dg(5=m)g"(==m) + (n = 2)(g'(=m))

1
1+ 0(=
Thus under condition (1.29), we have that

Cn <0 VYm=2,... k-2
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Hence, for allm # 0,1,k — 1, System (5.15) is uniquely solvable and there exists a

Jo.1
positive constant C, independent of k, such that the solution {ff 1.1 ] satisfies

321
Jou c [P
I 311 ”S,u"—Qk"H hy |1l

V2.1 h.1

Going back to the original variables, and applying a fixed point argument for con-
traction mappings we get the validity of Part a of Proposition 5.1.
Partb. Fix a =3,...,n. We have
H, = PD,P"
where P is defined in (4.13), and
D, = diag (ha0,ha1, - - -, hog-1)

where h,, j are the eigenvalues of the matrix H,, defined in (4.41). Using the change
of variables y, = PTc, and §, = P"h,, we have to solve Dyy, = h,.
Recall that, forany m = 0,..., k-1

where

ko cos §; + cos mo; 1
ham = - 1+ 0(—)).
o [; (1 —cos )2 ]( k
— cos 6;+cos mb;
(1-cos )2
only if 42 = hy k-1 =. On the other hand we have

If m=1orm = k-1, we have that 211;1 = 0, so the system is solvable

n-2

K 1
heo = E"2———— |1+ O(=
a,0 M (\/zﬂ')ﬂ—z( (k))
andform=2,...,k—-2

n-2 K"
(V27

Going back to the original variables, we get the validity of Part b, and this con-

—
—

ha,m ==u

2n 1
g(fm)(l + 0(%))

cludes the proof of Proposition 5.1. O
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6. Proor or ProprosITION 3.2

A key ingredient to prove Proposition 3.2 is the estimates on the right hand sides
of sistems (4.4). We have

Proposition 6.1. There exists a positive constant C such that, foranya =0, 1,...,n,
_ n=2

(6.1) IFoll < C 2 ™l

for any k sufficiently large.

Proof. We prove (6.1), only for @ = 0.

Recall that

Jon L™ Zo1
o = o]
Jo L@ Zox
Then estimate (6.1) will follows from

62) ] fR LM,

forany j=1,...,k. To prove (6.2), we fix j = 1 and we write

f ) L(¢™)Zo dx = fR ) L(Zoe™

k
= f LZog* + ) f LZo)g*
RMUB(E . 715) =1 VBE )

where 77 and o are small positive numbers, independent of k.
We start to estimate fB(fl . )L(Zm)gol. We have L(Zg1) = [f'(w) — f(U1)] Zo:1.

pr
As we have already observed very close to &1, U (x) = 0(/1‘%) and soin B(¢1, kliw)
the function U; dominates globally the other terms, provided 7 is chosen small
enough. Thus, after the change of variable x = &; + uy,

f LZon)e*
B, —L)

Kl+o

n=2
<Cuz el

s ONeRoET e mdy

(Qm)

< Cllg*]. f FIOICONZ00) dy
B(0, —L

kl+a'y)

where
n=2 _
TG) = p'T U@ +py)+ ) UG+ & = &)
1#1
A direct consequence of (10.2) is then that

n=2
f L(Zone™| < Cu 7 |lg™ s
)
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Let now j # 1 and consider fB( £ )L(ZOI)ch. In this case, after the change of
o) kl+o
variables x = &; + iy, we get

f L(Zoy)¢™
B¢ty

e U E T e )

“k1+0'

1 n-2
< Cllg™ . ( f ur! 2) £
" (T+ID") (1 - cos )7

where we used (10.5). Thus we estimate

> f LZo)g*
B

i1 (fj,kllﬁ)

n=2
< Cp 7 gl

Finally, in the exterior region R" \ UB(¢;, _) we can estimate

e
f L(Zo g™
RM\UB(E, L

Kl+o

Clle™l f U yd
< @ |« —Z01(y)dy
R\UBE; - (1 + )2

Kl+o

< Cu|igt|ls.

Thus we have proven (6.1) for @ = 0. The other cases can be treated similarly. O

We have now the tools for the

Proof of Proposition 3.2. System (3.47) is solvable only if the following orthog-
onality conditions are satisfied:

1 0 0]
» 0 0
To S To 1 fo 0
(6.3) |- =|f |- |——=cos|=|F1 |- | ——2=sin | =0,
F —1x P 12 P 1-u?
2 0 2 0 2 1
0 L__cin L__cos
1-u? 1-p2
0 0] 0
o 0 o cos B sin
_ 0 _ 0 _ 0
6.4) [[1] ’ - [[1] | —cos |~ {[1} | =sin |~ 0
r 0 r 0 ) 0
1k 0] 0
and
_ 1 _ 0 _ 0
6.5) r"'[—lk]_ra'[cos _r“'[sin =0 @=3....n




34 MONICA MUSSO AND JUNCHENG WEI

Jon L@ Za s
Jon L) Zavk
Section 4, the orthogonality conditions (6.3) are satisfied as consequence of (3.36),
(3.37) and (3.38). Similarly, the first orthogonality condition in (6.5) is satisfied as
consequence of (3.39).

We recall that 7, = . As we already mentioned at the beginning of

Let us recall from (3.32) that

n k
L(SDJ_) = - Z Z C(XIL(Z(X,I)'

a=0 =0
Thus the function x — L(¢*)(x) is invariant under rotation of angle 2?” in the

(x1, x2)-plane. Thus

k
0= Z fL(‘Pl)Zzl(x) dx =T, Ix
=1

and, foralla = 3,...,n,

k k
D cos, f L") Zoi(x) dx = ( f L) Za1 (%) dx) [Z cos 91) =0,
=1

=1

thus T, - cos = 0, and similarly

k
0= sin 6; fL(goL)Zal(x) dx =T, - sin
=1

namely the first orthogonality condition in (6.4) and the remaining orthogonality
conditions in (6.5) are satisfied. Let us check that also the last two orthogonality
conditions in (6.4) are verified.

Observe that L(¢)(x) = |22 L(gol)(ﬁ). The remaining orthogonality con-
ditions in (6.4) are consequence of the following

Lemma 6.1. Let h be a function in R" such that h(y) = |Y|_n_2h(b%)- Then
0
66)  u| —(Uux=&))ho)dy=&- | VUux—E&h()dx
0
R OH R”
We postpone the proof of the above Lemma to the end of this Section.

Combining the result of Proposition 5.1 and the a-priori estimates in Proposition
6.1, a direct application of a fixed point theorem for contraction mapping readily
gives the proof of Proposition 3.2.

We conclude this section with
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Proof of Lemma 6.1.
Proof of (6.6). Assume [ = 1. Define
I(1) = fR wu(y —t€1)h(y)dy where w,(y—1§&)) = e U= i1 ).
We have
©7) G0 == [ Vo080 10y
and

d
(d_tl(t)) :—f Va,(y = &) - & h(y) dy.
R}l

=1

On the other hand, using the change of variables y = ﬁ, we have

X

X —2n X -n
10 = [ o=t eohC ™ dr= [ 0,5~ 10kl dx =

= f wg(x — p)h(x) dx
Rﬂ

where

u _ t
-, PO =575
w2+ 21é 2 w2+ 21é 2

Observe that a(1) = u, p(1) = &,

acr) =

d _ —2tu d _
—u(tr) = —_, —p(r) =
G0 = e 3P0

L omep
LT Ee T
Hence

d d _ 0 _ d _ _

10 = 50) [ Soptx=phids= 50 [ Vople=phtods
This gives

d 0
(d_/“)) = —2ulé P fR ) %wﬂ(x — EDh(x) dx

=1

(6.8) -(1-2aP) f Vawu(x = &1) - &1 h(x) dx.

(From (6.7) and (6.8) we conclude with the validity of (6.6).

If / > 1in (6.6), the same arguments hold true. The thus conclude with the proof
of the Lemma. O
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7. FINAL ARGUMENT.

be the solution to (3.47) predicted by Proposition 3.2, given by
S 0] 0
1 0 0
Co Vo (l; 1 0
Ci|=]| Vi|+s8 + S| — 1 cos |+ s3] — 1 sin
—1x 142 142
Cl 1w 0 0 1
0| L__sin ——L_cos
1-u? 1—u?
[ O] [ 0] [ 0]
0 cos sin
+ 0 + 0 + 0
54 5] —cos | " % | —sin
0 0 0
[ 1 | [ 0] | 0]
=v, + I + + =3
Co = Vg t+ Sa1 1y Sa2 cos Sa3 sin |’ a=5,...,n

A direct computation shows that there exists a unique

for which the above solution satisfies all the 2n conditions of Proposition 3.1. Fur-

* x ok * * * * * 2n
(7545 56 531553255330+ Sy 15 Sp2s sn,3) eR

thermore, one can see that

Hence, there exists a unique solution

||(ST’ sy SZ’ S§’19 S;,z, S§’37 ceey SZJ, S:l’ s:’;3)|| S C \/ﬁ“‘pln*

in Proposition 3.1. Furthermore, one has

,C_:O_

I < Clig™ |l

to systems (4.4), satisfying estimates
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for some positive constant C independent of k. On the other hand, from (3.34) we
conclude that

1
(7.1) g™ Il < Cu ||

[ Cn |
where again C denotes a positive constant, independent of k. Thus we conclude
that

Ce,j=0, forall a=0,1,...,n, j=0,...,k

Plugging this information into (7.1), we conclude that ¢ = 0 and this proves
Theorem 1.1.

8. Proor or ProposiTION 3.1

We will give the proof of Proposition 3.1 when dimension n > 4. The estimates
for dimension n = 3 can be obtained with similar arguments.
The key ingredient to prove Proposition 3.1 are the folllowing estimates

f|u|p_1Za,IZo=fU”‘IZde+O(u"22) if @=0,1=0

(8.1) = O(u'T) otherwise

flul”“Za,zZﬁ = fUP—lzf dy+0W'™) if a=p1=0

(8.2) = O(u'T) otherwise

f|u|P—IZa’lZO’j = fUP—IZS dy + 0(/1%) if a=0,l=j

(8.3) = O(u'T) otherwise

f|u|p_]Za,lZ,3,j = fUp_IZf dy + O(Ju%) if a=p1=j
(8.4) = O(u'T) otherwise

We prove (8.3).
Let n > 0 be a small number, fixed independently from k. We write

-1 -1 -1
f [P~ ZoZoj = f u|P™" Za1Zoi + f [ul"™ ZoiZo, j
B&.D) RI\B(E. )

=i + ip.
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We claim that the main term is i;. Performing the change of variable x = & + uy,
we get

i = f WP (& + 1) Za ) Zo()dy
BO.1)

= (f ur-'z + 0((yk)")) if =0
=0 if a#0.

On the other hand, to estimate i>, we write

. 1 —1 . .
i = f ) Nl ZZo j + Zf '™ ZoZoj = iz +ix
RH\UJ‘:] B(fj»;]) J#l B(fj»%)

The first integral can be estimated as follows

n+2

2 1 .
liai] < € f L Sdx<Cu'T
RAUE, B 16— &2 (1 + |x)

while the second integral can be estimated by

n-2

5 .
il <C Y f R Zojdx < Cu'T
= Jpep =il

where again C denotes an arbitrary positive constant, independent of k. This con-
cludes the proof of (8.3). The proofs of (8.1), (8.2) and (8.4) are similar, and left
to the reader.

Now we claim that

, T3

p-172 _ p-172 _ o5t _
(8.5) fU Z fU Z; =27 nn-2) T+

The proof of identity (8.5) is postponed to the end of this section.

Let us now consider (3.21) with 8 = 0, that is
n k
Zanlealu”_le = —f@lu”_lz().
a=0 =0

First we write #g = —W f ©tuP~1zo. A straightforward computation gives that
0

lto] < Cll*|l, for a certain constant C independent from k. Second, we observe
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that, direct consequence of (8.1) — (8.4), of (3.9) and Proposition 2.1 is that
n k
Z Cal fZalup_lZO = CoofUp_lzg
a=0 [=0
k
- Z [ColfUp_IZg - cufU”‘IZf]
=1

<:30 Co0
+ ot DL &)+ ok HL| O

Cn Cno

where £ and £ are linear function, whose coefficients are uniformly bounded in
k, as k — oco. Here we have used the fact that there exists a positive constant C
independent of k such that

< Cliolln—2

f ulP~' Zimo(x) dx

‘ f P! Zogmo(x) dx

together with the result in Proposition 2.1. The condition (3.23) follows readily.
The proof of (3.24) — (3.31) is similar to that performed above, and we leave it to
the reader.

and

< Clizotlln—2,

We conclude this section with the proof of (8.5). Using the definition of Zy and Z;,
we have that

. (n—2) |x2
Up 122 -
f ey (1 + x[2y+2
and
_ (n—2)? (1 - |x?
Ur1z2 =
f 0=y (1 + X2y

for a certain positive number a, that depends only on n. Using the formula

j‘”( r )q 1 dr_l"(%)r(%)
o \L+72) plta™ = 2T(g)

we get
22+ D%
(8.6) f dx = 2(2 + DI3)
(1 + |x]2)n+2 2M(n + 2)
and

|2 (3%
®.7) f T2 " rmr2)
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Replacing (8.6), (8.7) in [ UP~'Z? and [ UP~'Z3 we obtain

p—172 p—1-2 _ 2 %r(%)z
U Zl_ U ZO—(I’I—Z) anmx

[5‘:&5 e CRalE

thus (8.5) is proven.
9. Proor oF (3.34).
We start with the following

Proposition 9.1. Let
Lo(®) = A + pyUP~ ¢ + a(y)p in R".

Assume that a € L3(R"). Assume furthermore that h is a function in R" with
||h||L 2n bounded and such that |y|_”_2h(|y|_2y) = +h(y). Then there exists a

2(RM)
positive constant C such that any solution ¢ to
©-1) Lo(@) = h
satisfies
lplln—2 < CllAllss.

Proof. Since a € L3(R") and UP! = O(1 + |y|4), the operator Ly is a compact
perturbation of the Laplace operator in the space D'(R"). Thus standard argument
gives that

IVl + 161, 2, ) < ClIAN 20,

where the last inequality is a direct consequence of Holder inequality. Being ¢ a
weak solution to (9.1), local elliptic estimates yields

2
ID"Bllacs) + 1DGllLas)) + ll=csy) < ClIAIl 2 @

Consider now the Kelvin’s transform of ¢, ¢(y) = [y[>*"¢(ly|"%y). This function
satisfies

9.2) AG+pUP' g+ aly g =R in R\ {0}
where 2i(y) = [y|72h(ly|"2y). We observe that

N n_2n
s = IO iy < CUR 2,

-4 -2
117 a2l 8 4y = Nl 3

and

Iz + 101, 2, o < CUAIL, 2,

Applying then elliptic estimates to (9.2), we get

ID*@llLacs,) + 1DPllLacs,) + Bll=s,) < CClIAl 2, 2 gy’

This concludes the proof of the proposition since (o] =By = l1@llLo®m\By)- O
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We have now the tools to give the
Proof of (3.34). We start with the estimate on goé. We write

n

1_ 1
Yo = Z CadPy0
a=0

where
L(‘;Djo) = —L(Zw0).
We write the above equation in the following way

Algzy) + pyUP N (@) + pulP ™" = UP™ gy = —L(Zao).
=ap(y)
Observe that
V™% L(Zoo)(y172 y) = —L(Zo,0)()
while
V™72 LZo0) (M Y) = LZao)y) a@=1,...,n.
We claim that ag € L? (R"),

2 n-1
9.3) llaoll 4 g < Ck»,  and ||L(Zao)||anTn2(Rn) <Cur,

where we take into account that |4+, < C IIhIIL 2 Let n > 0 be a fixed positive
n+ n
number, independent of k. We split the integral all over R” into a first integral over

R™\ Ul;‘:l B(¢),?) and a second integral over U/;ZI B(&), ). We write then

k
laoll?, = f lagO)I% dy + ) f lao()I? dy
L2®n) - JrnUE, B&E D o1 IBELD

9.4) =11 +ip.
In the region R" \ UI;’:] B(;, %), we have that

k n=2
_ _ _ U2

lao)| = p P~ — uP~!| < cur § —
=y =éjl

for some positive convenient constant C. Thus

k
n n=2n _9\n 1
Loy pepfars i [ ot
RA\US, B&), ) o1 JRNUL, BELD ly — &[22
n—1

1
t n-2n_n
—di<Ckpu'z k2021,
J, st

[SIE}

<C k,u%
We conclude that

9.5) f laoOIE dy < Cu'
RO\UL, BED

Let us now fix j € {1,...,k} and consider y € B(¢/, %). In this region we have

lao)l < ClU,IP~,
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for some proper positive constant C. Recalling that U;(y) = ,u‘% U (y_Té:"), we
easily get
[ morasc
B 1)

and thus

k
(9.6) > f lag)\? dy < Ck.

=1 YBED

We conclude then that ag € L%(R”), and from (9.4), (9.5) and (9.6) we conclude
the first estimate in (9.3).

We prove the second estimate in (9.3) for @ = 0. Analogous computations give the
estimate for @ # 0. We write

k

2n . .
9.7) IL(Zoo)| 7 dy = f +>, f =i+
R R\US, BE) 21 VBED

Since L(Zyy) = p(lul”‘1 - UPYZy = ao(y)Zoo, a direct application of Holder
inequality gives

4 n-2

. n "2 2n 2
lir] < C[f Iao(y)IZ] (f IZoo(y)Iﬂ-Z)
RAUL, B, RO\UL, BED

. 2n 2n
Taking into account that ( JJI‘%"\Uﬁz. B D) |Zoo(y)|n—2) < ( fRn |Z()0(y)|n—2) and the va-
lidity of (9.5), we get

(9.8) lir] < Cptime.

Let us fix now j € {1,...,k}. Using now that

2n
f |L(Zoo)| ™2
B

together with the fact that

n=2

4
" n+2 o0
SC( | |ao(y)|2) ( | |zoo(y)|nz]
B 1) B¢,

2n _
f |Zoo)|»-2 < Ck™,
B&.D)

we conclude that
1

9.9) il < Cuii
(From (9.7), (9.8) and (9.9) we conclude that

n—1

n < T
I, 3, < Ch

thus completing the proof of (9.3).
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Letusnow fix [ € {1,...,k}. Say [ = 1. We write
n
1 _ 1
¥ = Z Cal®Py
a=0
where

L(gy) = ~L(Za).

After the change of variable ¢ (y) = y%goil (uy + &), the above equation gets
rewritten as

A@L) + pUP N @E) + pl(u"T lul(uy + €))7~ = UP™" ] 32, = h(y)
=ai(y)

where
h(y) = —u'F L(Za )y + €1)-

We claim that a; € L?(R").

(9.10) larll g gy < Cut - andAl] 20 < Cp.

We leave the details to the reader. The proof of (3.34) follows by (9.3), (9.10) and
a direct application of Proposition 9.1.

10. APPENDIX

In this section we perform the computations of the entrances of the matrices A,
F,G, B,C, D and H,, @ = 3,...,n. The results of this section are valid for any
dimension n > 3. We start with proving some usefull expansions and a formula.

Some usefull expansions.
Let n > 0 and o > 0 be small and fixed numbers, independent of k. Assume
that y € B(0, #). We will provide usefull expansions of some functions in this
region.

We start with the function, for y € B(0, /#),

(10.1) TO) =% UE +my) = ) UG +p7' & - &),

>1
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We have the validity of the following expansion

) LS 1 sin 6
TO) = ———# —#TZ—”(}H ﬁyz)} X
=1 (1 —cosf) 2 —cos o
(1 + 1 O(lyD)
n —2 n+2 f’lyl 2 n-2 2 1
+ z —yI" - — X
4 K Y ; (1 —cos@))2

(—1 — P+ 3(1 —cosOy? + g(l +cos Oy + nsin@lylyz) x

(1 +20(y1»)

(102)  +u 700 +P) + O@™)
for a fixed constant A. Formula (10.2) is a direct application of the fact that

52 k

n=2 2 2 ) 1 n+2

T LS
L+1é11? (1 -cosf)'T

and of Taylor expansion applied separatedly to y%z U + wy) and Zl;>1 Uy +
,u‘l(fl — &) in the considered region y € B(0, li,(,) Indeed, we have

2 \T[ -2 n=2(n(y- &>
Ué +uy) = ((1+|§|2)) [1— 7 y1u+T(Tl—lyI2)ﬂ2

(10.3) + 120y | (1 + 0w?))

and

2 F_m—m@r@yy

U NE-&)) =
O+u (& =-&)) (1~ cos )2 2 (1—cos91)'u

-2 2
(10.4) L KU 1= pP4n ((51 &) - y)
4 (1 —cosb) €1 — &l
;00 + Iyl3)]
€1 = &P
Recall now the definition of the functions Z,, @ = 0,...,n in (3.3). In the region
y € B(0, #), we need to describe the functions

Zy+p & -€)), a=01,...,n
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A direct application of Taylor expansion gives

_ —2 E@—-¢&)-y
Z W& —é)) = -2 K [1 —(n-2)=Lt—=l
oy +u (& - &1) T 0ot (n=2) &—ap "
s 2
105 o ,
(10.5) e ﬂﬂﬂ
-2 n

T U_gmwﬁp”@m@—1y+n—§a—cmmnm
(10.6) - gsinelyz + 1O + [y))

Zo(y + (& - £) = -2

-1 - n
- sin@; + [1 — =(1 + cos 6))]
2 (1-cos6))2 [ﬂ ! 2 1y

(10.7) + gsin 0 y1 +pO(1 + [y))

andfora=3,...,n

_2 n
10.8 Zy+u & —&)) = -2 H (1 + 20 .
(10.8) +u & —-£&)) 5 (1—cos91)%y (I +p=0(1 + |yD)

We have now the tools to give the proofs of (4.15), (4.16), (4.19), (10.23), (4.23),
4.24), (4.27), (4.28), (4.31), (4.32), (4.35) and (4.36).

Computation of A;;. Let 7 > 0 and o > 0 be small and fixed numbers. We write

Ay = fRn(f'(u)—f'(Uﬂ)ZSl

= +jﬁ 17 (w) = f/(U))Z,
u R"™\B(£1,

B(fl’klﬂr) kerr)

=11+12

We claim that the main part of the above expansion is /;. Note that very close to

&1, Ur(x) = O(,u‘%). More in general, taking 7 small if necessary, we have that
U dominates globally the other terms. We thus have
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I = fB(g—‘ fUDIU) - Z Uj(x) + J)(x)]zgl(x) dx + O™

I>1
(x=¢& +,uy)

= f (O [ry)]Z3 dx
B(0,

k1+0')

+ fB(O (% [,u'%z&(ﬂy + §1)]] Z2dy + Ok 2"

k1+(r

= f - fOrmlz
B(0,—-)

’#klﬂr

+pp—1yy f UP=2¢1(0)Z5 dx + O(K" 2"y
B,

kl+o')

where Y(y) is defined in (10.1) and ¢ (y) = ,u%&(uy+§1). Using (1.16), expansion
(10.3) and (10.4), we get
I = O(kn—Z'un—l).
On the other hand, we have that
(10.9) L =0
Indeed, we first write
L=1), f f 10/ @) = fUNZ,
B¢j 7iz)  YRN\Ujs1 BEjoirts)

>1

Fix now j > 1. In the ball B(£;, k”") u~U;= O(y‘%) and U; dominates all the
other terms. Taking this into consideration, we have that

sf -z,
Bi 1

f [f'(w) - f(UDIZ5,
B i77)

o
1

< cf 2o+ 1 - E))dy

5O ) (1 +1y T+ P2’ ’

(usmg(lO.S))
2(n-2) 1
< C'u— f —d
(1 -cos@)m—2
’ul(n—Z) 1

<C
(1 — CoS Qj)n—z (/.1k1+‘7)”_4

where C is an appropiate positive constant independent of k. Thus we conclude

that
> fB = F Wiz,

j>1 (f/ kl+rr

(10.10) <",
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where again C is an appropiate positive constant independent of k.
On the other hand

, , 1 X —
f (Fw) - FUNZ, 2 X4
RN\Ujs1 BE)o17t5)

RTErEE
1 1

SC,Lln_Zf dx
R\U 1 B ) (1 + 102 [x = &[22

I+

)

S C#—n+2f
RN\Uj»1 B&js 12

Kl+o

< C’un—Zk(n D(1+0)

Thus we conclude that

f (F'w) - U,
RN\Uj21 BE)s i1

Formulas (10.10) and (10.11) imply (10.9). Thus we get (4.15).

(10.11) < Cu k2

Computation of A;. Let [ > 1 be fixed. Let again n > 0 and o > 0 be small and
fixed numbers. In this case we write

A11=f(f'(u)—f'(Ul))ZmZoz

fB(fz

f ](f'(u) — f/(U)Zo1 Zo
"\B(,

kl+rr k“""
=L+
We start with the expansion of /;. Using again the fact that in B(&;, k“”) the leading

term in u is U;, which is of order u~ 7 , and dominates all the other terms in the
definition of u, we get that

I = f [f' (w) — f(U1)]Zo1 Zoy dx
B,

X = fz f fz

) —n+ZZ ( )Z (

= -py [ﬂ‘* U(
B(§1

(x = py + fz)
=py [ U OZW 20 e R

)+ Ry

where Ry = I — py fB(& g)[,u_% U(%f')]p_lu_”JrzZO(x_Tﬁ)Zo(%&). Now using the
ok
expansion (10.5), together with formula (10.13), we get, for any integer [ > 1

-2
(1012 1= -py" 2 f U2y dy) 2 Lo ),
R}’l

[(1 —cos@)T ]
Observe that

- n-2 -
(10.13) f Ur'zydy = —— [ nU? 'Z1(y) dy)
n Rn
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Indeed,

_2
fUl’—lzodyzn2 fU”+U"‘1VU-y

-2
(10.14) = n2 fUp+nfUp_1y1Z1(y)dy

On the other hand, we have

PfUp_1y121(y)=—fU”

We thus conclude (10.13) from (10.14). Replacing (10.13) in (10.12) we get
(10.15)

n-—2 B
I = m(T)Z(— Ur-'y.z, dy)[

-2 —1yn-2
N z]ﬂ" + O k2.

(1 —cos 91)"7

On the other hand, a direct computation gives that
(10.16) Ri = O(u" ' k"2).

We now estimate the term I,. We write

ne,

J#l (&) k1+(r

f 1" (w) = f/(U)Zo1 Zo
RN\ B, k)

Fix now j # L. In the ball B(), %), u ~ U; = O 'T) and U ; dominates all the
other terms. Taking this into con31derati0n, we have that

< f WU NZoZy
Bj.i1t)

1
T ppr ol i W& =D 2o+ € = &) dy

f L) - f/ (U1 Z01 Zo
B¢,

"kIZ(r)
cof

(using(lO.S))

c ﬂZ(n—Z) f
- -2
(1 — COS 91')" B(O

while

_ if j#1
arppR @

l+(r

’u2(n—2)

(I —cosb)) 2

if j=1

Thus we conclude that

(10.17) < Cu k"2,

> f L' () = f/(UD1Zo1 Zox

J#l B, kl+(r)

where again C is an appropiate positive constant independent of k.
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On the other hand

f (f ) = f'(U))Zo1Zo
RN\Ujo1 BEj 17)

<cut? f 7520 )Zo( )
R\U o1 B& ) (14147 7 u

il

1 1 1
<cu? f Y =2) oy 4x
R\U s B&G ) (14 197 e = £ x = &

Thus we conclude that

f (F'w) - FUNZ,
R\Uj21 BE 755

Summing up the information in (10.15), (10.16), (10.24) and (10.25), we con-
clude that the validity of (4.16).

(10.18) < Cu k2

Computation of F{;. Let 7 > 0 and o > 0 be small and fixed numbers. We write

Fi = fR Lf/ () - f'(UD)]Z3, dx

= f +f [f/w) - f(UDIZ} dx =1, + I,
Bé o) JRN\BEL L)

We claim that the main part of the above expansion is /1. In B(£1, ;%) the main

part in u is given by Uy, which is of size u‘% in this region, and which dominates
all the other terms of u. Thus we can perform a Taylor expansion of the function

f'w) - f'(U) = f Uy +su—U)u—U;] forsome 0<s<1,
SO we write

I = f Yn
B, —)

Kl+o

k
Ux) = > Uix) + @) 23, dx + Ry,

>1

Performing the change of variables x = & + py, and recalling that Z;(x) =
pEZI (S + 0()), we get

L =Ry = fB RRAUNOERES

HI\'] +0

2 fB(O L)f”(Ul)IJ%&(fl + 1) Z2(y) dy + O(?)

#kl+u'

where we recall that

k
PTUE +py) - PRCEIGEINE

>1

T(y) =
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Recall now that $;(y) = 4= ¢1(uy + &) solves the equation

Ay + F (UG +x1 (& + 'S EE +py) +yu'S N()(@& +py) =0 in R

Hence we observe that

_ 0 _
p(p— l)yf u? 2¢1Zf=p7f a—(U” D12,
n Rn y]
Z—P)’f Up—1¢1(3121)—m’f Ur-' (01412
Rn Rr
=fX1(§1+MY)11”52E(§1+#)’)5121 d)”'wnzzf N (1) (&1 + uy)o1Z;
R» R

+fn [A¢1(01Z)) + AZ1(0141)]

=0

n+2

= F E@ + i@z dy+wE [ N@E + @2+ 0d)

B(O’ 1k l”+u' )

Taking this into account, we first observe that

I -R = pw—zf , T(y) d(UP~'Zy) dy + O(u?)
B0,—575)

“klﬂr

On the other hand recall that

2
Zi,dx

k
UGx) = > Uix) + d(x)

>1

R1=f‘ Lf" (U + su—Up)) - £ (U]
B(flakl%(,)

Thus we have

k

Ux) = > Uix) + d(x)

>1

2
Zi, dx

|R1|SCf Uf_2|(1+SU1_1(M—U1))p_2—1|
B(fl,kl%)

2

n=2 p-2
<Cu-z U;

Zfl dx
3(51,](1%)

k
Ux) = > Uix) + ¢(0)

>1

Arguing as before, we get that

Ry = u20(1)
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where O(1) is bounded as k — 0. Using the definition of y and the expansions
(10.3), (10.4) we conclude that

12 N
2

I = pyu f (zy7 = o Ur'zy)

n—2n_2 1 , N . n ) y
_ =1 = yl* + =(1 = cos O)y; + =(1 + cos O))y;10,(UP~"Z
H 4 ; (1 - cos 01)% R”[ Iyl 2( CcOoS l)yl 2( cosS l)yz] 1( )

+ O(u?)

J
2

k
(n-2) 4’ Y 10 (”Zz)k—fwylup‘lzn

= (1—cost):
+ O(u?) (10.19)

On the other hand, we have that
(10.20) L =u20(1)

where O(1) is bounded as k — 0. Indeed, we first write

L=l f f 107 ) - f(U)Z2
? Z RN\Ujz1 B(fj,kl%) 1 H

j>1 B(&js k1+a'
Fix now j > 1. In the ball B(£;, k”‘f) u~U;= O(y‘%) and U; dominates all the
other terms. Taking this into consideration, we have that

< f funzs,
B 7))

<Ccu? f
’#Alr,+

(using(10.5))

f L) - f/(UDIZ2,
B iz

1
sz(y +u (& - &) dy

IJZn 2 1
< C—f —dy
(I —cos ;)" BO.—5) (I +1yl%)

’uln—Z 1

C
- (1 — COos gj)n (ﬂk1+0')n—4

where C is an appropiate positive constant independent of k. Thus we conclude
that

(10.21)

ZfB - Uz,

j>1 (fj’W)

< C'u2

where again C is an appropiate positive constant independent of k.
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On the other hand

f (f'w) - fUNZE| < Cu™ f
RN\Uj1 BE 7i) R\Ujz1 B, )

rl+o
1 1
< C,un_zf dx
R\Ujs1 Bt (1 F [xI2)? |x = &1[2=D

1 2(X—§1
(1 + 22!

)

< C’un—Zk(n—Z)(l +0)

Thus we conclude that

f (f ) - f(UNZE| < Cu?
RN\U o1 BE) 1)

(10.22)

(From (10.21) and (10.22) we get (10.20). From (10.19) and (10.20) we con-
clude (4.19).
Computation of Fj;. Let [ > 1 be fixed. Let again n > 0 and o > 0 be small and
fixed numbers. In this case we write

Fu= fR (- F Uz

= [f +f 10" (w) — f(U)Z1Zy,
B, klw R”\B(fz,kl%)

=L+

We start with the expansion of /;. Recall that

£ 4 sin O 5 Zs(

Zy(x) = [cos O3 2y (— kL
u

)| (1+062).

Using again the fact that in B(&), klw) the leading term in u is U, which is of order

n-2 .
4~ 2, and dominates all the other terms in the definition of u, we get that

L=-peost [ WUl 51)]1’1 Wz fl)Z(X f’)
Bénd)
_psing [ wRuls f’> ‘"zl<x_§‘>zz<"_§l>+R1
B&LD M M
(x=py+&)

=—pw’260891f ) UP'ZiZy (v + (& - &) dy
B(0,-7)

— pyu~%sin Qlf , UP' ZiZy(y + (& — &) dy + Ry
BO, 1)
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Now using the expansion (10.7) we get, for any / > 1

n—2

I —Ry=py

_ n—2-ncos6;| . _
= cos 6, [—} n=2

(1—00801)%
n-2_ . [ nsin 6,
Esing) | ———
4 (1 —cos@))2
n-2 [%cos@l—g

(10.23) = = P
PY—; (1 —cos6))2

-py ]u"‘2+0(#3)

}u“ +0(u?)
On the other hand we directly compute
Ry = p0(1)

where O(1) is bounded as k — 0. We now estimate the term I,. We write

12=[Zf

; f 107 ) - FUNZnZn
j# B(‘fj»#) R"\UjB(fjakl%)

Fix now j # [. In the ball B(¢;, kliw), u~U;= 0(/[%) and U; dominates all the
other terms. Taking this into consideration, we have that

f [f'(w) — f (U Zo1Zo
B(gj,,(l%)

< C,u_2 f
B(O,

< f FUNZzy
B %)

1
T € - EN A E = dy

uklnﬂ)'

(using(10.7))

ﬂ2n—2
<C—— f ———dy if j#1

(=cost) Juo_p, A+hpr ™ "7

while

2n-2
<c—~£ it =1

(I —cos@ J-)%
Thus we conclude that

(10.24) Zf Lf'(u) — f/(UDZ11Zy| < Cu?,

‘i B

where again C is an appropiate positive constant independent of k.
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On the other hand

f (f (w) = f(U))ZiZy
BNU o1 B 1)

- 1 x=& x—¢&
<Cu nf 5521( VZ1 ( )
R\U 1 B o) (141419 u U

1 1 1
< C,u"_4f dx
R\U o BE 1) (1 + XD [x = &0 |x — &|¢=D

jal

Thus we conclude that

f W) - FUNZ,
RN\U o1 B )

Computation of G;;. Let > 0 and o > 0 be small and fixed numbers. We write

(10.25) <cu’

Gu= | (fw-fwmnz

R)‘l

- + f 10 @) - f U2,
B(fl,klz(,) R”\B(fl,kl%)

=L+

Recall that Z;(x) = ,u‘%Zz(x;i). We claim that the main part of the above expan-

sion is /1. Arguing as in the expansion of F, in the set B(¢], %) we perform a

Taylor expansion of the function (f’(u) — f'(U})) so that

k
11 = f( , )f"(Ul)[U(x) — Z U[(X) +(;>(x)]ZZZI(X)dX+R1
B(), %

>1
( changing variables x = & + wy)

=u? f Yy z:
B(0,—

#kl+u' )

Kl+o

— " n=2 ~
+u2f3(0 , F (O™ ¢luy + £1)Z3 dx + Ry

#kl+u' )

= f o, OTOL

,W)

+ p(p - Dyu™ f ; UP2¢1(y)Z3 dx + R

B(O’W)

where ¢1(y) = T $luy+£1) and T() = [T U +py) - Xk, UGy + ' 6 - &)
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Using the equation satisfied by ¢; and by Z; in R”, we get
_ a
p(p - 1)7fU” 9175 = pyfa—U” 12,
Y2
= _pnyp—lay2¢1Z2 - nyUp_l¢16y2Z2

=f§1(§1+,uy)/1n§2E(§l+/1)’)8y222+7/1n§2fN(¢1)(§1+/1y)5y222

= pyf ot
B(0 _n

’Hkl+(r)
+ O(u?)

Thus we conclude that

L = py,u_2 L(O T(y) 0y, (UP_IZZ) dy + 0(/1%)

kl+o')

PTUE +py) - Y UG+ - &)

>1

0y,2»

Using the definition of u in (1.16), we see that the first order term in expansions
(10.3) and (10.4) gives a lower order contribution to /;. Furthermore, by symme-
try, also the second order term in the expansions (10.3) and (10.4) gives a small
contribution. Thus, the third order term in the above mentioned expansions is the
one that counts. We get indeed

7 f (232 W10, (U1 22)

n -2 1= 2
Z cost9;)2 f[ d

>1

n_
I =

+ g(l — cos )y + g(l + cos Y2 |0y, (UP™' 2) + O(u?)

k
n2 Z -2+ n(l + cos6))

- UP~'Z,) + O(u?
(1= cos )} ( fyz 2) + O(u?)

>1
On the other hand, arguing as in the proof of estimate (10.20), we have that

L =p2o()
where O(1) is bounded as k — co. Thus we conclude (4.23).

Computation of Gy;. Let [ > 1 be fixed. Arguing as in the computation of F'y;, we
first observe that

Gl = fB o 0= Uz Zdy s O

Recall that

fl) + cosOl,u_% Zz(x i

Zy(x) = [— sin 91#_%Zl(x —

)| (1 +04?).
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In the ball B(&, %), we expand as before in Taylor, and we get

G” _ —p’}/COSQZ [[«l_iU( é‘:l)]p 1 —nZ ( fl )Z ()C f[)
B, 1)
+ pysing, [,u_*U( 51)],, ! _"Z( é?I)Zl(x_&)
B(&.1) H H
+ O(u2)
(x=py+&)

= —pyu* sing f UP'2,2(y + (& - &) dy
B(O )
+pyu?cost f 7 UP' 207, (y + u™ (& = &1)) dy + O(u?).
B(0,-L

Now using the expansion (10.7) we get, for any [ > 1, the validity of (4.24).

Computation of B;;. Let > 0 and o > 0 be small and fixed numbers. We write

By = Rn(f/(bt) - f(U))Zo1Z1:

= [f +f 1" (w) = f/(U1))Zo1Z1:
B, klﬂ,) RMB(1,

kl+(r>
=L+

We claim that the main part of the above expansion is /;. We have

k
I = fB . F U@ = Y Ui + §0)1 201 Zug dx + Ou?)

kl+rr I>1
(x=&+uy)
=u f F(O)Y6) 20zZy dy
B(O k1+0')

i fB ARG [0y + 01202 dx| + 0t

k] +0

k
=y L(O F T UE +py) - Z Uy +u™" & = ED)ZoZ1 dy

k1+0') >1

+ p(p— Dy +0(u?)

f Ui (0ZZ1 dy

’“k1+0'

where ¢1(y) = ' Gluy + &1).
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Using the equation satisfied by ¢; and by Zy , Z; in R", we have that
p—2 9 p-1
pip—1y UP"¢120Z) = py a—le $1Zo
==-pY f Up_18y1¢120 - pY f Up_1¢1ay1ZO

= py f UP~'Y()dy, (UP™' Zp)
B(0,

kl+0')

where ((y) = [T U(é1 + uy) — £, Uy + 1 (&1 = &))] Using expansions (10.3)
and (10.4), and taking into account that d,, (U”_IZO) = (p-HUP"'2y7, +U”‘18yI Zo,

11=pw‘2f , Ty, (U”‘IZo)

0.

n—2 n-4 _
=P [—u 2 fylayl(U” 'Z0) dy
k 1
+ ———— | 210y, (U Zp)|[+Ou?)
=1 (1 —cosé)z
= 0(u?).

On the other hand, arguing as in the expansion of Aj;, one can easily prove that

L = 0(u?).

Taking into account (10.13), we conclude (4.27).
Computation of Bj;. Let [ > 1 be fixed. We have

By = j;(é [f' ) - £ (UDIZo1Z1 dx + O(u?)
fl

= —py cost) [u‘* UEZEy -t gy (A7, 24
B} M H
—pysing [ ol érl)]f” w28
B(th) H M
+ O(u?)
(x=py+&)

= —pyu”" cos 91f UP' 21 Zo(y + ' (& = &) dy
B(0,-)
“ptsing [ U1z i 6 - E0)dy + O,
BO.2)

Now using the expansion (10.5) we get, for any / > 1, (4.28).
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Computation of C1;. Arguing as in the computation of G, we are led to

Cii = pyu™ (I+0w)

f () 8y, (U Zp) dy

B(0, ik

+ kn—Zﬂn—l 0(1)

k .
0
= —pyu" [Z (I_SL] f UP™'Zy + k2 o),

S| cos 6))2

where

T(y) =
>1

k
WTUE +py) - Z Uy +p ' (& - fz))}

so that we conclude, by cancellation, the validity of (4.31).

Computation of Cy;. Let [ > 1 be fixed. We have

Cii= fB @ Pz Zd o)

=pyeosts [ U i =z as
B, ) H H

“pysing | [/f*U(x f’) PG éf)Z( f’)
B§1

+ k”_zu"_IO(l)

(x=uy+&)

= —pyu”" cosd f UP ' 20Z0(y + ' (& - €1)) dy
B(0,21)
+ pyu”" sing, f ) UP' 2oZ0(y + ' (& = é)) dy + K2 o(1).
BO. 1)

Now using the expansion (10.5) we get, for any [ > 1, (4.32).
Computation of Dy;. Arguing as in the computation of G1;, we are led to

D11 ZP%U_sz(Y)ayl(Up—lZz)dy

+ K ro1)

k .
_ n—2 n-2 sin 91 p—1 n-1 n
=pYy— [Z (l_—n)fmU Zp + K" " 0(1)

= cos 6;)2

so that we conclude (4.35).



NONDEGENERACY OF NONRADIAL NODAL SOLUTIONS TO YAMABE PROBLEM 59

Computation of Dy;. Let [ > 1 be fixed. We have

Dy = f( [f'w) - f(UDIZ11Zydx + K" 0(1)
Bé:l k

= pyeosty [ Ul f’)]Pl )z (8 7, (A8 gy
B, H M
cpysing [ o= f’)]f“ 27 a
Bt yii M
+ K ro(1)
(x=py+&)

= —pyu? cos sz , UP ' 2,2, (v + (& - 1)) dy
B(0 ;7)

+ pyu? sind) f UP 2,200y + 1 (& - ) dy + K101,
B(0,7z)

Now using the expansion (10.7) we get (4.36).
Computation of H3 ;1. Let n > 0 and o > 0 be small and fixed numbers. We write

Hin= | (F'w—f U0z
- + f 1F @) - /U2,
B(‘fl,kﬁ(r) R”\B(fl,%)
=L+

Arguing as before one can show that
L = O(u).

In B¢, k”“) we can perform a Taylor expansion of the function (f’(u) — f'(Uy))
so that

k
I = fB o, O - 2, Ui®) + 30123, (1) dx + O(u?)

>1

(x= f] +#y)
=u f P ACILCS

_n_
’yk"*"r

i fB o Oy 07 dx 0

=u? f f U)Yez:
B(0,

kl+(r)

+ p(p — Dyu™? f o UP™21(0)Z3 dx + O(u?)

/\l+0')
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where ¢ (y) = ,u%&(,uy + £&1). Using the equation satisfied by ¢; and by z in R”,
and arguing as in the previous steps, we get

p(p - 1)ny”‘2¢1Z§ =p7fB(0 Ur'r(y)dy, Zs

/\l+u')

where we recall that

TQy) =

>1

n=2 L -1
HTUGE +m) = ) UG+ & - &)
Thus we conclude that
I = pyu> f X0y, (UP'23) dy + O(u?).
0,—55)
pk

Using the definition of u in (1.16), we see that the first order term in expansions
(10.3) and (10.4) gives a lower order contribution to /;. Furthermore, by symme-
try, also the second order term in the expansions (10.3) and (10.4) gives a small
contribution. Thus, the third order term in the above mentioned expansions is the
one that counts. We get indeed

L =

iz f (232 10,0 22)

k

n-2 .2 1 f 2 1 2
- § — | [-1=-pP+ =1 -cosd
PY—H 1 7 Iyl 2( cos )y,

S| cos 0))2

+ g(l + cos Hl)y§]6y3(U”‘]Z3) +Ouf)
n—2 n2 n=2 £ 1 1 n
=py——pu2|l-p2 ) ————— (= [ »3U"" ' Z3) + Ou?)
2 “~ (1 —cos b))z
Thus we conclude (4.39).

Computation of H3 ;. Let / > 1 be fixed. Arguing as before, we get

Hsy = f [f' () = f/(UD]Z312Z31 + O(u?)
B(f[,%)

= —py [u"*U(x fl)]f" PR et 15y N 1
B(&,} M M

+ O(u?)

(x=puy+&)

=-pyu”’ fB o0, U B0z + 7 E = £ dy + O)

Now using the expansion (10.8) we get (4.40).
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