NONDEGENERACY OF NONRADIAL SIGN-CHANGING SOLUTIONS TO THE
NONLINEAR SCHRODINGER EQUATION
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ABSTRACT. We prove that the non-radial sign-changing solutions to the nonlinear Schréodinger equa-
tion

Av—u+uP lu=0inRY, weHYRY)
constructed by Musso, Pacard, and Wei [19] are non-degenerate. This provides the first example
of a non-degenerate sign-changing solution to the above nonlinear Schrédinger equation with finite
energy.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this paper, we consider the nonlinear semilinear elliptic equation

Au—u+ |uf'u=0in RN, we H' (RY), (1.1)

where p satisfies 1 < p < c0oif N =2 and 1 < p < % if N > 3. Equation (1.1) arises in

various models in mathematical physics and biology. In particular, the study of standing waves for the
nonlinear Klein-Gordon or Schrédinger equations reduces to (1.1). We refer the reader to the papers
of Berestycki and Lions [2], [3], and Bartsch and Willem [4] for further references and motivation.

Denote the set of non-zero finite energy solutions to (1.1) by
Y= {uec H'RY): Au—u+ [ulP~*u = 0}.

If uw € ¥ and u > 0, then the classical result of Gidas, Ni, and Nirenberg [11] asserts that w is
radially symmetric. Indeed, it is known ([12, 16]) that there exists a unique radially symmetric (in
fact radially decreasing) positive solution for

Aw—w+wP =0 in RV,

which tends to 0 as |z| tends to oo. All of the other positive solutions to (1.1) belonging to ¥ are
translations of w.

Let Ly be the linearized operator around w, defined by
Lo:=A—1+puwP?t. (1.2)
Then, the natural invariance of problem (1.1) under the group of isometries in RY reduces to the fact
that the functions
Op, W, ..., Opyw (1.3)
naturally belong to the kernel of the operator Ly. The solution w is non-degenerate in the sense that
the L*°-kernel of the operator Ly is spanned by the functions given in (1.3). For further details, see
[21].
No other example is known of a non-degenerate solution to (1.1) in ¥. The purpose of this paper is
to provide the first example other than w of a non-degenerate solution to (1.1) in X.

Concerning the existence of other solutions to (1.1) in X, several results are available in the literature.
Berestycki and Lions [2], [3] and Struwe [23] have demonstrated the existence of infinitely many radially
symmetric sign-changing solutions. The proofs of these results are based on the use of variational
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methods. The existence of non-radial sign-changing solutions was first proved by Bartsch and Willem
[4] in dimensions N = 4 and N > 6. In this case, the result is also proved by means of variational
methods, and the key idea is to look for solutions that are invariant under the action of O(2) x O(N —2),
in order to recover a certain compactness property. Subsequently, the result was generalized by Lorca
and Ubilla [17] to the N = 5 dimensional case. Besides the symmetry property of the solutions,
the mentioned results do not provide any other qualitative properties of the solutions. A different
approach, and a different construction, have been developed in [19] and [1], where new types of non-
radial sign-changing finite-energy solutions to (1.1) are constructed, and a detailed description of these
solutions is provided.

The main purpose of this paper is to prove that the solutions constructed by Musso, Pacard, and
Wei in [19] are rigid, up to transformations of the equation. In other words, these solutions are
non-degenerate, in the sense of the definition introduced by Duyckaerts, Kenig, and Merle [9].

To explain the meaning of a non-degenerate solution for a given u € 3, we recall all of the pos-
sible invariance of equation (1.1). We have that equation (1.1) is invariant under the following two
transformations:

(1) (translation): If u € ¥, then u(z +a) € ¥ Va € RY;

(2) (rotation): If w € 3, then u(Pz) € X, where P € Oy, and Oy is the classical orthogonal
group.

If w € 3, then by

L,=A—1+pluf! (1.4)
we denote the linearized operator around u. We define the null space of L,, as
Z,={fecH'RY): L,f =0}. (1.5)

If we denote the group of isometries of H!'(RY) generated by the previous two transformations by
M, then the elements in Z,, generated by the family of transformations M define the following vector

space:
s Oyu, 1<j<N
Zu= Span{ (x;&,;k — 0 )u, 1 <j<k <N } (1.6)

A solution u of (1.1) is non-degenerate in the sense of Duyckaerts, Kenig, and Merle [9] if
Zy = Zu. (1.7)

As we already mentioned, the only non-degenerate example of u € 3 known so far is the positive
solution w. In fact, in this case

(0, — 20z, )w =0, V 1<j<k<N,

and hence
Zw :span{@xjw, 1<5< N}.

The proof of the non-degeneracy of w relies heavily on the radial symmetry of w. For non-radial
solutions, the strategy used to prove non-degeneracy in the radial case is no longer applicable. Thus,
a new strategy is required for non-radially symmetric solutions.

A similar problem has arisen in the study of non-radial sign-changing finite-energy solutions for the
Yamabe type problem

Au + |u|ﬁu =0 in RY, we H'YRY),

for N > 3. In [20], the second and third authors of the present paper introduced some new ideas
for dealing with non-degeneracy in non-radial sign-changing solutions to the above problem. Indeed,
they successfully analyzed the non-degeneracy of some non-radial solutions to the Yamabe problem
that were previously constructed in [6]. For other constructions, we refer the reader to [7]. In this
paper, we will adopt the idea developed in [20] to analyze the non-degeneracy of the solutions of (1.1)
constructed by Musso, Pacard, and Wei [19].

The main result of this paper can be stated as follows.
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Theorem 1.1. There exists a sequence of non-radial sign-changing solutions to (1.1) with arbitrarily
large energy, and each solution is non-degenerate in the sense of (1.7).

We believe that the non-degeneracy property of the solutions in Theorem 1.1 can be used to obtain
new types of constructions for sign-changing solutions to (1.1), or related problems in bounded domains
with Dirichlet or Neumann boundary conditions. We will address this problem in future work.

This paper is organized as follows. In Section 2, we introduce the solutions constructed by Musso,
Pacard, and Wei in [19]. In Section 3, we sketch the main steps, and present the proof of Theorem
1.1. Sections 4 to 8 are devoted to the proof of properties required for the proof of Theorem 1.1.

2. DESCRIPTION OF THE SOLUTIONS

In this section, we describe the solutions u, constructed in [19], and recall some properties that
will be useful later. To provide the description of the solutions, we introduce some notations. The
canonical basis of RY will be denoted by

€1 = (1707 70)7 €2 = (071303"' 70)5"' yeN = (Oa 7031)' (21)
Let k be an integer, and assume we are given two positive integers m,n and two positive real numbers
£, ¢, which are related by

25sin %me = (2n - 1)L. (2.2)

We shall comment on the possible choices of these parameters later on. Consider the regular polygon
in R% x {0} C RY with k edges whose vertices are given by the orbit of the point

= — e € RY
v ZSIH% !

under the action of the group generated by Rj. Here, R € O(2) x O(N — 2) is the rotation through
the angle = 2™ in the (1, 29) plane. By construction, the edges of this polygon have length £. We refer
to this polygon as the inner polygon. We define the outer polygon to be the regular polygon with &
edges whose vertices are the orbit of the point

Ym+1 = y1 + mley

under the group generated by Rj. Observe that the distance from y,,41 to the origin is given by
mf + Ten T and thanks to (2.2), the edges of the outer polygon have length 2n/.

2sm
By constructlon the distance between the points y; and yp,41 is equal to mf, and by y;, for
j = 2,---,m, we denote the evenly distributed points on the segment between these two points.
Namely,

yi=y+(G—1)ley for j=2,--.m
As mentioned above, the edges of the outer polygon have length 2nf, and we evenly distribute points
Yj, j =m+2,--- ,m+ 2n, along this segment. More precisely, if we define

LT T
t:—smgel +COSE82 E]RN,

then the points y; are given by
yJ:ym+1+(]_m—1)Zt for ]:m+27’m+2n

We also denote
zp=yjforh=1,---,2n—-1, where h=j—m—1.
Let

= U {Riy; - j=1,....om+1)U({RLzn : h=1,...,2n—1}) (2.3)

Let us introduce the functlon w to be the unique solution of the following equation:

Au—u+uP =0, u>0in RN
max, egy u(z) = u(0),
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whose existence and properties are obtained in the classical works ([11, 12, 16]).
In [19], the authors constructed solutions of (1.1) that can be viewed as the sum of positive copies
of w centered at the points y;, j = 1,---,m + 1, together with their images by rotations R; =

Ry o -+ Ry (composition of Ry, i times) for i = 1,--- ,k — 1, as well as copies of (—1)"w (hence with
the opposite sign) centered at the points z5, h = 1,--- ,2n — 1 and their images by the rotations Rf€
fori=1,--- ,k — 1. More precisely, the solution can be described as follows:
k—1 m+1 m+2n
u(z) ~U(z) := Z ( Z w(x — Ryy;) + Z (=17 (- R}cyj)). (2.4)
i=0  j=1 j=m+2

These solutions admit the following invariance:
u(z) = u(Rx), for R € {Is} x O(N — 2), (2.5)
and
u(Rrx) =u(z) and u(lz) = u(x), (2.6)
where I' € O(2) x I(N — 2) is the symmetry with respect to the hyperplane x; = 0.
The numbers m, n, £, ¢ are related by equation (2.2) and by the following equation:
A =
U(¢) = (2sin E)\II(E)’ (2.7)
where U(s) is the so-called interaction function which is defined by

U(s) = —/w(x — se)div(w? (z)e)dz, (2.8)

and e € RY is any unit vector. The definition of ¥ is independent of e.

The constraint (2.2) on the parameters m,n, ¢,/ is easy to understand: it is to make sure that
an outer polygon is formed. The second constraint (2.7) is not so easy to see. As mentioned in [19],
the relation between ¢ and £ can be understood as a balancing condition, which is a consequence of a
conservation law for solutions of (1.1). Alternatively, it can be understood as a condition that ensures
that the approximate solution U is close enough to a genuine solution « of (1.1).

The main theorem in [19] is as follows:

Theorem A. Let k£ be an integer number with k£ > 7 and let T > 0 be a fixed real number. Then,
there exists a positive number £5 > 0 such that for all £ > £, if £ is the solution of (2.7), and m,n are
positive integers satisfying (2.2), and

m < /{7, (2.9)

then (1.1) admits a sign-changing solution u, that satisfies the symmetry conditions given in (2.5) and
(2.6). Moreover,

up(z) = Ul(x) + ¢, (2.10)

where U is defined in (2.4) and ¢ = o(1) — 0 as £ — co. The energy of u is finite and can be expanded
as

E(ug) = 2n+m) kE(w) + o(1),

where o(1) — 0 as £ — oo.
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m+2n

1

An example of a configuration with k = 7 edges, m = 7 interior points on any radius, n = 4 for
2n — 1 interior points on any edge.
As mentioned in Remark 1.2, [19], (2.9) is a technical condition. Observe that, once / is fixed large
enough, from (2.7) we see that £ is a function of ¢ which can be expanded as

_ 1
¢ =/+1In(2sin E) +0(-),
k 14
since —(log ¥)(s) = 1 + 2=1 4+ O(%). Inserting this information in (2.2), one gets that
2n—1
m

—2sin~ (1 —In2(sin ~)¢? -2
—Qsmk(l ln2(blnk)€ +O(¢ )), as { — oo.

The authors in [19] provide examples of possible choices for sequences of m and n satisfying the above
expansion. For instance: for any integer m one can choose an integer n so that

1§2n—1—281n%m<3.

Then, if m is sufficiently large, there exists a unique £ > ¢y so that (2.7) and (2.2) are satisfied, and
c1l < m < cof, for some constants c¢i, ca. Thus Theorem A. guarantees the existence of a solution of
the form (2.4) for any such integer m.

Equation (1.1) can be rewritten in terms of the function ¢ in (2.10) as

Ap—¢+plUP o+ E+ N(¢) =0, (2.11)
where
E=AU-U+|UP'U (2.12)
and
N(¢) = U+ ¢P""(U+¢)— [UP'U —plUP 9. (2.13)

One has precise control over the size of the error function £ when measured in the following weighted
norm. Let us fix a number —1 < 1 < 0, and define the weighted norm

1]l = sup (D e h(a), (2.14)

z€R yell
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where _
is the set of the concentration points. In [19], it is proved that there exist £o > 0 and £ > 0 such that
for £ > £y, ¢ satisfies the following estimate (Proposition 4.1 in [19]):

6]l < Ce™F, (2.16)
which gives a considerably smaller bound than U.
We now define the following functions:
0
To(x) = 3 ¢(x) fora=1,---,N. (2.17)
Tq
Then, the function 7, can be described as follows.
Proposition 2.1. The function 7, satisfies the following estimates:
7ol < Ce™ 5, (2.18)

for some positive constants C' and & that are independent of £.

Recall that problem (1.1) is invariant under the two transformations mentioned in Section 1, trans-
lation and rotation. This invariance will be reflected in the element of the kernel of the linearized
operator

L(3) := A¢ — ¢ + plugP~ 1y, (2.19)
which is the linearized equation associated to (1.1) around wuy.

From this point on, we will drop the ¢ in uy, for simplicity. Let us now introduce the following
3N — 3 functions:

zo(x) = %u(z), fora=1,---,N, (2.20)
and 5
zyy1(x) = xla—@u(x) - xga—xlu(x) (2.21)

Observe that zy11 = a%[u(Rgac)Hg:O7 where Ry is the rotation in the z1zo plane by the angle 6.
Furthermore, for a =3, --- | N,
ZN+a—1(Z) = 124 — Ta21, ZaN+a—3(T) = Tozq — Ta2a. (2.22)
Observe that the functions defined in (2.20) are related to the invariance of (1.1) under translation,
while the functions defined in (2.21) and (2.22) are related to the invariance of (1.1) under rotations
in the (x1,22), (z1,24), and (x2, ) planes, respectively. )
The invariance of problem (1.1) under translation and rotation implies that the set Z,, (as introduced
in (1.6)) associated to the linear operator L introduced in (2.19) has dimension at least 3N — 3, because
L(z4)=0, «=1,--- ,3N — 3. (2.23)

We will show that these functions are the only bounded elements of the kernel of the operator L.
In other words, the sign-changing non-radial solutions (2.10) to problem (1.1) constructed in [19] are
non-degenerate in the sense of [9].

3. SCHEME OF THE PROOF

In this section we describe the main ingredients which constitute the proof of our result.
Assume that ¢ is a bounded function satisfying

L(yp) =0, (3.1)
where L is the linear operator defined by (1.4). We write our function ¢ as
3N-3

p(a) =Y aaza(z) + G(z), (3:2)
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where the functions z,(z) are defined by (2.20), (2.21), and (2.22) respectively, while the constants a,
are chosen such that

/zagZ:O, Q=1 3N —3. (3.3)

Observe that L(¢) = 0. Our aim is to show that under the conditions (3.1)-(3.3), if ¢ is
bounded, then ¢ = 0.

3.1. Introduction of the approximate kernels and some notation. In order to explain our idea,
we first introduce some functions. These functions Z;a correspond to the approximate kernels around
each spike.
Forj=1,--- ,m+1 1=0,---,k—1,
Z;1=R;-Vuw(z - Rkyj) ZJ’2 = Rf -Vw(x — Rfcyj),
and, fora=3,--- | N,
9 .

G = %w(ﬂf - Rjy;).
Moreover, for j =m+2,--- ,m+2n,1=0,--- ,k — 1, we define
ZJZ!1 = (- 1)j_m_1ti -Vw(x — R};yj), Z;Q = (—l)j_m_lni -Vw(x — };yj),
and, fora=3,--- | N,

_ _ o _

Zt = (=177 ——w(x — Riy;).

J,o ( ) 8$a ( k ])

In the above formulas, we denoted 6; = % and

R; = (cos;,sinb;,0), Ril = (sin 6;, — cos 6;,0),

t; = (—sin(6; + %),cos(@i + %), 0), mn; = (cos(b; + %),sin(@i + %),O).

Recall that the solutions constructed in [19] take the form w = U + ¢ given in (2.4)-(2.10), and
recall further the definition of 7, in (2.17). From this, one can obtain a more precise expression for
the real kernels z, mentioned at the end of Section 2. Indeed

ou ou
z1() R ™+ 911
— m+1
_7r1+Z<Z (cos0;Zi | +sin6; Z: ,)
=0 j=1
2n+m ~
_ Z (bln(e + k)ZZ COb(e + ]f) ;72)>7
Jj=m+42
ou oUu
23() = s =72+ s
k=1 m+1 B _
= 7y + Z ( Z (sin QiZ;‘J — cos HiZ;"Q)
=0 j=1
2n+m . T o~
+ 30 (cos(l+ T)ZE, +sin(+ 7)) ),
j=m+2
and, foraa=3,---, N,
k—1 m+2n

et —n (Y 4

Ta =0 gj=1
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Furthermore,
n oUu oUu
z = X129 — X921 = XMy — ToM] + L1 —— — To——
N+1 122 221 172 277 15‘:52 2&[1
k—1 m+1 a a
= T1m9 — T + Z ( Z |yj|(cos€)i% — sin@i%)w(x — RLy;)
i=0  j=1 2 1
2n+m
£ (R miZ, - Ry 62,5))
j=m-42
and fora=3,--- | N,
oUu oU
ZN+a—1 =XT12q — TRl = T1Tq — Lo + X1 57— — Lo 7—
&z:a 6:51
k—1 m-+1
=T1Ta — TaT1 + Z ( Z |ly;| cos 0:Z;
i=0 =1
2n+m ) T ) T o
+ Z (Ryy; - 1 cos(6; + E) — Ryy; - tisin(6; + E))Z]Z',()z)?
j=m-+2
and
Z2N+a—3 = T22q — T2
n oUu oUu
= XoMq — Lo + To— — To——
2N« all2 28Ia aal'g
k—1 m+1
= ToTq — TaT2 + Z ( Z |ly;| sin0; Z; ,
i=0  j=1
2n+m . . ) - .
+ Z (Rpy; - n;sin(60; + E) + RLy; - t;cos(6; + E))ZJZO‘)
j=m-+2

Let us further define the following functions. For i =0,--- ;k — 1,

; dw(x — R; ow(zx — R}
71, = cosy( Q0@ = TUy) Ty g, QW = Ry | ey (3.4)
’ &rl k T2
i . ow(r — Riy1) ow(xr — Riy1) o
ZL? :smﬁi(le-i-z) —COSai(Tk‘f' ?), (3.5)
and, fora=3,--- | N,
; Oow(x — Riyy) 7o
A 3.6
1,a Ty + k ( )
Moreover, we define the following functions:
Z;7QZZ;,afori:05"'ak_1a j:27"'72n+m7 a:17"'aN- (37)

In the following, we will always deal with the kernels in vector form. These column vectors simply
represent rearrangements of the approximate kernels 77

_ 0 k—1 0 k—1 t 2k
ZV’Q_<Z1,0¢>"' ’Z Zm+1,a7'“ ?Zm—l-l,a) € R™.

l,a

This contains the kernels around the vertices of the inner and outer polygons. Furthermore, define

Z;ﬁ,a = (Zé,ou e 7Zi;1,a)t € Rmilv Z{/g,a = (an+2,ou e vZ;n—&-m,a)t € R2n717
which correspond to the spikes on the line joining the inner polygon vertex R} y; and the outer polygon

vertex Riymi1, and the spikes on the edge joining Riym,41 and R?’lymﬂ of the outer polygon,
respectively. Then, we define
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Zv,a
Z)O/I,oz
: Z,

Zoo = Z)k/;i c ka(2n+m)’ 7 — c RFXNx(2n+m)

0
ZYg,a ZN

k—1
YQ,CM

3.2. Reduction of the main problem. As explained in the beginning of this section, our aim is to
show that the function ¢ defined by (3.1)-(3.3) is identically zero, ¢ = 0.
With the notations introduced in Section 3.1 in mind, we write our function ¢ as

N
()5 = an : Za +<pL(x)a
a=1

Cv,a
Yo
: Cl,a
where ¢, = le/l_(lx = ,a=1,---,N, are N vectors in R(m+20)%k defined such

C
Y2,a C(m+2n)xk,a

o
CYQ,i
that

/Z;iwL =0for ala=1,---,N, i=0,---,k—1, j=1,--- ,m+ 2n. (3.8)
Observe that, if we prove that
co =0 for all o, and o= =0

then we have that ¢ = 0 . Hence, our aim is to show that all vectors c, and ¢* are zero in
the above decomposition. This will be a consequence of the following three facts.

Fact 1: Since L(¢) = 0, we have that

N
L(g") == ca-L(Za). (3.9)

Our first result shows that ¢+ can be controlled by c,, and we have the following a priori estimate
of ot

N
It < Cem 53 feall (3.10)
a=1
The proof is deferred to Section 5.
Fact 2. The orthogonality condition (3.3) takes the form

N
an~/Za25 = —/gpj‘zﬁ7 (3.11)

a=1

fors=1,---,3N — 3.
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Our second result implies that the above orthogonality condition can be reduced to 3N — 3 linear
conditions on the vectors c,. Let us introduce the following notations:

cos fg sin 6y
cosy; = : € R*, siny, = : € R¥,

cosOr_1 sin 6y, _1
are two k-dimensional vectors,

cos 0; sin 6;

cos(b;) = : cR™ sin(6;) = . e R™ 1,

cos 0; sin 6;

are two (m — 1)-dimensional vectors, and
cos(f; + %) sin(6; + T)
cos(f; + %) = e R*™ 1 sin(f; + E) = e R 1,

cos(6; + 1) sin(0; + )

are two (2n — 1)-dimensional vectors. Furthermore,

d il
€ Rl’ |yi‘k =

d il

are constant vectors, where |y;| denotes the distance from the point y; to the origin.
For any unit vector e € RY, we denote

d; = ERk

R};yg e R};zl e

Lyj ‘e = eR™ 1 Riz, e= € R?"!

CYm - € Rizon_1-€
We have the validity of the following

Proposition 3.1. The system (3.11) reduces to the following 3N — 3 linear conditions on the vectors

Co:
cosy, siny
cosy, siny
cos(bo) sin(fp)
. C1
: : _a+ee .
G- cos(0x_1) tee sin(fx_1) =it Ol )0 : (812)
—sin(fo + ) cos(fo + 1) cN
—sin(fp + ) cos(fo + )
sing —COsy;
sing —COSsg
sin(fp) —cos(bo)
. . C1
' ‘ — fh+ 0 T)L 3.13
Cy - Sin(ek_l) +ca- —COS(Hk_l) - f2 + (6 ) 2 ( . )
cos(fo + ) sin(fp + 1) cN

cos(fo + I)

sin(fo + )
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C1
_atee ]
Cq - 1(2n+m)><k = fa+0O(e 7 )La : (3.14)
cN
0y ly1ls
0y |Ym+1|k-
Riy;- Ry RYy; - Ro
. . Cy
: : _a+9r
e T e B e .19)
R{zy - no Rz - to cN
Rt_lzh cNk-—1 Rﬁ_lzh ctrko1
and fora=3,--- N,
|y1|cosg
‘ym+1|COSk
Rﬁyj e
. Cq1
: _a49r
Cq - REly. e, |~ INfa—1+0(e” 2 )LNta-1 (3.16)
R{zn - €1 CN
Ri_lzh - €1
ly1 |sing
|ym+1|Sink
Rﬂyj - eg
. C1
: _a+9e .
Cat| Rklyiey |~ fonta-3+0(e” 2 )Lonya—s | ¢ |, (3.17)
R{zy - e> cN
Rll:_lzh - e
fi
fora=3,---,N. In the above expansions, s a fized vector with
Jan-3
bil
| <™.
Jan-3

for some positive constant T that is independent of ¢. Here, L; : RZ"Hm)XE L R are linear functions
whose coefficients are constants uniformly bounded as £ — oo.

The proof is deferred to Section 6.

Fact 3: Let us now multiply (3.9) by Z;’a, fori=0,---,k—1,7=1,--- ,m+2n,anda=1,--- ,N.
After integrating in RY, we obtain a linear system of (2n+m) x k x N equations in the (2n+m) x k x N
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coefficients ¢ of the form

C1

CN

rp

with r, =

ry

1 Zk—l

JL(e*)

where M = ([ L(Z} ,)Z; gdzx) is a square matrix of dimension [(2n +m) x k X N]2. More detailed

Yz,Oé

information and an analysis of the matrix M is provided in Section 4.

Our third result concerns the solvability of the above matrix equation. We can show the validity of

the following statement:

Proposition 3.2. There exists £y > 0 and C' such that for € > {y, system (3.18) is solvable. Further-

more, the general solution is

+51

and

Ca

cosy,
COSy.
cos(fp)

cos(fx—_1)
—sin(fo + )

—sin(fo + )
sing
siny,

sin(fp)

sin(fx_1)
cos(fo + )

cos(fo + )

=Vq+ Sall(2n+m)><k + Sa2

+ So

— Vi
: Vs

Vi

()= (%

Sil’lk
Sil’l}C
sin(fp)

sin(fx_1)
cos(fo + )

cos(fo + I)
—cosy,
—cosy,

—cos(bo)

—cos(fx_1)
sin(fp + 1)

sin(fo + )

+83

O
O
Riy; Rg

k—1 1L
Ry y;i-Ri 4
Rgzh N

Rﬁflzh cNk_1
—|y1 I1

_|Ym+1 |k
—Ry;j - Ro

—R11:71Yj ‘Ryk1

—RgZh -to

) + S1W71 + SoWq + S3W3

ly1|cosg,
|Ym+1]|cosk
Rﬁyj ey

= Va F Sa1W4 + Sa2Ws5 + Sa3We

k-1
R, y;-e1
Rﬁzh -ey

Rﬁ_lzh -eq

+ Sa3

k-1
—Ry "zn - tk1

|y1 |sing
|ym+1\5ink
Rﬂyj - €g

k-1
R, y;-e2
Rﬁzh - eq

Rlﬁ_lzh - €o
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for any s1, s9, 83, Sa1, Sa2, Sasz € R, where the vectors v, are fixed, and satisfy

Ivall < =" (3.19)
for some 1,€ > 0.
The proof is deferred to Section 7.
Ci1
3.3. Final argument and proof of Theorem 1.1. Let : denote the solutions to (3.18)
CN

predicted by Proposition 3.2, given explicitly by

cl—vl+w+w+w
e, ) Uy S1W1 T S2W2 T S3W3

Ca = Vo Tt Sa1Wq + Sa2W5 + Sa3We, OL:3,"' aN'

and

Replace the above expressions for ¢,, @« = 1,2,3,..., N into (3.12)—(3.17). This leads to a system of
(3N — 3) non linear conditions on the (3N — 3) coefficients s;, so; for j =1,2,3, a =3,..., N. Taking
advantage of the explicit form of the vectors w;, i = 1,...,6, one can show that there exists a unique

* PR * 3N-3
(87,583,831, ,8n3) ER

for which the above solutions satisfy all 3N — 3 conditions of Proposition 3.1, which furthermore satisfy

(53, o 83,831, sha) | < Ol s
C1
Hence, there exists a unique solution : to system (3.18), satisfying conditions (3.12)—(3.17)
CN

and the estimate

N
1—¢
Y lleall < Ce= o .

a=1

On the other hand, from (3.10) in Fact 1, we conclude that

1 —1rey a
lptlle < Cem = " leall.
a=1

Thus, by combining the above two estimates we conclude that
cé»!a =0, 4,0L =0,
which implies that for ¢ defined by (3.1)-(3.3), it holds that ¢ = 0. This proves Theorem 1.1.
4. ANALYSIS OF THE MATRIX M

This section is devoted to the analysis of the matrix M defined in Section 3. We first derive a
simplified form of M. Our first observation is that if « is either of the indices {1,2} and f is any of
the indices in {3, -+, N}, then

/L(Zf’B)Z;a =0for anyi,j=1,---,2n+m, s,t=0,--- , k—1.
This fact implies that the matrix M has the form
My O
- (%8 a

where M, is a matrix of dimension (2 x (2n +m) x k)2 and M, is a matrix of dimension ((N — 2) x
(2n +m) x k).
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Because

/ L(Z:,)2! , = / L(ZL )75,

M1=(§t g) (4.2)

where A, B, C are square matrices of dimension ((2n+m) x k)2, with A, C' symmetric. More precisely,

A= (/L(Zf,1)Z§,1)i,j:1,~~,2n+m, 5,6=0, k=15

we can write that

B—( / L(Z80) 2L 3)i ot b, st et

C= (/L(Z;,2)Z]t',2)i,j:1,~- 2n+m, §,t=0, k—1-

Furthermore, again by symmetry, because

\/L(Z'ia)Z;#}:O, ifa;éﬂja,ﬂ:?,’... ’N’

the matrix M has the form

Hy; 0 0 O 0
0 Hy 0 O 0

M, = : (4.3)
0 ... 0 0 Hy

where H, are square matrices of dimension [(2n + m) x k]?, and each of them is symmetric. The
matrices H, are defined by

H, = (/ L(Zf’a)Z]t-ya)s’?:o""’k*l fora=3,---,N. (4.4)

1,5=1,---,2n4+m

Thus, given the form of the matrix M as described in (4.1), (4.2), and (4.3), system (3.18) is equivalent

to
J\41(C1 ):—( 1 > Hyco = —To, fora=3,---,N.
Co ry

where the vectors r, are defined in (3.18).
This section is devoted to the analysis of the kernels and eigenvalues of the matrices A, B, C, H,.
The main result of this section is the following solvability condition for the matrix M.

Proposition 4.1. Part a.
There exists Ly > 0 such that for £ > {y, the system

(e )-(n)
(o )wm (o ) (0 ) o

Furthermore, the general solution is

( €1 ) = ( Vi ) + S1W1 + SoWo + S3W3 (45)

1s solvable if

C2 \P]

for all s; € R, with ( :1 ) being a fized vector such that
2

(o Jrseeea( 2 (4.6)
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Part b.
Let « =3,--- | N. Then. there exists 5 > 0 such that for any £ > {y,

H,(cy) =1,

1s solvable if

Iy Wq4 =Tq W5 =T, Wg = 0.
Furthermore, the solution has the form
Ca = Vo + 801W4 + Sa2Ws5 + Sa3We,
for all so; € R, where v, a fived vector such that

IVall < CCTe||rall.

15

(4.8)

(4.9)

Remark 4.1. From the statement of the above proposition, because My, My are symmetric matri-
ces, one need only show that M, has 3—dimensional kernels spanned by wi,wo, w3, while H, has

3—dimensional kernels spanned by W4, Ws, Wg.

Before we prove the above proposition, we first need to introduce some notation.
For all n > 2, we define the 7 X 7 matrix

2 -1 0 - 0
1 2 -1

=1 o 0

1 2 -1

0 0 -1 2

In practice, the integer n will be equal to m — 1 or 2n — 1.
It is easy to check that the inverse of T5 is the matrix whose entries are given by
ij
n+1

(T 1)ij = min(i, ) —

We define the vectors S+ and ST by

o
—

. - 0 -
T, Sv =" |erR® 1,5 :=].]|eR".
0

—
(=3

It is simple to check that

5
‘H

T gl
nt
n+1 n+1
Ste=|[ : [ erR” St=| : | er".
2 n—1
Ayl Atl
n
n+1 n+1

We also introduce the following vectors:
drsm=(c,0---,0) R dgm=(0,---,0,c) eR"

and
d, = (d,d,--- ,d) € R".
In practice, n =m — 1 or 2n — 1.

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

We will see below that a circulant matrix will play an important role in our proof. We recall the

definition of a circulant matrix.
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A circulant matrix X of dimension k x k has the form

Zo z1 o Te—2 Tg—1
Tk—1 To T1 o Tk-2
... l‘ _ .’L‘ l‘
X = botooo : (4.15)
Z1
xl e ... xk’*l :L’O
or equivalently, if z;;,¢,7 = 1,--- , k are the entries of the matrix X, then

Tij = T1|i—j|+1-
In particular, in order to determine a circulant matrix it is sufficient to know the entries of the first
row. By
XZCiI‘{([Eo,$1,--~ ,Jik_l)}, (416)
we denote the above mentioned circulant matrix. For the properties of circulant matrices, we refer the
reader to [15]. The eigenvalues of a circulant matrix X are given by the explicit formula

77522331622821’ 820,"‘7k_1 (4.17)

1
27\'5,L-
ek
1 27s i
E,=k"2 er (4.18)
e ZEi(k—1)
Observe that any circulant matrix X can be diagonalized as
X = PDxP?,
where Dy is the diagonal matrix
DX = diag(n07nlv T 777k71)
and P is the k x k matrix defined by
P = (Ey|Eq1| - |Eg—1). (4.19)

From this point on, we begin to analyze the components of the matrix M, A, B,C, H,, for which
explicit expressions are given in Section 8. First, observe that M is a symmetric matrix.

4.1. Analysis of H, and proof of part (b) of Proposition 4.1. We first analyze the kernels of
the matrix H,.
First, we denote
Wy (0) _ 0
Uy(€)  2sinf

where ¥y is defined in (8.2).
By dividing both sides of the equation H,(c,) = 0 by W5(¢), we obtain that

H,(cy) =0,

7 — _Ha
where H, = T2 (0
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From the computations regarding H,, in Section 7, we know that H, has the form

Hyq 0 H,p» 0
r7 0 Ha,S Ha,4 Ha,5

Ho = ¢ t +0(e™%),
Ha,2 Ha,4 Ha,ﬁ 0
0 HEL,5 0 Ha,7
where
1 % 2 _ by
1 sin ¢ 2sin 7 0 0 2sin £
52 1 52 52 0 O
2sin 7 sin - 2sin 7
0 0
Ha,l —
d2 1 6o 5o
0 0 2sin 7 sin T 2sin 7
02 0 0 D) _ 5
2sin 2sin sin -
]-L,mfl Omfl e Om,1
Omfl 1L m—1 " Om,1
Ha72: .7.. )
Om—1 o o deme1 /ey ki xk
s
sin T 1 0 0
0 sif]21 -1 0 0
k
Ha,3 - ,
0
5
0 22 — 1
sin T Exk
]-R,mfl Omfl Om,1
Om—1  1rm—1 0,1
Hoz,4 = . ’ o ,
0,1 - - ].R,m—l [(m—1)xk]xk
3 s
—(mmz)ron— 02,1 (s )R2n1
~(zip)ranc ~(ziiy) 0
Hys = 2sin £ /R,2n—1 2sin £ /L,2n—1 2n—1
J )
O2,—1 *(ZSiﬁ%)R,Qn—l 7(728;1%)L,2n—1
T -1 0 Ce 0
Ha,ﬁ = 0 “Am—1 0 ,
_TnL—l [(m—1)xk]2
and
92
QSin%Tanl 0 0
Hy7= 0 QSin%TQ"—l 0

2sin 72 S o0 1y

We want to analyze the eigenvalues of the matrix H,. Thus, we assume that

H,(a) =0.

17

(4.20)

[(2n—1)xk]xk

(4.21)
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First, by considering the third row of the matrix H, written in the form (4.20), one can obtain that
aj
0
(—Tn—1+0(e™*))(ay, i) + : =0(e *)a,
0
Qg1
and _
a’:n—i—l
0
(Ton-1+O(e™%))(ay,) — : =0(e *)a,.
0
i1
aﬂ_ﬂ
Here, a, corresponds to the unknown variables around the vertices of the inner and outer polygons.
In other words, these equations imply that once a, is fixed, the other unknown variables will be
determined. From the above two equations, and using (4.13), one has that for ¢ =0,--- ,k — 1,

ab = % ((m —1al + aﬁnﬂ) + O(e¢)a,
(4.22)
ap, = o (@t + (m = 1ag, 1) +O(e™)a,,
and . . o 1
Uppyo = %((271 — Dag, 41 + aﬁﬂ) + O0(e™*)a, w23)
afn+2n = %(afnﬂ + (2n — 1)aﬁ:{i1) + O(e~tHa,,.

Next, we consider the first and second rows of the matrix H, in (4.20). We can obtain that

4 s
aj az "
Ha,l . + . = O(e )a'u
a’f_l ag_l
and
0O _ _62 (,0 k—1
a(r)n-l-l Om 2sin T (am+2 + a’m-‘rQn)
1 d2 1 0
a’m+1 Ay — 2sin T (am+2 - am+2n) —er
Hy 3 . + _ = 0(e™*a,.
k—1 k—1 So .kfl k—2
i1 Ay~ — 2sin £ (am+2 - am+2n)

By using the above two equations (4.22) and (4.23) for aj,al,,a’, .4, al, 5., the above two equations

are reduced to a 2k system of 2k unknowns ai,a, , for i =0,--- k- 1:
ay
~ A1k—1 —& r7 Ijla,l ﬁa,Q )
H, =0(e a,, where H, = ~ ~ 4.24
L, ™) ( Hio Hag 424
ke
a’m+11

and ﬁa’i are all circulant matrices with
_l B o 0o 0 0o

I ) .E77"'77 P
m  sin % 2smk 2s1nk

I:Ia’l = Clr{(

)} (4.25)
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- 1
Hoz,? - CH‘{(E7O ao)}a (426)
~ . 1 o 02 0o
H, 3= Cir{(—— ,— - ,0,---,0,— - . 4.27
3 ir{( m + 2nsin% 4n sm% 4nsm%)} ( )

From the above analysis, equation (4.21) is equivalent to equation (4.24) above for the 2k variables a,,.
Next, we begin to analyze the matrix H,,.

Eigenvalues of Ha,ﬂ A direct application of (4.17) gives that the eigenvalues of the matrix ]EI(M are
given by

hii = ——5(cos i 1) —— (4.28)

fori=0,---,k—1.
Eigenvalues of H, 3: The eigenvalues of the matrix H, 3 are given by

02 2mi 1
hs; = 2—2cos—)— —. 4.2
% 4nsin%( €08 k ) m (4.29)
fori=0,---,k—1.
Define
P 0
P = ( 0 P ) . (4.30)
Then, simple algebra gives that
_ Dy Dy ¢
hor(B )

where

. . 1
Dl :dlag(hl,()a'” 7h1,k—l)a D2 :dlag(ia"' 77)7
m m

Ds = diag(hs,0,- -, hgk—1)

(M

m

We consider the matrix

The determinant of D; is given by

20, . omi,  sin® % 1
Zsin® —(1 - )14+ 0(5)). (4.32)
k sin® 7 14
One can check that Det(D;) = 0 for i = 0,1,k — 1, and | Det(D;)| > £ for 2 <i < k —2.

From the above analysis, one can see that the matrix H, has at most three kernels, and other than

zero eigenvalues the eigenvalues will have a lower bound of @QT for some 7 > 0. Moreover, one can check

directly that wy, ws, wg are in the kernels of H,, and so one can obtain part (b) of Proposition 4.1.

4.2. Analysis of the matrix M; and proof of part (a) of Proposition 4.1. First, we denote
[y A Y
1= \:[/1(8) 1

where Uy is defined in (8.1), and we introduce the following notations:

72\111(6) (4.33)

Wa(t) = ZH0(0), ()

and

= (4.34)
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for 01,09,03 > 0 positive constants. In fact, from (8.5) one can obtain that o5 = (d—é)*l. By the

computation in Section 8, we know that M; can be written in the following form:

AL, 0 A, 0 BL, 0 0 0

0 A3 A%, A3, 0 0 0 B
At Ai’; Al, 0 0 0 0 0
_ 0 A% o0 A% 0 By 0 0
Mi=| pie 0" o o ey 0 ¢y o | (4.35)
0 0 0 By 0 C} C} Ch
0 0 0 0 Cy ¢y cy oo
0o BYY 0o 0o 0o C¥ o %

where Al,, A3, are k x k circulant matrices:

Al = Cir{<A%1,07A%1,1a07' ,0, A11 k—1)}s

(03 . ™
A%l,o =—-1-— SE (SIHQE—’_TQ cos? E)’
o3 .o T g2 4
A%ll *Allk 1= 725111%(78111 %4’7 052 E)v
. g3 . o T g9 o T
A3 = Cir{(-1 sin® — + — —-),0,---,0)},
b= Ol o (in T G e 1).0,,0))
1rm—1 Opm—1 -+ Opq
. Op—1 1pm—1 -+ Op_y
Ay = : .. .. : ’
01 o et sy ks
1R,m—1 Om—1 01
2 Om—l ]-R,m—l e Om—l
A12 == : .. .. : ’
0pm—1 o Irma [(m—1)xk]xk
%L,znq 02,1 T _%R,znq
a. ag
5 ~ S Rom-1 2 Lon1 02n—1
12 = . . ’
O2,—1 g - 02n—1
g,
02,1 23R2n 1 2 rLon-1 [(2n—1)x k] xk
T 0 0
Als = 0 Tam—1 " 0 ;
T [(m—1)xk]?
2s1n T2n 1 0 0
A2, = 0 Tl 0
=T
Zoim f L2n-1 [(2n—1)x k]2

For the matrix B, we have that B}, is a k x k circulant matrix:

02

(1+2)),

s
03008 1
2

™
03 COS

14 22
2 ( + )70’ i

B%l = CII‘{(O,
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17051 02,1 —1Rr2n—1
. ogo3cosT | “lran-1 —lron-a O2,—1
Bia = 20sin T ’
k 0251 02,1
02,1 —1ron—1 —1p2n—1 [(2n—1)x K] xk
and
1r0n-1 02,1 1ron—1
s
plt _ 03C05 lron—1 1lr2n-1 02,1
21 — P T
2sin g 0251 02,1
02,1 lron—1 1r2n—1 (2n—1)x K] xk

The matrices Ci,,C}; are k x k circulant matrices:
1 ; 1 1 1
Ci = Clr{(cn,OaCn,pO T 707011,k—1)}7

1 01 (0F:3 o T 02 . o T
Ciio=——>— —=(cos” — 4+ —sin” —),
’ Y4 sin 7 k Y4 k
g3 271' o9 . 271'
cl, =0y, = —2—(cos® = — —=gin? =
11,1 11,k—1 QSHI%( i 7 k)a

. o o ™
Cc3 = Cnr{(—71 + smgk (C082 T + 72 sin? E) 0,---,0)}.

Gt Ot O
o1
Ccl Om—1 £ Lm—1 071
12 =
0, ... oL
m-1 CLm=1 / [(m-1)xk]xk
UTIR,mfl Om—1 Om—1
o1
02 _ Om—l ? Rom—1 Om—l
12 — )
0. ... oL
m—1 CRm=1 / [(m—1)xk]xk
(27,201 0251 —(%27®)Rr2n-1
5 —(2P)r2n-1 (%ZP)L2n—1 02,1
012 = . . s
0251 . . 02,1
__ (0203 0203
02n—1 ( 270 )R,Qn—l ( 27 )L,Qn—l [(2n—1)><k]><k
S 0 0
1 _ 0 -, 0
013 — 7 tm—1 ,
_a1
7 m—1 [(m—1)xk]2
and
QEsmez" 1 0 0
0203
0123 = 0 ZZsin%Tml*l 0
%5 Ton—1

2ésmf [(2n71)><k]2

The strategy for dealing with the matrix M; is similar to that for H,. The main idea is that once
the variables for the inner and outer vertices are fixed, the other variables will be determined. Thus,
we will reduce the problem M;(a) = 0 to a 4k x 4k matrix equation for the variables around the 2k

vertices.
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First, by considering the third and fourth rows of Mj(a) = 0 in the form (4.35), one can obtain that

i
a ain
2,1 0
"y i . —&
(=T1 + O(e™) as 1 + : = 0(e %Ha,,
i :
a’mfl,l 0
al ;
m,1 al
m—+1,1
Arny2,1 Am+1,1 Apt1,2
3
Am43,1 0 0
. . . ™ . —&
Ton_1 : + sin T : + cos T : =0(e & )ay,.
i
Am42n—1,1 _91 _ 0
1 K3 1
Am+2n,1 Qi1 Apm+1,2

From the seventh and eighth rows of the matrix M; in (4.35), we can obtain that

i i
a2 ai o
K3
as o 0
—¢0 . . —¢t
(—Tm,1 +O(e ¢ ) : + : = 0(6 ¢ )avv
i
Ap—1,2 0
o o
m,2 m+1,2
a_m-ﬁ—27 a’m+1,2 am-i—l,l
1
Ayt 3.2 0 0
. ) T _ _
Ton_1 : + sin T : —cos : =0(e %Ha,.
i
Am42n-1,2 _21 _ 0
1 1 1
Am42n,2 “Opy1,2 Amt1,1

: i i C
From the above four systems, using (4.13) one can solve ay, ;,ay, ; in terms ofa, fori=0,---

7 = 1,2. In particular, we can obtain that

ab | = L((m— Daj, +ab, 1)+ O(e~*)a,,

m
Ay = %(ai,l +(m—1)al,1,)+ O(e~*a,,
sin%

Uiz = = (20 = a1 1 = Gy )
cos T ; i1 _
5 ((2n = D)aj, 15 + ap i1 5) + Oe )y

ain,+2n,1 = *:I;nz (a2n+1,1 —(2n— 1)”;:11,1)
— S (Al 10+ (20— 1)037111,2) +0(e %)ay,,

ab oy = L((m— Daj o+ ab,10) + O(e=*)a,,

Uhpo = %(ab + (m —1)al, 1) + O(e~%Ya,,
and
a’rin,+2,2 = _SISnF ((2n — 1)a’in+1,2 - aﬁim)

;T
CcOos %

+55E((2n = Dal, +abtly 1) +0(e$)a,

i — _sing . g i+1
Am42n,2 = ~ T3, (am,+1,2 —(2n— 1)am+1,2)
cos T
k

+=5 (a;z+1,1 + (2n — 1)‘1:;311,1) +O0(e *)a,.

(4.36)

(4.37)

(4.38)

(4.41)

(4.42)

(4.43)



NONDEGENERACY OF NONRADIAL SOLUTIONS 23

From the first and second rows of the equation in (4.35), one can obtain that

1 k—1
a¥ a0 A1 — 019
1 1,’1 21 o308 T o9 afg —af, Y
Ay : + : — (1+ 7) = O(e *")a,, (4.44)
k—1 k—1 :
1,1 2,1 0 _ k=2
a1o — a1 9
0 k—1
a0 a0 42,1 — mton1
mb et U1 = Oppon 1
. 03 m—+2, m—+2n,
A% : + +2 . (4.45)
: : 5
k—1 k—1 :
Apmt11 A1 k=1 k=2
Upt2.1 — Gpt2n,1
0 k—1
a’qn—Q—Q,Q + am+2n,2
0903¢c08 T | Gmi2,2 T Gmion2 O(e—)
—— . =0(e a,.
20sin T : v
k—1 k—2
Qo9 T Gy fon o
From the fifth and sixth rows of (4.35), one can obtain that
1 k—1
al, ad, a1 — a1
1 ' c1 7 03C08 T o aiy —af, Y
Ciy +— - 1+-—=) =0(e *"a,, (4.46)
/ 2 /
k—1 k—1
ay o g9 0o k-2
ar; —ay;
0 k—1
Gyt 9 ay, 5 U422 — Amton,2
3 m+ ' 01 ”.7«7 09203 a}n+2,2 - a’m+2n,2
CYy : + — : + . (4.47)
k-1 ¢ k-1 2t :
Upt1,2 A2 kL k2
m+2,2 m+2n,2
0 k—1
am,+2,l + am+2n,1
™ al +a?
03 COS m+2,1 m—+2n,1 _
oy . = 0(e™*)a,
2sin ¢

k—1 k—2
a‘m+2,1 + am+2n,1

Using the equations for aj ;,al, ; and al, o ;, a5, 4o, ; (4.40)-(4.43), the above system (4.44)-(4.47) can

be reduced to 4k equations in terms of 4k unknowns a?,l, e

k—1 0
yA11 5 g1, 70

k—1 0
y Apy1,15 1,257 7"

k—1

aa1’2 )
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k—1

0 .
and Ap41,25" " 5 Ay 2°

Fin Fi2 Fis
Fiy Fy O
Fly 0 Fs3
0 Fjy Fyy

where Fj; are k x k circulant matrices given below:

The matrix Fy;. Fy; is defined by

=0(e %)a,

Fi1 = Cir{(Fi1,0, F11,1,0,--- ,0, F11 5-1)},

where )
L9 Oz o
Fiio=——— 2422 —
11,0 m  sing k + / €08 k)
and o T O T
Fiig = Fiijp1 = s (—sin? -~ + 2 cos? ).
11,1 k=1 = 5 sin” - + 7 08 k)
Eigenvalues of Fi;. For any [ =0,--- ,k — 1, the eigenvalues of F}; are
1 03 ,. 9T 02 oT o3 . o 02
fi1 = — sin%(sm - + 7 Cos )+ sin%( sin” + 7 Cos
The matrix Fij;. The matrix F5 is defined by
1
5 = Cir{(—,0,---,0
12 1r{(m )}
Eigenvalues of Fi5. For any [ =0,--- ,k — 1, the eigenvalues of F}, are
1
fi20 = —.
m

The matrix Fj3. The matrix Fi3 is defined by
Fi3 = Cir{(0, F13,1,0,---,0, F134-1)},

where Tr Bl
03 COS ¢ op) 03 COS 7 o9
Fisg= 27k (14 ), Fuggoy = - 22k (14+ 2),
13,1 B (+€), 13,k—1 5 (—1—4)
Eigenvalues of Fi3. For any [ =0,--- ,k — 1, the eigenvalues of Fj, are
21
fizg =ios(1+ 2)Cos % sin =2

The matrix Fy;. The matrix Fys is defined by
Fyy = Cir{(F2,0, F22,1,0,---,0, Fag x—1)},

where
1

Forp=——+
m

2nsin T

. o T

o
n°—+ —

k

9 T

cos E)

(4.48)

(4.49)

(4.50)
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. 9T 02 27r)

and
03
F = F — = — S —).
21 =Rkl T Gn e (i 3 = 7 7 g
Eigenvalues of Fby. For any [ =0, -+ ,k — 1, the eigenvalues of Fy, are
o3 L 9T O 9 T o3 . 9T O s 2w
=—— — 4+ —= — — - — = — — 4.51
foz m+2nsin%( t k:Jr / €08 k)+2nsin%(sm k l o8 k)cos k ( )
The matrix F54. The matrix Fyy is defined by
Foy = Cir{(0, F24,1,0, -+ ,0, Faa 1)}
where )
o3sin 7 09 o3sin 7 0
Fou1=— 14+ =), Foup_q1 = 1+ —).
24,1 i ( 7 )s Fhag—1 in ( 7 )
Eigenvalues of Fb,. For any | =0,--- ,k — 1, the eigenvalues of Fy, are
) 21
foay = —%(1 + %) cos % sin %
The matrix F33. The matrix F33 is defined by
Fs3 = Cir{(F33,0,F331,0,--- ,0, F33.5-1)},
where
g1 g3 o T g2 . 9T
F330=——— -+ — -
BO= T T g S s )
and
T Oy . 9T
F —F = 20 T =
BT A T S in (cos™ 3 = 7 sin" )
Eigenvalues of F33. For any [ =0,--- ,k — 1, the eigenvalues of F33 are
0L T8 02T 02 g2 Ty 08 e 02 Ty 20w
Josa = =g G (08 T s ) gy (eos” g sin ) eos o
The matrix F34. The matrix F34 is defined by
. C1
F34 = Cir{(—,0,---,0)}.
34 lr{(mz )}
Eigenvalues of F34. For any [ =0,--- ,k — 1, the eigenvalues of F34 are
_ g
J3a0 = o
The matrix Fyy. The matrix F)yy is defined by
Fyy = Cir{(Fu4,0, F42,1,0,- -+ ,0, Fya p—1)},
where
o1 o3 o O3 . 9T
Fuo=——+-——+ -+ — -
40 = T s O T )
and
g3 2 i g2 . 2 7T
Fuy1=Fyr1=——""— - — = =).
ant k-1 4n sin % (co k 14 St k)
Eigenvalues of Fy,. For any | =0,--- ,k — 1, the eigenvalues of Fy, are
21
92 n2 T I3 ( 2%—%51&%)(;05%.

g3 s
(cos® L+ s 1) — o E
k

44,0 = — :
! mf  2nsin %
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The final part of this section is devoted to the analysis of the matrix

Fyw Fp Fiz 0
FfQ F22 0 F24

F = 4.52
Ff3 0 F33 F3y ( )
0 Fz’f4 F§4 Fyq
Define
P 0 0 O
O P 0 O
Pi=119 0 prP o |
0O 00 0 P

where P is defined in (4.19). Simple algebra gives that

DF11 DF12 DF13 0

DFfZ DF22 0 DF24

DFf3 0 DF33 DF34
0 DF2t4 DF§4 DF44

Here, Dx denotes the diagonal matrix of dimension k x k& whose entries are given by the eigenvalues
of X.
Let us now introduce the following matrix:

F=7P Pi.

Djy 0 - 0
T I
0 0 Dy,_,
where
fii, fizg  fizg O
D, — fize  foou 0 foas
fi —f13,i 0 f33i  faa,
0 —foai f3ai faay
By direct calculation, one can check that for j = 0,
Det(Dy,) =0,

and Dy, has only one kernel. The other eigenvalues of Dy, will satisfy |Ag ;| > % for some constant
C,t>0.
For j > 1, we have that

Det(ij) = u )

ido +a*(1+dy)(1+do) —a(l
d2)2(a+ (a—1)ds)(a(b; — 1

1
= — J O(=
20§a3b§.’(1 a,)[( ;= 1)2 + COdQ]( (E) 3
where '
a :sin2%7 b = smz%, di = %’ dy = %.

From the above computation, we know that for j = 1,k — 1, Det(Dy,) = 0, the matrix Dy, has one
kernel, and all the other eigenvalues have a lower bound ZQT. For j # 0,1,k — 1, the matrix Dy, is
non-degenerate, and the eigenvalues have a lower bound ZQT.

From the above analysis, we know that M; has three kernels. Furthermore, the other eigenvalues of
M, have a lower bound %. Moreover, we can check that wi, wo, w3 are in the kernels of M;. Thus,
we have proved part (a) of Proposition 4.1.
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5. PROOF OF (3.10)
First, we have the following a priori estimate on the linear equation.

Proposition 5.1. Assume that h is a function such that |h||. < co, where the norm || - || is defined
in (2.14). Let ¢ be a solution of the following equation:

L(¢) = h, /¢Z§’a:0fori:0,--~ k—1,7=1,--- . m+2n,aa=1,---,N. (5.1)

Then, for large ¢, there exists a constant C' independent of ¢ such that ¢ satisfies the following estimate:
¢l < Cllh]l.. (5.2)

Proof. This can be proved by contradiction. Assume that there exists £,, — oo and ¢y, h,, correspond-
ing to (5.1) such that

[#nlls =1, [|hnll« — 0 as n — oo. (5.3)

In the following, we omit the index n in the absence of ambiguity. Following the argument in
Proposition 3.1 in [19], one can obtain that there exists R}y, such that

191l Lo (B(REy;.00) 2 C > 0, (5.4)

for some fixed C' and large p. By employing elliptic estimates together with the Ascoli-Arzela theorem,
we can find a sequence R} y; such that ¢(z + Riy;) converges to ¢oo, which is a solution of

Adoo — Poo +pwp_1¢oo =0,

and satisfies the following orthogonality conditions:
0
/(Zsooiw :O7 a:17 7]\7_
0x4

Thus, ¢oo = 0. This contradicts (5.4), and so this completes the proof.

Because
. B B , _ e
L(Z; o) = p(lul~" —wP~ (& = Ryy))) Zj o + Ole™ =),
one can easily verify that
ey

IL(Z} )« < Ce™ (5.5)

for some £ that is independent of £, which is assumed to be large, where we have applied the estimate
(2.18).
Thus, from Proposition 5.1 and the estimate (5.5), we obtain that

1te

N
letlle < Cem =Y Jleall. (5.6)
a=1

6. PROOF OF PROPOSITION 3.1

Let us consider (3.11), with 8 = 1. That is,

N
an~/Zazl = —/gaj‘zl. (6.1)
a=1

L
7%. A straightforward computation gives that |fi| < C(2n + m) X
T

||t |l« < £7]|pt |4, for a certain constant 7 that is independent of ¢, which is assumed to be large,

First, we write f; =
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where we have assumed that m,n satisfy (2.9). Second, by direct computation we find for j =
1,---,m+1 that

) 0 ) 1
/Z;}lzl a—ulR Vw(z — Ryy;)dx + O(e_%z)

du
= —R,;-Vw(z—Rly
/| o BT = Rl

ou
+/ 3 —R,; - Vw(zr — Rjy;)dz + O(e” )
RN B (Rkyj) 1

= cosb; — Qdaj + O e_(1+2§4)z .
&E
1

Similarly, one can obtain that

) 0 . 1
/Zé’,zzl = [ gu R Vule — Rigy)de + 0@ )
= sin#f; / )2dx + O(e (H&)ZL
8 1
and fora=3,--- | N,
i ou 0 ;
/Zj a1 = Tm%w( — Rpy;) =0,

by the evenness of u in z,,.
Moreover, for j = m +2,--- ,m + 2n we have that

i ow _asor
[ Zam = —sn0i+ D) [(27+ 0@,

[ Zian = costo4 ) [(527 + 0 ),

/Z;)azlzo
fora=3,---,N.

A direct consequence of the above calculation is that

and

cosy, sing
COSy, sing
cos(fo) sin(fp)
N : :
Z Cor /Za21 o cos(fx-1) tea sin(fx_1)
a=1 .
—sin(fo + §) cos(fo + I)
—sin(fo + ) cos(fo + f)
C1
+o(e | |,
cN

where £ is a linear function whose coefficients are uniformly bounded in ¢ as £ to co. Thus, (3.12)
follows straightforwardly. The proofs of (3.13) to (3.17) are similar, and left to the reader.
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7. PROOF OF PROPOSITION 3.2

In this section, we prove Proposition 3.2. A key ingredient in the proof is the estimates on the right
hand side of (3.18). We have the following result.

Proposition 7.1. There exist positive constants C' and & such that for o = 1,--- N, it holds that
_1te
Irall < Ce™ =Yl (7.1)
for any sufficiently large £.

Proof. Recall that

ro=| J L((pL)Z{“/;;

Then, the estimate follows from
| [ Loz < o E
To prove the above estimate, we fix, for example j = 1,7 = 0,a = 3, and we write
/L(SOL)Z?,:s = /L(Z?,:%)‘PL

= [P R

8333 k
_ _ ow(x — _14¢
= [t - P ol
0 — 1
< [ - 220 T w2 + 0l F oot
z€lly,

_1+€
< Ce™ F |,

for some £ > 0 that is independent of £, which is assumed to be large, where we have used the estimate
for ¢ in (2.18), i.e.,

1te
2 E.

o]l < Ce™

Thus, we have proved the estimate for « = 3. The other cases can be treated similarly.

We have now the tools for the following proof.
Proof of Proposition 3.2. By Proposition 4.1, we need only show the following orthogonality

conditions:
ry _ rp . _ rp . _
(r2 )-w1_<r2 ) W2—<r2 ) ws =0 (7.2)

Iy W4 =Tq W5 ="q wg=0. (7.3)

and
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First, recall that L(z;) = 0. Then, we have that

/L(Zl)%7L = /L(@L)Zl =0.

This gives us precisely the first orthogonality condition in (7.2). Similarly, from L(z3) = 0 one can

obtain that
/L(ZQ)QDL = /L(Lpl)zg =0.

This gives us precisely the second orthogonality condition in (7.2).
For « =3,---, N, it follows from L(z,) = 0 that

[ pet = [ L) =0,

This gives us precisely the first orthogonality condition in (7.3).
Second, let us recall that

N
L(‘F’J—) = - Z Co L(Zy). (7.4)

Thus, the function  — L(¢*)(z) is invariant under a rotation by the angle 2% in the (z1,22) plane.

Therefore, we can obtain that
k—1 m+1 m-+2n
SO [Lehlmlzi+ 3 [ Lt Ry wiz), - B -ei2Z)) =
i=0 j=1 j=m+2
This gives us the third orthogonality condition in (7.2).
For a =3, -+ N, we can obtain that
k—12m+n
>3 [HeZ iy e =0
i=0 j=1

and
k—12m+n

> /L(SDL)Z},Q iy - €2 = 0.
i=0 j=1
These give the final two orthogonality conditions in (7.3).
By combining the results of Proposition 4.1 and the a priori estimates in (7.1), we obtain the proof
of Proposition 3.2.

8. SOME USEFUL COMPUTATIONS

In this section, we compute the entries of the matrices A, B, C, and H, for « =3,--- | N.
We first introduce the following useful functions:
U, (0) = /div(wp(:v)e)div(w(x — le)e)dx, (8.1)
Uy (L) = /div(wp(x)eJ‘)div(w(x — le)et)dx, (8.2)

where e is any unit vector. It is simple to check that this definition is independent of the choice of the
unit vector e. It is known that

N—1 ].
Wi(€) = O pae™ ¢ T (14 0(4)) (8.3)
and

1
) (5.9

where Cy p,; > 0 are constants that depend only on p and N. See, for example, [19, 18] for details.

Uy(l) = Cypoe 072 (14 O(
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In fact, one can see from the definitions of ¥; and ¥ that

™ _dl

U (£) = 2sin k\If’l(f)@ (8.5)
By these two definitions, one can easily obtain that
/pwpfla -Vw(z)b - Vw(z —le) = (a-e)(b-e)¥;({) + (a-eb)(b-et)Uy(l).
(8.6)

Computation of A.

Jr@nae = [plup -y g =0y
= p(p—l)/wp_Z(x—yl)(¢+ Z w(x—z))(%;yl))?
€I,
+  O(e” (198,

where II,, denotes the set of closest neighbors of y; of II defined in (2.3). Recall that ¢ solves the
following equation:

Ap—d+plUP ¢+ E+ N(¢) =0, (8.7)
where
E=AU-U+|UP'U
and
N(¢)=|U+[P~' (U +¢) = [UP~IU = p|lU P~ 0.

Hence, one has that

po—1) [urrp 2=y,

= [ oo = )l )

= — /pwpfl(x _ yl)aixl(dj%x_lyl))

— 2 —

= —/Pw”*l(:ﬁ — yl)%ﬂ% — [ pw (z - yl)‘lsw

200(z —
= [0~ —w= e =)o+ B4 N )

1
_ Pw(z —y1) —(14e)e
_/Eax%-i-O(e o5
_ /(\U|p*1U —wP(z — yl))w + O(e= (1400
Oz

= [t a2 wle - )T o0,

O0x?
z€Ily, 1
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Taking this into account, we have that

[raos = -1 [wr (Y -ty

z€lly,
2 —
b [ (X wle— ) ooy
z€Ily, 1
= 9 Pl _ M _ (1+€)¢
= / B, (pw?™ " (z — y1) s )Ze; w(x —z)) +O(e” )
- ow(x — y1) ow(z — 2) B
= - P (g — (1+&)¢
P/w (r —y1) o ZEEH: o )+ O(e ).

v (8.6), we can obtain that
/L(Zga)zgadx = [Ty (€) + 2(T, (£) sin? % + Wy (£) cos? by)].
Next, we consider

0 —
[uznz, = [l —per - ) 2R Yute - Rl

= /pwpil(l' — R’iyl)%Rk VU/(I’ - Rkyl) + O( (1+6¢ )

= —sin? %\Ill(f) + cos? %\112((7) + O(ef(l+£)£).

Similarly, one can obtain that

/L(Z?J)fol = —sin® %‘1’1@) + cos? %\Ifz(é) + O(e~(11808),

/ L(Z0,)Z], = O(e” "9 for (i, 5) # (1,0),(1,1), (1,k — 1), (2,0).
Another observation is that
/L(ZfJ)ZJt‘,l = /L(Z21)Z;1S7

where we use the notation Zt 1'; = Zk+t Sift—s<0.
Moreover, for i > 2, it hOldb that

—20 1 (£) + O(e~ 1+ if j = j s =t,i < m,

T () +O0(e 1+ if j=i—Tlorit+1,s=ti<m,

20 (0) + O(e= (Y if = j s =t, m+2<1i<2n+m,

T (0)+0(e O if j=i—1ori+1l,s=t m+2<i<2n+m,

S t
/L(zi,l)zj,l ) [ (0) — 20, (D) sin? T + () cos? T)] + O(e= (190
ifi,j=m+1s=t,

Wy (0)sin T + O(e= MO if (1,5) = (m+1,m +2),s = t,

—Uy () sin T + O(e=HO) if (4,5) = (m+1,m+2n),t =s— 1,

O(e~(1+98)  otherwise .
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Computation of C: Similarly, we have that

/L(Z?,z)Z?,z = *p/wp’l(fv*yl)aw(xfyl) > awg;; Z))+O(e*(1+£>l)

6.2?2
z€Ily,

- [\112(5) + 2(\1/1(2) cos? % + Wy (7) sin %)} + O(e-(1+01)

and
Wy (£) cos® T — Wa(f) sin® T 4 O(e~119)

i if =(1,1) or (1,k—1),
[uzz, - G =M erbE=D gy
O(e= (1484 otherwise.
Furthermore, for i > 2 one can obtain that

—2Wy () + O(e~HOY) if § = j s =t,i < m,

To(l) + O(e MG if j=i—lori41,s=ti<m,
20y () + O(e= O if i = j,s =t, m+2<i<2n+m,

To(l) +O(e= O if j=i—Torit+1,s=t m+2<i<2n+m,

s t _
/ LZi2)Z50 = _wy(t) — 20w, (2) cos? T + Wy(?) sin® )] + O(c=(+6)%)
ifi,j=m+1,s=t,

Uy(f)sin F + O(e O if (i,5) = (m+1,m+2),s =t,

—Wy(0)sin T + O(e™ A+OL) i (4,5) = (m 4+ 1,m + 2n),t = 5 — 1,

O(e~(+98)  otherwise .

Computation of B: Next, we consider [ L(Z7,)Z}, and [ L(Z},)Z},. First, by the symmetry we
have that

/L(Z?J)Zgz =0
and

_ ow(x —
/L(Z?J)Ziz = /Pwp Yz — Riyl)%Ri’L - Vw(z — Riy)

:Sin%cos%(\lll( ) —l—\I/Q( )) +O( 1+E)Z)

Similarly, we can obtain that

/L(Z?J)ngl = —sin % cos % (\111(5) + \112(5)) +O0(e” (1+8)¢ ),

[ B2 B = [ L2 Zhhs = ~Vali) cos T+ O 179,
and

/L(ZEI)Z;’Q = O(e~ (9% otherwise .
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Similarly, we have the following expansion for f L(Z )Z 4
—sin T cos T (‘111(2) + \112(?)) +O0>e MO if i j=1t=5—1,
ﬁn%m%%@ﬂ@+@ﬂ))+0( OO i 4 = 1, = s + 1,

/L( VA
Uy (f)cos T +O(e=I+O4) if (i,5) = (m+2,m+1),s =t or
(,))=C2n+m,m+1),t=s+1,

O(e~(1494)  otherwise .

Computation of H,: For the matrix H, for a = 3,--- , N, the computation is simpler, we directly

employ (8.6) to obtain the following expansion:

(1]
2]

(3]
(4]

(5]
[6]
[7]
(8]
(9]
(10]
(11]
(12]

(13]

—(W20) +202(D)) + OO if (i, ) = (1,1),5 =1,
Wy () + O(e A+ if (4,5) = (1,1),t =s — L or s + 1,
(2\1/2(5) Wy )) +O(eO+OY) if (i,4) = (m+1,m+1),s = t,
/L@ﬁJZ%f* —2Uy(0) + O(e~HO) if § = j s =t,2 < i < m,
Uy()+0(e O if j=i+1lori—1,s=1t2<i<m,
2Ws(0) + O(e= (Y if § = j s =t m+2<i<m+2n,

Uy(£) +0(e MY if j=i+lori—1,s=t,m+2<i<m+2n,

O(e~(1498)  otherwise.
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