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Abstract. We prove that the non-radial sign-changing solutions to the nonlinear Schrödinger equa-
tion

∆u− u + |u|p−1u = 0 in RN , u ∈ H1(RN )

constructed by Musso, Pacard, and Wei [19] are non-degenerate. This provides the first example

of a non-degenerate sign-changing solution to the above nonlinear Schrödinger equation with finite
energy.

1. Introduction and statement of main results

In this paper, we consider the nonlinear semilinear elliptic equation

∆u− u+ |u|p−1u = 0 in RN , u ∈ H1(RN ), (1.1)

where p satisfies 1 < p < ∞ if N = 2, and 1 < p < N+2
N−2 if N ≥ 3. Equation (1.1) arises in

various models in mathematical physics and biology. In particular, the study of standing waves for the
nonlinear Klein-Gordon or Schrödinger equations reduces to (1.1). We refer the reader to the papers
of Berestycki and Lions [2], [3], and Bartsch and Willem [4] for further references and motivation.

Denote the set of non-zero finite energy solutions to (1.1) by

Σ := {u ∈ H1(RN ) : ∆u− u+ |u|p−1u = 0}.
If u ∈ Σ and u > 0, then the classical result of Gidas, Ni, and Nirenberg [11] asserts that u is

radially symmetric. Indeed, it is known ([12, 16]) that there exists a unique radially symmetric (in
fact radially decreasing) positive solution for

∆w − w + wp = 0 in RN ,
which tends to 0 as |x| tends to ∞. All of the other positive solutions to (1.1) belonging to Σ are
translations of w.

Let L0 be the linearized operator around w, defined by

L0 := ∆− 1 + pwp−1 . (1.2)

Then, the natural invariance of problem (1.1) under the group of isometries in RN reduces to the fact
that the functions

∂x1w, . . . , ∂xNw (1.3)

naturally belong to the kernel of the operator L0. The solution w is non-degenerate in the sense that
the L∞-kernel of the operator L0 is spanned by the functions given in (1.3). For further details, see
[21].

No other example is known of a non-degenerate solution to (1.1) in Σ. The purpose of this paper is
to provide the first example other than w of a non-degenerate solution to (1.1) in Σ.

Concerning the existence of other solutions to (1.1) in Σ, several results are available in the literature.
Berestycki and Lions [2], [3] and Struwe [23] have demonstrated the existence of infinitely many radially
symmetric sign-changing solutions. The proofs of these results are based on the use of variational
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methods. The existence of non-radial sign-changing solutions was first proved by Bartsch and Willem
[4] in dimensions N = 4 and N ≥ 6. In this case, the result is also proved by means of variational
methods, and the key idea is to look for solutions that are invariant under the action of O(2)×O(N−2),
in order to recover a certain compactness property. Subsequently, the result was generalized by Lorca
and Ubilla [17] to the N = 5 dimensional case. Besides the symmetry property of the solutions,
the mentioned results do not provide any other qualitative properties of the solutions. A different
approach, and a different construction, have been developed in [19] and [1], where new types of non-
radial sign-changing finite-energy solutions to (1.1) are constructed, and a detailed description of these
solutions is provided.

The main purpose of this paper is to prove that the solutions constructed by Musso, Pacard, and
Wei in [19] are rigid, up to transformations of the equation. In other words, these solutions are
non-degenerate, in the sense of the definition introduced by Duyckaerts, Kenig, and Merle [9].

To explain the meaning of a non-degenerate solution for a given u ∈ Σ, we recall all of the pos-
sible invariance of equation (1.1). We have that equation (1.1) is invariant under the following two
transformations:

(1) (translation): If u ∈ Σ, then u(x+ a) ∈ Σ ∀a ∈ RN ;
(2) (rotation): If u ∈ Σ, then u(Px) ∈ Σ, where P ∈ ON , and ON is the classical orthogonal

group.
If u ∈ Σ, then by

Lu = ∆− 1 + p|u|p−1 (1.4)

we denote the linearized operator around u. We define the null space of Lu as

Zu = {f ∈ H1(RN ) : Luf = 0}. (1.5)

If we denote the group of isometries of H1(RN ) generated by the previous two transformations by
M, then the elements in Zu generated by the family of transformationsM define the following vector
space:

Z̃u = span

{
∂xju, 1 ≤ j ≤ N
(xj∂xk − xk∂xj )u, 1 ≤ j < k ≤ N

}
. (1.6)

A solution u of (1.1) is non-degenerate in the sense of Duyckaerts, Kenig, and Merle [9] if

Zu = Z̃u. (1.7)

As we already mentioned, the only non-degenerate example of u ∈ Σ known so far is the positive
solution w. In fact, in this case

(xj∂xk − xk∂xj )w = 0, ∀ 1 ≤ j < k ≤ N,
and hence

Zw = span
{
∂xjw, 1 ≤ j ≤ N

}
.

The proof of the non-degeneracy of w relies heavily on the radial symmetry of w. For non-radial
solutions, the strategy used to prove non-degeneracy in the radial case is no longer applicable. Thus,
a new strategy is required for non-radially symmetric solutions.

A similar problem has arisen in the study of non-radial sign-changing finite-energy solutions for the
Yamabe type problem

∆u+ |u|
4

N−2u = 0 in RN , u ∈ H1(RN ),

for N ≥ 3. In [20], the second and third authors of the present paper introduced some new ideas
for dealing with non-degeneracy in non-radial sign-changing solutions to the above problem. Indeed,
they successfully analyzed the non-degeneracy of some non-radial solutions to the Yamabe problem
that were previously constructed in [6]. For other constructions, we refer the reader to [7]. In this
paper, we will adopt the idea developed in [20] to analyze the non-degeneracy of the solutions of (1.1)
constructed by Musso, Pacard, and Wei [19].

The main result of this paper can be stated as follows.
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Theorem 1.1. There exists a sequence of non-radial sign-changing solutions to (1.1) with arbitrarily
large energy, and each solution is non-degenerate in the sense of (1.7).

We believe that the non-degeneracy property of the solutions in Theorem 1.1 can be used to obtain
new types of constructions for sign-changing solutions to (1.1), or related problems in bounded domains
with Dirichlet or Neumann boundary conditions. We will address this problem in future work.

This paper is organized as follows. In Section 2, we introduce the solutions constructed by Musso,
Pacard, and Wei in [19]. In Section 3, we sketch the main steps, and present the proof of Theorem
1.1. Sections 4 to 8 are devoted to the proof of properties required for the proof of Theorem 1.1.

2. Description of the solutions

In this section, we describe the solutions u` constructed in [19], and recall some properties that
will be useful later. To provide the description of the solutions, we introduce some notations. The
canonical basis of RN will be denoted by

e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , eN = (0, · · · , 0, 1). (2.1)

Let k be an integer, and assume we are given two positive integers m,n and two positive real numbers
`, ¯̀, which are related by

2 sin
π

k
m` = (2n− 1)¯̀. (2.2)

We shall comment on the possible choices of these parameters later on. Consider the regular polygon
in R2 × {0} ⊂ RN with k edges whose vertices are given by the orbit of the point

y1 =
¯̀

2 sin π
k

e1 ∈ RN

under the action of the group generated by Rk. Here, Rk ∈ O(2)× O(N − 2) is the rotation through
the angle 2π

k in the (x1, x2) plane. By construction, the edges of this polygon have length ¯̀. We refer
to this polygon as the inner polygon. We define the outer polygon to be the regular polygon with k
edges whose vertices are the orbit of the point

ym+1 = y1 +m`e1

under the group generated by Rk. Observe that the distance from ym+1 to the origin is given by

m`+
¯̀

2 sin π
k

, and thanks to (2.2), the edges of the outer polygon have length 2n¯̀.

By construction, the distance between the points y1 and ym+1 is equal to m`, and by yj , for
j = 2, · · · ,m, we denote the evenly distributed points on the segment between these two points.
Namely,

yj = y1 + (j − 1)`e1 for j = 2, · · · ,m.
As mentioned above, the edges of the outer polygon have length 2n¯̀, and we evenly distribute points

yj , j = m+ 2, · · · ,m+ 2n, along this segment. More precisely, if we define

t = − sin
π

k
e1 + cos

π

k
e2 ∈ RN ,

then the points yj are given by

yj = ym+1 + (j −m− 1)¯̀t for j = m+ 2, · · · ,m+ 2n.

We also denote
zh = yj for h = 1, · · · , 2n− 1, where h = j −m− 1.

Let

Π =

k−1⋃
i=0

(
{Rikyj : j = 1, . . . ,m+ 1}

)
∪
(
{Rikzh : h = 1, . . . , 2n− 1}

)
(2.3)

Let us introduce the function w to be the unique solution of the following equation:{
∆u− u+ up = 0, u > 0 in RN
maxx∈RN u(x) = u(0),
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whose existence and properties are obtained in the classical works ([11, 12, 16]).
In [19], the authors constructed solutions of (1.1) that can be viewed as the sum of positive copies

of w centered at the points yj , j = 1, · · · ,m + 1, together with their images by rotations Rik =
Rk ◦ · · ·Rk (composition of Rk, i times) for i = 1, · · · , k − 1, as well as copies of (−1)hw (hence with
the opposite sign) centered at the points zh, h = 1, · · · , 2n − 1 and their images by the rotations Rik
for i = 1, · · · , k − 1. More precisely, the solution can be described as follows:

u(x) ∼ U(x) :=

k−1∑
i=0

(m+1∑
j=1

w(x−Rikyj) +

m+2n∑
j=m+2

(−1)j−m−1w(x−Rikyj)
)
. (2.4)

These solutions admit the following invariance:

u(x) = u(Rx), for R ∈ {I2} ×O(N − 2), (2.5)

and

u(Rkx) = u(x) and u(Γx) = u(x), (2.6)

where Γ ∈ O(2)× I(N − 2) is the symmetry with respect to the hyperplane x2 = 0.
The numbers m,n, `, ¯̀ are related by equation (2.2) and by the following equation:

Ψ(`) = (2 sin
π

k
)Ψ(¯̀), (2.7)

where Ψ(s) is the so-called interaction function which is defined by

Ψ(s) = −
∫
w(x− se)div(wp(x)e)dx, (2.8)

and e ∈ RN is any unit vector. The definition of Ψ is independent of e.
The constraint (2.2) on the parameters m,n, `, ¯̀ is easy to understand: it is to make sure that

an outer polygon is formed. The second constraint (2.7) is not so easy to see. As mentioned in [19],
the relation between ` and ¯̀ can be understood as a balancing condition, which is a consequence of a
conservation law for solutions of (1.1). Alternatively, it can be understood as a condition that ensures
that the approximate solution U is close enough to a genuine solution u of (1.1).

The main theorem in [19] is as follows:

Theorem A. Let k be an integer number with k ≥ 7 and let τ > 0 be a fixed real number. Then,
there exists a positive number `0 > 0 such that for all ` > `0, if ¯̀ is the solution of (2.7), and m,n are
positive integers satisfying (2.2), and

m ≤ `τ , (2.9)

then (1.1) admits a sign-changing solution u` that satisfies the symmetry conditions given in (2.5) and
(2.6). Moreover,

u`(x) = U(x) + φ, (2.10)

where U is defined in (2.4) and φ = o(1)→ 0 as `→∞. The energy of u is finite and can be expanded
as

E(u`) = (2n+m) k E(w) + o(1),

where o(1)→ 0 as `→∞.
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An example of a configuration with k = 7 edges, m = 7 interior points on any radius, n = 4 for
2n− 1 interior points on any edge.

As mentioned in Remark 1.2, [19], (2.9) is a technical condition. Observe that, once ` is fixed large
enough, from (2.7) we see that ¯̀ is a function of ` which can be expanded as

¯̀= `+ ln(2 sin
π

k
) +O(

1

`
),

since −(log Ψ)′(s) = 1 + N−1
2s +O( 1

s2 ). Inserting this information in (2.2), one gets that

2n− 1

m
= 2 sin

π

k

(
1− ln 2(sin

π

k
)`−1 +O(`−2)

)
, as `→∞.

The authors in [19] provide examples of possible choices for sequences of m and n satisfying the above
expansion. For instance: for any integer m one can choose an integer n so that

1 ≤ 2n− 1− 2 sin
π

k
m < 3.

Then, if m is sufficiently large, there exists a unique ` > `0 so that (2.7) and (2.2) are satisfied, and
c1` ≤ m ≤ c2`, for some constants c1, c2. Thus Theorem A. guarantees the existence of a solution of
the form (2.4) for any such integer m.

Equation (1.1) can be rewritten in terms of the function φ in (2.10) as

∆φ− φ+ p|U |p−1φ+ E +N(φ) = 0, (2.11)

where

E = ∆U − U + |U |p−1U (2.12)

and

N(φ) = |U + φ|p−1(U + φ)− |U |p−1U − p|U |p−1φ. (2.13)

One has precise control over the size of the error function E when measured in the following weighted
norm. Let us fix a number −1 < η < 0, and define the weighted norm

‖h‖∗ = sup
x∈RN

|(
∑
y∈Π

eη|x−y|)−1h(x)|, (2.14)
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where
Π = ∪k−1

i=0 {R
i
kyj : j = 1, · · · ,m+ 2n} (2.15)

is the set of the concentration points. In [19], it is proved that there exist `0 > 0 and ξ > 0 such that
for ` > `0, φ satisfies the following estimate (Proposition 4.1 in [19]):

‖φ‖∗ ≤ Ce−
1+ξ
2 `, (2.16)

which gives a considerably smaller bound than U .
We now define the following functions:

πα(x) =
∂

∂xα
φ(x) for α = 1, · · · , N. (2.17)

Then, the function πα can be described as follows.

Proposition 2.1. The function πα satisfies the following estimates:

‖πα‖∗ ≤ Ce−
1+ξ
2 `, (2.18)

for some positive constants C and ξ that are independent of `.

Recall that problem (1.1) is invariant under the two transformations mentioned in Section 1, trans-
lation and rotation. This invariance will be reflected in the element of the kernel of the linearized
operator

L(ψ) := ∆ψ − ψ + p|u`|p−1ψ, (2.19)

which is the linearized equation associated to (1.1) around u`.
From this point on, we will drop the ` in u`, for simplicity. Let us now introduce the following

3N − 3 functions:

zα(x) =
∂

∂xα
u(x), for α = 1, · · · , N, (2.20)

and

zN+1(x) = x1
∂

∂x2
u(x)− x2

∂

∂x1
u(x). (2.21)

Observe that zN+1 = ∂
∂θ [u(Rθx)]|θ=0, where Rθ is the rotation in the x1x2 plane by the angle θ.

Furthermore, for α = 3, · · · , N ,

zN+α−1(x) = x1zα − xαz1, z2N+α−3(x) = x2zα − xαz2. (2.22)

Observe that the functions defined in (2.20) are related to the invariance of (1.1) under translation,
while the functions defined in (2.21) and (2.22) are related to the invariance of (1.1) under rotations
in the (x1, x2), (x1, xα), and (x2, xα) planes, respectively.

The invariance of problem (1.1) under translation and rotation implies that the set Z̃u (as introduced
in (1.6)) associated to the linear operator L introduced in (2.19) has dimension at least 3N−3, because

L(zα) = 0, α = 1, · · · , 3N − 3. (2.23)

We will show that these functions are the only bounded elements of the kernel of the operator L.
In other words, the sign-changing non-radial solutions (2.10) to problem (1.1) constructed in [19] are
non-degenerate in the sense of [9].

3. Scheme of the proof

In this section we describe the main ingredients which constitute the proof of our result.
Assume that ϕ is a bounded function satisfying

L(ϕ) = 0, (3.1)

where L is the linear operator defined by (1.4). We write our function ϕ as

ϕ(x) =

3N−3∑
α=1

aαzα(x) + ϕ̃(x), (3.2)
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where the functions zα(x) are defined by (2.20), (2.21), and (2.22) respectively, while the constants aα
are chosen such that ∫

zαϕ̃ = 0, α = 1, · · · , 3N − 3. (3.3)

Observe that L(ϕ̃) = 0. Our aim is to show that under the conditions (3.1)-(3.3), if ϕ̃ is
bounded, then ϕ̃ = 0.

3.1. Introduction of the approximate kernels and some notation. In order to explain our idea,
we first introduce some functions. These functions Z̃ij,α correspond to the approximate kernels around
each spike.

For j = 1, · · · ,m+ 1, i = 0, · · · , k − 1,

Z̃ij,1 = Ri · ∇w(x−Rikyj), Z̃ij,2 = R⊥i · ∇w(x−Rikyj),

and, for α = 3, · · · , N ,

Z̃ij,α =
∂

∂xα
w(x−Rikyj).

Moreover, for j = m+ 2, · · · ,m+ 2n, i = 0, · · · , k − 1, we define

Z̃ij,1 = (−1)j−m−1ti · ∇w(x−Rikyj), Z̃ij,2 = (−1)j−m−1ni · ∇w(x−Rikyj),

and, for α = 3, · · · , N ,

Z̃ij,α = (−1)j−m−1 ∂

∂xα
w(x−Rikyj).

In the above formulas, we denoted θi = 2πi
k and

Ri = (cos θi, sin θi, 0), R⊥i = (sin θi,− cos θi, 0),

ti = (− sin(θi +
π

k
), cos(θi +

π

k
), 0), ni = (cos(θi +

π

k
), sin(θi +

π

k
), 0).

Recall that the solutions constructed in [19] take the form u = U + φ given in (2.4)-(2.10), and
recall further the definition of πα in (2.17). From this, one can obtain a more precise expression for
the real kernels zα mentioned at the end of Section 2. Indeed

z1(x) =
∂u

∂x1
= π1 +

∂U

∂x1

= π1 +

k−1∑
i=0

(m+1∑
j=1

(cos θiZ̃
i
j,1 + sin θiZ̃

i
j,2)

−
2n+m∑
j=m+2

(
sin(θi +

π

k
)Z̃ij,1 − cos(θi +

π

k
)Z̃ij,2

))
,

z2(x) =
∂u

∂x2
= π2 +

∂U

∂x2

= π2 +

k−1∑
i=0

(m+1∑
j=1

(sin θiZ̃
i
j,1 − cos θiZ̃

i
j,2)

+

2n+m∑
j=m+2

(
cos(θi +

π

k
)Z̃ij,1 + sin(θi +

π

k
)Z̃ij,2

))
,

and, for α = 3, · · · , N ,

zα =
∂u

∂xα
= πα +

k−1∑
i=0

(

m+2n∑
j=1

Z̃ij,α).
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Furthermore,

zN+1 = x1z2 − x2z1 = x1π2 − x2π1 + x1
∂U

∂x2
− x2

∂U

∂x1

= x1π2 − x2π1 +

k−1∑
i=0

(m+1∑
j=1

|yj |
(

cos θi
∂

∂x2
− sin θi

∂

∂x1

)
w(x−Rikyj)

+

2n+m∑
j=m+2

(
Rikyj · niZ̃ij,1 −Rikyj · tiZ̃ij,2

))
and for α = 3, · · · , N ,

zN+α−1 = x1zα − xαz1 = x1πα − xαπ1 + x1
∂U

∂xα
− xα

∂U

∂x1

= x1πα − xαπ1 +

k−1∑
i=0

(m+1∑
j=1

|yj | cos θiZ̃
i
j,α

+

2n+m∑
j=m+2

(
Rikyj · ni cos(θi +

π

k
)−Rikyj · ti sin(θi +

π

k
)
)
Z̃ij,α

)
,

and

z2N+α−3 = x2zα − xαz2

= x2πα − xαπ2 + x2
∂U

∂xα
− xα

∂U

∂x2

= x2πα − xαπ2 +

k−1∑
i=0

(m+1∑
j=1

|yj | sin θiZ̃ij,α

+

2n+m∑
j=m+2

(
Rikyj · ni sin(θi +

π

k
) +Rikyj · ti cos(θi +

π

k
)
)
Z̃ij,α

)
.

Let us further define the following functions. For i = 0, · · · , k − 1,

Zi1,1 = cos θi(
∂w(x−Riky1)

∂x1
+
π1

k
) + sin θi(

∂w(x−Riky1)

x2
+
π2

k
), (3.4)

Zi1,2 = sin θi(
∂w(x−Riky1)

∂x1
+
π1

k
)− cos θi(

∂w(x−Riky1)

x2
+
π2

k
), (3.5)

and, for α = 3, · · · , N ,

Zi1,α =
∂w(x−Riky1)

xα
+
πα
k
. (3.6)

Moreover, we define the following functions:

Zij,α = Z̃ij,α for i = 0, · · · , k − 1, j = 2, · · · , 2n+m, α = 1, · · · , N. (3.7)

In the following, we will always deal with the kernels in vector form. These column vectors simply
represent rearrangements of the approximate kernels Zij,α:

Zv,α = (Z0
1,α, · · · , Zk−1

1,α , Z0
m+1,α, · · · , Zk−1

m+1,α)t ∈ R2k.

This contains the kernels around the vertices of the inner and outer polygons. Furthermore, define

ZiY1,α = (Zi2,α, · · · , Zim,α)t ∈ Rm−1, ZiY2,α = (Zim+2,α, · · · , Zi2n+m,α)t ∈ R2n−1,

which correspond to the spikes on the line joining the inner polygon vertex Riky1 and the outer polygon

vertex Rikym+1, and the spikes on the edge joining Rikym+1 and Ri+1
k ym+1 of the outer polygon,

respectively. Then, we define
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Zα =



Zv,α

Z0
Y1,α
...

Zk−1
Y1,α

Z0
Y2,α
...

Zk−1
Y2,α


∈ Rk×(2n+m), Z =

 Z1

...
ZN

 ∈ Rk×N×(2n+m).

3.2. Reduction of the main problem. As explained in the beginning of this section, our aim is to
show that the function ϕ̃ defined by (3.1)-(3.3) is identically zero, ϕ̃ ≡ 0.

With the notations introduced in Section 3.1 in mind, we write our function ϕ̃ as

ϕ̃ =

N∑
α=1

cα · Zα + ϕ⊥(x),

where cα =



cv,α
c0Y1,α

...

ck−1
Y1,α

c0Y2,α
...

ck−1
Y2,α


=

 c1,α
...

c(m+2n)×k,α

, α = 1, · · · , N , are N vectors in R(m+2n)×k defined such

that ∫
Zij,αϕ

⊥ = 0 for all α = 1, · · · , N, i = 0, · · · , k − 1, j = 1, · · · ,m+ 2n. (3.8)

Observe that, if we prove that

cα = 0 for all α, and ϕ⊥ = 0

then we have that ϕ̃ = 0 . Hence, our aim is to show that all vectors cα and ϕ⊥ are zero in
the above decomposition. This will be a consequence of the following three facts.

Fact 1: Since L(ϕ̃) = 0, we have that

L(ϕ⊥) = −
N∑
α=1

cα · L(Zα). (3.9)

Our first result shows that ϕ⊥ can be controlled by cα, and we have the following a priori estimate
of ϕ⊥:

‖ϕ⊥‖∗ ≤ Ce−
1+ξ
2 `

N∑
α=1

‖cα‖. (3.10)

The proof is deferred to Section 5.

Fact 2. The orthogonality condition (3.3) takes the form

N∑
α=1

cα ·
∫

Zαzβ = −
∫
ϕ⊥zβ , (3.11)

for β = 1, · · · , 3N − 3.
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Our second result implies that the above orthogonality condition can be reduced to 3N − 3 linear
conditions on the vectors cα. Let us introduce the following notations:

cosk =

 cos θ0

...
cos θk−1

 ∈ Rk, sink =

 sin θ0

...
sin θk−1

 ∈ Rk,

are two k-dimensional vectors,

cos(θi) =

 cos θi
...

cos θi

 ∈ Rm−1, sin(θi) =

 sin θi
...

sin θi

 ∈ Rm−1,

are two (m− 1)-dimensional vectors, and

cos(θi +
π

k
) =

 cos(θi + π
k )

...
cos(θi + π

k )

 ∈ R2n−1, sin(θi +
π

k
) =

 sin(θi + π
k )

...
sin(θi + π

k )

 ∈ R2n−1.

are two (2n− 1)-dimensional vectors. Furthermore,

dl =

 d
...
d

 ∈ Rl, |yi|k =

 |yi|...
|yi|

 ∈ Rk

are constant vectors, where |yi| denotes the distance from the point yi to the origin.
For any unit vector e ∈ RN , we denote

Ri
kyj · e =

 Riky2 · e
...

Rikym · e

 ∈ Rm−1, Ri
kzh · e =

 Rikz1 · e
...

Rikz2n−1 · e

 ∈ R2n−1

We have the validity of the following

Proposition 3.1. The system (3.11) reduces to the following 3N − 3 linear conditions on the vectors
cα:

c1 ·



cosk
cosk

cos(θ0)
...

cos(θk−1)
−sin(θ0 + π

k )
...

−sin(θ0 + π
k )


+ c2 ·



sink
sink

sin(θ0)
...

sin(θk−1)
cos(θ0 + π

k )
...

cos(θ0 + π
k )


= f1 +O(e−

(1+ξ)`
2 )L1

 c1

...
cN

 (3.12)

c1 ·



sink
sink

sin(θ0)
...

sin(θk−1)
cos(θ0 + π

k )
...

cos(θ0 + π
k )


+ c2 ·



−cosk
−cosk
−cos(θ0)

...
−cos(θk−1)
sin(θ0 + π

k )
...

sin(θ0 + π
k )


= f2 +O(e−

(1+ξ)`
2 )L2

 c1

...
cN

 (3.13)
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cα · 1(2n+m)×k = fα +O(e−
(1+ξ)`

2 )Lα

 c1

...
cN

 (3.14)

c1 ·



0k
0k

R0
kyj ·R⊥0

...

Rk−1
k yj ·R⊥k−1
R0

kzh · n0

...

Rk−1
k zh · nk−1


− c2 ·



|y1|k
|ym+1|k
R0

kyj ·R0

...

Rk−1
k yj ·Rk−1
R0

kzh · t0
...

Rk−1
k zh · tk−1


= fN+1 +O(e−

(1+ξ)`
2 )LN+1

 c1

...
cN

 (3.15)

and for α = 3, · · · , N ,

cα ·



|y1|cosk
|ym+1|cosk
R0

kyj · e1
...

Rk−1
k yj · e1
R0

kzh · e1
...

Rk−1
k zh · e1


= fN+α−1 +O(e−

(1+ξ)`
2 )LN+α−1

 c1

...
cN

 (3.16)

cα ·



|y1|sink
|ym+1|sink
R0

kyj · e2
...

Rk−1
k yj · e2
R0

kzh · e2
...

Rk−1
k zh · e2


= f2N+α−3 +O(e−

(1+ξ)`
2 )L2N+α−3

 c1

...
cN

 , (3.17)

for α = 3, · · · , N . In the above expansions,

 f1

...
f3N−3

 is a fixed vector with

‖

 f1

...
f3N−3

 ‖ ≤ `τ‖ϕ⊥‖∗
for some positive constant τ that is independent of `. Here, Li : R(2n+m)×k → R are linear functions
whose coefficients are constants uniformly bounded as `→∞.

The proof is deferred to Section 6.

Fact 3: Let us now multiply (3.9) by Zij,α, for i = 0, · · · , k− 1, j = 1, · · · ,m+ 2n, and α = 1, · · · , N .

After integrating in RN , we obtain a linear system of (2n+m)×k×N equations in the (2n+m)×k×N
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coefficients c of the form

M

 c1

...
cN

 = −

 r1

...
rN

 with rα =



∫
L(ϕ⊥)Zv,α∫
L(ϕ⊥)Z0

Y1,α
...∫

L(ϕ⊥)Zk−1
Y1,α∫

L(ϕ⊥)Z0
Y2,α

...∫
L(ϕ⊥)Zk−1

Y2,α


, (3.18)

where M = (
∫
L(Zti,α)Zsj,βdx) is a square matrix of dimension [(2n + m) × k × N ]2. More detailed

information and an analysis of the matrix M is provided in Section 4.
Our third result concerns the solvability of the above matrix equation. We can show the validity of

the following statement:

Proposition 3.2. There exists `0 > 0 and C such that for ` > `0, system (3.18) is solvable. Further-
more, the general solution is (

c1

c2

)
=

(
v1

v2

)

+s1



cosk
cosk

cos(θ0)
...

cos(θk−1)
−sin(θ0 + π

k )
...

−sin(θ0 + π
k )

sink
sink

sin(θ0)
...

sin(θk−1)
cos(θ0 + π

k )
...

cos(θ0 + π
k )



+ s2



sink
sink

sin(θ0)
...

sin(θk−1)
cos(θ0 + π

k )
...

cos(θ0 + π
k )

−cosk
−cosk
−cos(θ0)

...
−cos(θk−1)
sin(θ0 + π

k )
...

sin(θ0 + π
k )



+ s3



0k
0k

R0
kyj ·R⊥0

...

Rk−1
k yj ·R⊥k−1
R0

kzh · n0

...

Rk−1
k zh · nk−1
−|y1|k
−|ym+1|k
−R0

kyj ·R0

...

−Rk−1
k yj ·Rk−1
−R0

kzh · t0
...

−Rk−1
k zh · tk−1


:=

(
v1

v2

)
+ s1w1 + s2w1 + s3w3

and

cα = vα + sα11(2n+m)×k + sα2



|y1|cosk
|ym+1|cosk
R0

kyj · e1
...

Rk−1
k yj · e1
R0

kzh · e1
...

Rk−1
k zh · e1


+ sα3



|y1|sink
|ym+1|sink
R0

kyj · e2
...

Rk−1
k yj · e2
R0

kzh · e2
...

Rk−1
k zh · e2


:= vα + sα1w4 + sα2w5 + sα3w6
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for any s1, s2, s3, sα1, sα2, sα3 ∈ R, where the vectors vα are fixed, and satisfy

‖vα‖ ≤ C`τe
1−ξ
2 `‖ϕ⊥‖∗ (3.19)

for some τ, ξ > 0.

The proof is deferred to Section 7.

3.3. Final argument and proof of Theorem 1.1. Let

 c1

...
cN

 denote the solutions to (3.18)

predicted by Proposition 3.2, given explicitly by(
c1

c2

)
=

(
v1

v2

)
+ s1w1 + s2w2 + s3w3

and

cα = vα + sα1w4 + sα2w5 + sα3w6, α = 3, · · · , N.
Replace the above expressions for cα, α = 1, 2, 3, . . . , N into (3.12)–(3.17). This leads to a system of
(3N −3) non linear conditions on the (3N −3) coefficients sj , sαj for j = 1, 2, 3, α = 3, . . . , N . Taking
advantage of the explicit form of the vectors wi, i = 1, . . . , 6, one can show that there exists a unique

(s∗1, · · · , s∗3, s∗31, · · · , s∗N3) ∈ R3N−3

for which the above solutions satisfy all 3N−3 conditions of Proposition 3.1, which furthermore satisfy

‖(s∗1, · · · , s∗3, s∗31, · · · , s∗N3)‖ ≤ C`τ‖ϕ⊥‖∗.

Hence, there exists a unique solution

 c1

...
cN

 to system (3.18), satisfying conditions (3.12)–(3.17)

and the estimate
N∑
α=1

‖cα‖ ≤ C`τe
1−ξ
2 `‖ϕ⊥‖∗.

On the other hand, from (3.10) in Fact 1, we conclude that

‖ϕ⊥‖∗ ≤ Ce−
1+ξ
2 `

N∑
α=1

‖cα‖.

Thus, by combining the above two estimates we conclude that

cij,α = 0, ϕ⊥ = 0,

which implies that for ϕ̃ defined by (3.1)-(3.3), it holds that ϕ̃ = 0. This proves Theorem 1.1.

4. Analysis of the matrix M

This section is devoted to the analysis of the matrix M defined in Section 3. We first derive a
simplified form of M . Our first observation is that if α is either of the indices {1, 2} and β is any of
the indices in {3, · · · , N}, then∫

L(Zti,β)Zsj,α = 0 for any i, j = 1, · · · , 2n+m, s, t = 0, · · · , k − 1.

This fact implies that the matrix M has the form

M =

(
M1 0
0 M2

)
(4.1)

where M1 is a matrix of dimension (2× (2n+m)× k)2 and M2 is a matrix of dimension ((N − 2)×
(2n+m)× k)2.



14 WEIWEI AO, MONICA MUSSO, AND JUNCHENG WEI

Because ∫
L(Zsi,α)Ztj,β =

∫
L(Ztj,β)Zsi,α,

we can write that

M1 =

(
A B
Bt C

)
, (4.2)

where A,B,C are square matrices of dimension ((2n+m)×k)2, with A,C symmetric. More precisely,

A = (

∫
L(Zsi,1)Ztj,1)i,j=1,··· ,2n+m, s,t=0,··· ,k−1,

B = (

∫
L(Zsi,1)Ztj,2)i,j=1,··· ,2n+m, s,t=0,··· ,k−1,

C = (

∫
L(Zsi,2)Ztj,2)i,j=1,··· ,2n+m, s,t=0,··· ,k−1.

Furthermore, again by symmetry, because∫
L(Zsi,α)Ztj,β = 0, if α 6= β, α, β = 3, · · · , N,

the matrix M2 has the form

M2 =


H3 0 0 0 0
0 H4 0 0 0

0
. . .

. . .
. . . 0

0 . . . 0 0 HN

 (4.3)

where Hα are square matrices of dimension [(2n + m) × k]2, and each of them is symmetric. The
matrices Hα are defined by

Hα = (

∫
L(Zsi,α)Ztj,α)s,t=0,··· ,k−1

i,j=1,··· ,2n+m for α = 3, · · · , N. (4.4)

Thus, given the form of the matrix M as described in (4.1), (4.2), and (4.3), system (3.18) is equivalent
to

M1

(
c1

c2

)
= −

(
r1

r2

)
, Hαcα = −rα, for α = 3, · · · , N.

where the vectors rα are defined in (3.18).
This section is devoted to the analysis of the kernels and eigenvalues of the matrices A,B,C,Hα.

The main result of this section is the following solvability condition for the matrix M .

Proposition 4.1. Part a.
There exists `0 > 0 such that for ` > `0, the system

M1

(
c1

c2

)
=

(
r1

r2

)
is solvable if (

r1

r2

)
·w1 =

(
r1

r2

)
·w2 =

(
r1

r2

)
·w3 = 0.

Furthermore, the general solution is(
c1

c2

)
=

(
v1

v2

)
+ s1w1 + s2w2 + s3w3 (4.5)

for all si ∈ R, with

(
v1

v2

)
being a fixed vector such that

‖
(

v1

v2

)
‖ ≤ C`τe`‖

(
r1

r2

)
‖. (4.6)
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Part b.
Let α = 3, · · · , N . Then. there exists `0 > 0 such that for any ` > `0,

Hα(cα) = rα (4.7)

is solvable if

rα ·w4 = rα ·w5 = rα ·w6 = 0.

Furthermore, the solution has the form

cα = vα + sα1w4 + sα2w5 + sα3w6, (4.8)

for all sαi ∈ R, where vα a fixed vector such that

‖vα‖ ≤ C`τe`‖rα‖. (4.9)

Remark 4.1. From the statement of the above proposition, because M1,M2 are symmetric matri-
ces, one need only show that M1 has 3−dimensional kernels spanned by w1,w2,w3, while Hα has
3−dimensional kernels spanned by w4,w5,w6.

Before we prove the above proposition, we first need to introduce some notation.
For all n̄ ≥ 2, we define the n̄× n̄ matrix

Tn̄ =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2


(4.10)

In practice, the integer n̄ will be equal to m− 1 or 2n− 1.
It is easy to check that the inverse of Tn̄ is the matrix whose entries are given by

(T−1
n̄ )ij = min(i, j)− ij

n̄+ 1
. (4.11)

We define the vectors S↓ and S↑ by

Tn̄ S
↓ :=


0
...
0
1

 ∈ Rn̄ Tn̄ S
↑ :=


1
0
...
0

 ∈ Rn̄ . (4.12)

It is simple to check that

S↑ :=


n̄
n̄+1
n̄−1
n̄+1

...
2

n̄+1
1

n̄+1

 ∈ Rn̄ S↓ :=


1

n̄+1
2

n̄+1
...

n̄−1
n̄+1
n̄
n̄+1

 ∈ Rn̄ . (4.13)

We also introduce the following vectors:

dL,n̄ = (c, 0 · · · , 0) ∈ Rn̄, dR,n̄ = (0, · · · , 0, c) ∈ Rn̄

and
dn̄ = (d, d, · · · , d) ∈ Rn̄. (4.14)

In practice, n̄ = m− 1 or 2n− 1.
We will see below that a circulant matrix will play an important role in our proof. We recall the

definition of a circulant matrix.
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A circulant matrix X of dimension k × k has the form

X =


x0 x1 · · · xk−2 xk−1

xk−1 x0 x1 · · · xk−2

· · · xk−1 x0 x1 · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · x1

x1 · · · · · · xk−1 x0

 , (4.15)

or equivalently, if xij , i, j = 1, · · · , k are the entries of the matrix X, then

xij = x1,|i−j|+1.

In particular, in order to determine a circulant matrix it is sufficient to know the entries of the first
row. By

X = Cir{(x0, x1, · · · , xk−1)}, (4.16)

we denote the above mentioned circulant matrix. For the properties of circulant matrices, we refer the
reader to [15]. The eigenvalues of a circulant matrix X are given by the explicit formula

ηs =

k−1∑
l=1

xle
2πs
k il, s = 0, · · · , k − 1 (4.17)

with corresponding normalized eigenvectors defined by

Es = k−
1
2


1

e
2πs
k i

e
2πs
k i2

...

e
2πs
k i(k−1)

 . (4.18)

Observe that any circulant matrix X can be diagonalized as

X = PDXP
t,

where DX is the diagonal matrix

DX = diag(η0, η1, · · · , ηk−1)

and P is the k × k matrix defined by

P = (E0|E1| · · · |Ek−1). (4.19)

From this point on, we begin to analyze the components of the matrix M , A,B,C,Hα, for which
explicit expressions are given in Section 8. First, observe that M is a symmetric matrix.

4.1. Analysis of Hα and proof of part (b) of Proposition 4.1. We first analyze the kernels of
the matrix Hα.

First, we denote

Ψ2(¯̀)

Ψ2(`)
=

δ2
2 sin π

k

where Ψ2 is defined in (8.2).
By dividing both sides of the equation Hα(cα) = 0 by Ψ2(`), we obtain that

H̄α(cα) = 0,

where H̄α = Hα
Ψ2(`) .
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From the computations regarding Hα in Section 7, we know that H̄α has the form

H̄α =


Hα,1 0 Hα,2 0

0 Hα,3 Hα,4 Hα,5

Ht
α,2 Ht

α,4 Hα,6 0
0 Ht

α,5 0 Hα,7

+O(e−ξ`), (4.20)

where

Hα,1 =



−1− δ2
sin π

k

δ2
2 sin π

k
0 · · · 0 δ2

2 sin π
k

δ2
2 sin π

k
−1− δ2

sin π
k

δ2
2 sin π

k
0 · · · 0

0
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 δ2
2 sin π

k
−1− δ2

sin π
k

δ2
2 sin π

k
δ2

2 sin π
k

0 · · · 0 δ2
2 sin π

k
−1− δ2

sin π
k


k×k

,

Hα,2 =


1L,m−1 0m−1 · · · 0m−1

0m−1 1L,m−1 · · · 0m−1

· · · · · · · · · · · ·
0m−1 · · · · · · 1L,m−1


[(m−1)×k]×k

,

Hα,3 =


δ2

sin π
k
− 1 0 · · · 0

0 δ2
sin π

k
− 1 0 0

...
. . .

. . . 0

0 · · · · · · δ2
sin π

k
− 1


k×k

,

Hα,4 =


1R,m−1 0m−1 · · · 0m−1

0m−1 1R,m−1 · · · 0m−1

· · · · · · · · · · · ·
0m−1 · · · · · · 1R,m−1


[(m−1)×k]×k

,

Hα,5 =


−( δ2

2 sin π
k

)L,2n−1 02n−1 · · · −( δ2
2 sin π

k
)R,2n−1

−( δ2
2 sin π

k
)R,2n−1 −( δ2

2 sin π
k

)L,2n−1 · · · 02n−1

· · · · · · · · · · · ·
02n−1 · · · −( δ2

2 sin π
k

)R,2n−1 −( δ2
2 sin π

k
)L,2n−1


[(2n−1)×k]×k

,

Hα,6 =

 −Tm−1 0 · · · 0
0 −Tm−1 · · · 0
...

...
... −Tm−1


[(m−1)×k]2

,

and

Hα,7 =


δ2

2 sin π
k
T2n−1 0 · · · 0

0 δ2
2 sin π

k
T2n−1 · · · 0

...
...

... δ2
2 sin π

k
T2n−1


[(2n−1)×k]2

.

We want to analyze the eigenvalues of the matrix H̄α. Thus, we assume that

H̄α(a) = 0. (4.21)
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First, by considering the third row of the matrix H̄α written in the form (4.20), one can obtain that

(−Tm−1 +O(e−ξ`))(aY1,i) +


ai1
0
...
0

aim+1

 = O(e−ξ`)av

and

(T2n−1 +O(e−ξ`))(aiY2
)−


aim+1

0
...
0

ai+1
m+1

 = O(e−ξ`)av.

Here, av corresponds to the unknown variables around the vertices of the inner and outer polygons.
In other words, these equations imply that once av is fixed, the other unknown variables will be
determined. From the above two equations, and using (4.13), one has that for i = 0, · · · , k − 1, ai2 = 1

m

(
(m− 1)ai1 + aim+1

)
+O(e−ξ`)av

aim = 1
m

(
ai1 + (m− 1)aim+1

)
+O(e−ξ`)av,

(4.22)

and  aim+2 = 1
2n

(
(2n− 1)aim+1 + ai+1

m+1

)
+O(e−ξ`)av

aim+2n = 1
2n

(
aim+1 + (2n− 1)ai+1

m+1

)
+O(e−ξ`)av.

(4.23)

Next, we consider the first and second rows of the matrix H̄α in (4.20). We can obtain that

Hα,1


a0

1

a1
1
...

ak−1
1

+


a0

2

a1
2
...

ak−1
2

 = O(e−ξ`)av

and

Hα,3


a0
m+1

a1
m+1
...

ak−1
m+1

+


a0
m − δ2

2 sin π
k

(a0
m+2 + ak−1

m+2n)

a1
m − δ2

2 sin π
k

(a1
m+2 − a0

m+2n)

...

ak−1
m − δ2

2 sin π
k

(ak−1
m+2 − a

k−2
m+2n)

 = O(e−ξ`)av.

By using the above two equations (4.22) and (4.23) for ai2, a
i
m, a

i
m+2, a

i
m+2n, the above two equations

are reduced to a 2k system of 2k unknowns ai1, a
i
m+1 for i = 0, · · · , k − 1:

H̃α



a0
1
...

a1k−1

a0
m+1
...

ak−1
m+1


= O(e−ξ`)av, where H̃α =

(
H̃α,1 H̃α,2

H̃t
α,2 H̃α,3

)
(4.24)

and H̃α,i are all circulant matrices with

H̃α,1 = Cir{(− 1

m
− δ2

sin π
k

,
δ2

2 sin π
k

, 0, · · · , 0, δ2
2 sin π

k

)}, (4.25)
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H̃α,2 = Cir{( 1

m
, 0 · · · , 0)}, (4.26)

H̃α,3 = Cir{(− 1

m
+

δ2
2n sin π

k

,− δ2
4n sin π

k

, 0, · · · , 0,− δ2
4n sin π

k

)}. (4.27)

From the above analysis, equation (4.21) is equivalent to equation (4.24) above for the 2k variables av.

Next, we begin to analyze the matrix H̃α.

Eigenvalues of H̃α,1: A direct application of (4.17) gives that the eigenvalues of the matrix H̃α,1 are
given by

h1,i =
δ2

sin π
k

(cos
2πi

k
− 1)− 1

m
(4.28)

for i = 0, · · · , k − 1.
Eigenvalues of H̃α,3: The eigenvalues of the matrix H̃α,3 are given by

h3,i =
δ2

4n sin π
k

(2− 2 cos
2πi

k
)− 1

m
. (4.29)

for i = 0, · · · , k − 1.
Define

P =

(
P 0
0 P

)
. (4.30)

Then, simple algebra gives that

H̃α = P
(
D1 D2

D2 D3

)
Pt,

where

D1 = diag(h1,0, · · · , h1,k−1), D2 = diag(
1

m
, · · · , 1

m
),

D3 = diag(h3,0, · · · , h3,k−1).

We consider the matrix

Di =

(
h1,i

1
m

1
m h3,i

)
. (4.31)

The determinant of Di is given by

Det(Di) =
2δ2
n

sin2 πi

k
(1−

sin2 πi
k

sin2 π
k

)(1 +O(
1

`
)). (4.32)

One can check that Det(Di) = 0 for i = 0, 1, k − 1, and |Det(Di)| ≥ c
n for 2 ≤ i ≤ k − 2.

From the above analysis, one can see that the matrix H̄α has at most three kernels, and other than
zero eigenvalues the eigenvalues will have a lower bound of C

`τ for some τ > 0. Moreover, one can check

directly that w4,w5,w6 are in the kernels of H̄α, and so one can obtain part (b) of Proposition 4.1.

4.2. Analysis of the matrix M1 and proof of part (a) of Proposition 4.1. First, we denote

M̄1 =
1

Ψ1(`)
M1,

where Ψ1 is defined in (8.1), and we introduce the following notations:

Ψ2(`) =
σ1

`
Ψ1(`), Ψ2(¯̀) =

σ2

`
Ψ1(¯̀) (4.33)

and
Ψ1(¯̀)

Ψ1(`)
=

σ3

2 sin π
k

(4.34)
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for σ1, σ2, σ3 > 0 positive constants. In fact, from (8.5) one can obtain that σ3 = (d
¯̀

d` )
−1. By the

computation in Section 8, we know that M̄1 can be written in the following form:

M̄1 =



A1
11 0 A1

12 0 B1
11 0 0 0

0 A3
11 A2

12 A3
12 0 0 0 B1

12

A1,t
12 A2,t

12 A1
13 0 0 0 0 0

0 A3,t
12 0 A2

13 0 B1
21 0 0

B1,t
11 0 0 0 C1

11 0 C1
12 0

0 0 0 B1,t
21 0 C3

11 C2
12 C3

12

0 0 0 0 C1,t
12 C2,t

12 C1
13 0

0 B1,t
12 0 0 0 C3,t

12 0 C2
13


, (4.35)

where A1
11, A

3
11 are k × k circulant matrices:

A1
11 = Cir{(A1

11,0, A
1
11,1, 0, · · · , 0, A1

11,k−1)},

A1
11,0 = −1− σ3

sin π
k

(sin2 π

k
+
σ2

`
cos2 π

k
),

A1
11,1 = A1

11,k−1 =
σ3

2 sin π
k

(− sin2 π

k
+
σ2

`
cos2 π

k
),

A3
11 = Cir{(−1 +

σ3

sin π
k

(sin2 π

k
+
σ2

`
cos2 π

k
), 0, · · · , 0)},

A1
12 =


1L,m−1 0m−1 · · · 0m−1

0m−1 1L,m−1 · · · 0m−1

...
. . .

. . .
...

0m−1 · · · · · · 1L,m−1


[(m−1)×k]×k

,

A2
12 =


1R,m−1 0m−1 · · · 0m−1

0m−1 1R,m−1 · · · 0m−1

...
. . .

. . .
...

0m−1 · · · · · · 1R,m−1


[(m−1)×k]×k

,

A3
12 =


σ3

2 L,2n−1
02n−1 · · · −σ3

2 R,2n−1

−σ3

2 R,2n−1
σ3

2 L,2n−1
· · · 02n−1

02n−1
. . .

. . . 02n−1

02n−1 · · · −σ3

2 R,2n−1
σ3

2 L,2n−1


[(2n−1)×k]×k

,

A1
13 =

 −Tm−1 0 · · · 0
0 −Tm−1 · · · 0
...

. . .
. . . −Tm−1


[(m−1)×k]2

,

A2
13 =


σ3

2 sin π
k
T2n−1 0 · · · 0

0 σ3

2 sin π
k
T2n−1 · · · 0

...
. . .

. . . σ3

2 sin π
k
T2n−1


[(2n−1)×k]2

.

For the matrix B, we have that B1
11 is a k × k circulant matrix:

B1
11 = Cir{(0,

σ3 cos πk
2

(1 +
σ2

`
), 0, · · · ,

σ3 cos πk
2

(1 +
σ2

`
))},
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B1
12 =

σ2σ3 cos πk
2` sin π

k


−1L,2n−1 02n−1 · · · −1R,2n−1

−1R,2n−1 −1L,2n−1 · · · 02n−1

02n−1
. . .

. . . 02n−1

02n−1 · · · −1R,2n−1 −1L,2n−1


[(2n−1)×k]×k

,

and

B1,t
21 =

σ3 cos πk
2 sin π

k


1L,2n−1 02n−1 · · · 1R,2n−1

1R,2n−1 1L,2n−1 · · · 02n−1

02n−1
. . .

. . . 02n−1

02n−1 · · · 1R,2n−1 1L,2n−1


[(2n−1)×k]×k

.

The matrices C1
11, C

3
11 are k × k circulant matrices:

C1
11 = Cir{(C1

11,0, C
1
11,1, 0 · · · , 0, C1

11,k−1)},

C1
11,0 = −σ1

`
− σ3

sin π
k

(cos2 π

k
+
σ2

`
sin2 π

k
),

C1
11,1 = C1

11,k−1 =
σ3

2 sin π
k

(cos2 π

k
− σ2

`
sin2 π

k
),

C3
11 = Cir{(−σ1

`
+

σ3

sin π
k

(cos2 π

k
+
σ2

`
sin2 π

k
), 0, · · · , 0)}.

C1
12 =


σ1

` L,m−1
0m−1 · · · 0m−1

0m−1
σ1

` L,m−1
· · · 0m−1

...
. . .

. . .
...

0m−1 · · · · · · σ1

` L,m−1


[(m−1)×k]×k

C2
12 =


σ1

` R,m−1
0m−1 · · · 0m−1

0m−1
σ1

` R,m−1
· · · 0m−1

...
. . .

. . .
...

0m−1 · · · · · · σ1

` R,m−1


[(m−1)×k]×k

,

C3
12 =


(σ2σ3

2` )L,2n−1 02n−1 · · · −(σ2σ3

2` )R,2n−1

−(σ2σ3

2` )R,2n−1 (σ2σ3

2` )L,2n−1 · · · 02n−1

02n−1
. . .

. . . 02n−1

02n−1 · · · −(σ2σ3

2` )R,2n−1 (σ2σ3

2` )L,2n−1


[(2n−1)×k]×k

,

C1
13 =

 −
σ1

` Tm−1 0 · · · 0
0 −σ1

` Tm−1 · · · 0
...

...
... −σ1

` Tm−1


[(m−1)×k]2

,

and

C2
13 =


σ2σ3

2` sin π
k
T2n−1 0 · · · 0

0 σ2σ3

2` sin π
k
T2n−1 · · · 0

...
...

... σ2σ3

2` sin π
k
T2n−1


[(2n−1)×k]2

.

The strategy for dealing with the matrix M1 is similar to that for Hα. The main idea is that once
the variables for the inner and outer vertices are fixed, the other variables will be determined. Thus,
we will reduce the problem M̄1(a) = 0 to a 4k × 4k matrix equation for the variables around the 2k
vertices.
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First, by considering the third and fourth rows of M̄1(a) = 0 in the form (4.35), one can obtain that

(−Tm−1 +O(e−ξ`)


ai2,1

ai3,1
...

aim−1,1

aim,1

+


ai1,1

0
...
0

aim+1,1

 = O(e−ξ`)av, (4.36)

T2n−1


aim+2,1

aim+3,1
...

aim+2n−1,1

aim+2n,1

+ sin
π

k


aim+1,1

0
...
0

−ai+1
m+1,1

+ cos
π

k


aim+1,2

0
...
0

aim+1,2

 = O(e−ξ`)av. (4.37)

From the seventh and eighth rows of the matrix M̄1 in (4.35), we can obtain that

(−Tm−1 +O(e−ξ`)


ai2,2
ai3,2

...
aim−1,2

aim,2

+


ai1,2

0
...
0

aim+1,2

 = O(e−ξ`)av, (4.38)

T2n−1


aim+2,

aim+3,2
...

aim+2n−1,2

aim+2n,2

+ sin
π

k


aim+1,2

0
...
0

−ai+1
m+1,2

− cos
π

k


aim+1,1

0
...
0

aim+1,1

 = O(e−ξ`)av. (4.39)

From the above four systems, using (4.13) one can solve aiY1,j
,aiY2,j

in terms of av for i = 0, · · · , k− 1,
j = 1, 2. In particular, we can obtain that

ai2,1 = 1
m ((m− 1)ai1,1 + aim+1,1) +O(e−ξ`)av,

aim,1 = 1
m (ai1,1 + (m− 1)aim+1,1) +O(e−ξ`)av,

(4.40)



aim+2,1 = − sin π
k

2n ((2n− 1)aim+1,1 − ai+1
m+1,1)

− cos πk
2n ((2n− 1)aim+1,2 + ai+1

m+1,2) +O(e−ξ`)av

aim+2n,1 = − sin π
k

2n (aim+1,1 − (2n− 1)ai+1
m+1,1)

− cos πk
2n (aim+1,2 + (2n− 1)ai+1

m+1,2) +O(e−ξ`)av,

(4.41)


ai2,2 = 1

m ((m− 1)ai1,2 + aim+1,2) +O(e−ξ`)av,

aim,2 = 1
m (ai1,2 + (m− 1)aim+1,2) +O(e−ξ`)av,

(4.42)

and 

aim+2,2 = − sin π
k

2n ((2n− 1)aim+1,2 − ai+1
m+1,2)

+
cos πk

2n ((2n− 1)aim+1,1 + ai+1
m+1,1) +O(e−ξ`)av

aim+2n,2 = − sin π
k

2n (aim+1,2 − (2n− 1)ai+1
m+1,2)

+
cos πk

2n (aim+1,1 + (2n− 1)ai+1
m+1,1) +O(e−ξ`)av.

(4.43)
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From the first and second rows of the equation in (4.35), one can obtain that

A1
11

 a0
1,1
...

ak−1
1,1

+

 a0
2,1
...

ak−1
2,1

+
σ3 cos πk

2
(1 +

σ2

`
)


a1

1,2 − ak−1
1,2

a2
1,2 − a0

1,2
...

a0
1,2 − ak−2

1,2

 = O(e−ξ`)av, (4.44)

A3
11

 a0
m+1,1

...

ak−1
m+1,1

+

 a0
m,1
...

ak−1
m,1

 +
σ3

2


a0
m+2,1 − ak−1

m+2n,1

a1
m+2,1 − a0

m+2n,1
...

ak−1
m+2,1 − a

k−2
m+2n,1

 (4.45)

−
σ2σ3 cos πk

2` sin π
k


a0
m+2,2 + ak−1

m+2n,2

a1
m+2,2 + a0

m+2n,2
...

ak−1
m+2,2 + ak−2

m+2n,2

 = O(e−ξ`)av.

From the fifth and sixth rows of (4.35), one can obtain that

C1
11

 a0
1,2
...

ak−1
1,2

+
c1
`

 a0
2,2
...

ak−1
2,2

− σ3 cos πk
2

(1 +
c2
`

)


a1

1,1 − ak−1
1,1

a2
1,1 − a0

1,1
...

a0
1,1 − ak−2

1,1

 = O(e−ξ`)av, (4.46)

C3
11

 a0
m+1,2

...

ak−1
m+1,2

+
σ1

`

 a0
m,2
...

ak−1
m,2

 +
σ2σ3

2`


a0
m+2,2 − ak−1

m+2n,2

a1
m+2,2 − a0

m+2n,2
...

ak−1
m+2,2 − a

k−2
m+2n,2

 (4.47)

+
σ3 cos πk
2 sin π

k


a0
m+2,1 + ak−1

m+2n,1

a1
m+2,1 + a0

m+2n,1
...

ak−1
m+2,1 + ak−2

m+2n,1

 = O(e−ξ`)av

Using the equations for ai2,j , a
i
m,j and aim+2,j , a

i
m+2n,j (4.40)-(4.43), the above system (4.44)-(4.47) can

be reduced to 4k equations in terms of 4k unknowns a0
1,1, · · · , ak−1

1,1 , a0
m+1,1, · · · , ak−1

m+1,1, a0
1,2, · · · , ak−1

1,2 ,
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and a0
m+1,2, · · · , ak−1

m+1,2:


F11 F12 F13 0
F t12 F22 0 F24

F t13 0 F33 F34

0 F t24 F t34 F44





a0
1,1
...

ak−1
1,1

a0
m+1,1

...

ak−1
m+1,1

a0
1,2
...

ak−1
1,2

a0
m+1,2

...

ak−1
m+1,2



= O(e−ξ`)av (4.48)

where Fij are k × k circulant matrices given below:

The matrix F11. F11 is defined by

F11 = Cir{(F11,0, F11,1, 0, · · · , 0, F11,k−1)}, (4.49)

where

F11,0 = − 1

m
− σ3

sin π
k

(sin2 π

k
+
σ2

`
cos2 π

k
)

and
F11,1 = F11,k−1 =

σ3

2 sin π
k

(− sin2 π

k
+
σ2

`
cos2 π

k
).

Eigenvalues of F11. For any l = 0, · · · , k − 1, the eigenvalues of F11 are

f11,l = − 1

m
− σ3

sin π
k

(sin2 π

k
+
σ2

`
cos2 π

k
) +

σ3

sin π
k

(− sin2 π

k
+
σ2

`
cos2 π

k
) cos

2lπ

k
.

The matrix F12. The matrix F12 is defined by

F12 = Cir{( 1

m
, 0, · · · , 0)}

Eigenvalues of F12. For any l = 0, · · · , k − 1, the eigenvalues of F12 are

f12,l =
1

m
.

The matrix F13. The matrix F13 is defined by

F13 = Cir{(0, F13,1, 0, · · · , 0, F13,k−1)},
where

F13,1 =
σ3 cos πk

2
(1 +

σ2

`
), F13,k−1 = −

σ3 cos πk
2

(1 +
σ2

`
).

Eigenvalues of F13. For any l = 0, · · · , k − 1, the eigenvalues of F12 are

f13,l = iσ3(1 +
σ2

`
) cos

π

k
sin

2lπ

k
. (4.50)

The matrix F22. The matrix F22 is defined by

F22 = Cir{(F22,0, F22,1, 0, · · · , 0, F22,k−1)},
where

F22,0 = − 1

m
+

σ3

2n sin π
k

(sin2 π

k
+
σ2

`
cos2 π

k
)
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and

F22,1 = F22,k−1 =
σ3

4n sin π
k

(sin2 π

k
− σ2

`
cos2 π

k
).

Eigenvalues of F22. For any l = 0, · · · , k − 1, the eigenvalues of F22 are

f22,l = − 1

m
+

σ3

2n sin π
k

(sin2 π

k
+
σ2

`
cos2 π

k
) +

σ3

2n sin π
k

(sin2 π

k
− σ2

`
cos2 π

k
) cos

2lπ

k
. (4.51)

The matrix F24. The matrix F24 is defined by

F24 = Cir{(0, F24,1, 0, · · · , 0, F24,k−1)},

where

F24,1 = −
σ3 sin π

k

4n
(1 +

σ2

`
), F24,k−1 =

σ3 sin π
k

4n
(1 +

σ2

`
).

Eigenvalues of F24. For any l = 0, · · · , k − 1, the eigenvalues of F24 are

f24,l = − iσ3

2n
(1 +

σ2

`
) cos

π

k
sin

2lπ

k
.

The matrix F33. The matrix F33 is defined by

F33 = Cir{(F33,0, F33,1, 0, · · · , 0, F33,k−1)},

where

F33,0 = − σ1

m`
− σ3

sin π
k

(cos2 π

k
+
σ2

`
sin2 π

k
)

and

F33,1 = F33,k−1 =
σ3

2 sin π
k

(cos2 π

k
− σ2

`
sin2 π

k
).

Eigenvalues of F33. For any l = 0, · · · , k − 1, the eigenvalues of F33 are

f33,l = − σ1

m`
− σ3

sin π
k

(cos2 π

k
+
σ2

`
sin2 π

k
) +

σ3

sin π
k

(cos2 π

k
− σ2

`
sin2 π

k
) cos

2lπ

k
.

The matrix F34. The matrix F34 is defined by

F34 = Cir{( c1
m`

, 0, · · · , 0)}.

Eigenvalues of F34. For any l = 0, · · · , k − 1, the eigenvalues of F34 are

f34,l =
σ1

m`
.

The matrix F44. The matrix F44 is defined by

F44 = Cir{(F44,0, F44,1, 0, · · · , 0, F44,k−1)},

where

F44,0 = − σ1

m`
+

σ3

2n sin π
k

(cos2 π

k
+
σ2

`
sin2 π

k
)

and

F44,1 = F44,k−1 = − σ3

4n sin π
k

(cos2 π

k
− σ2

`
sin2 π

k
).

Eigenvalues of F44. For any l = 0, · · · , k − 1, the eigenvalues of F44 are

f44,l = − σ1

m`
+

σ3

2n sin π
k

(cos2 π

k
+
σ2

`
sin2 π

k
)− σ3

2n sin π
k

(cos2 π

k
− σ2

`
sin2 π

k
) cos

2lπ

k
.
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The final part of this section is devoted to the analysis of the matrix

F =


F11 F12 F13 0
F t12 F22 0 F24

F t13 0 F33 F34

0 F t24 F t34 F44

 . (4.52)

Define

P1 =


P 0 0 0
0 P 0 0
0 0 P 0
0 00 0 P

 ,

where P is defined in (4.19). Simple algebra gives that

F = P1


DF11

DF12
DF13

0
DF t12

DF22
0 DF24

DF t13
0 DF33

DF34

0 DF t24
DF t34

DF44

Pt1.
Here, DX denotes the diagonal matrix of dimension k × k whose entries are given by the eigenvalues
of X.

Let us now introduce the following matrix:

DF =


Df0 0 · · · 0
0 Df1 0 · · ·
· · · · · · · · · · · ·
· · · 0 0 Dfk−1

 ,

where

Dfi =


f11,i f12,i f13,i 0
f12,i f22,i 0 f24,i

−f13,i 0 f33,i f34,i

0 −f24,i f34,i f44,i

 .

By direct calculation, one can check that for j = 0,

Det(Df0) = 0,

and Df0 has only one kernel. The other eigenvalues of Df0 will satisfy |λ0,i| ≥ C
`τ for some constant

C, τ > 0.
For j ≥ 1, we have that

Det(Dfj ) =
n

2σ2
3(1 + d̄2)2(1− ā)b̄j(ā(1− b̄j) + d̄2(1− ā)d̄j)(b̄j − (1−ā)b̄j d̄2

ā )

× (ā− b̄j)2d̄2(b̄j d̄2 + ā2(1 + d̄1)(1 + d̄2)− ā(1 + (2 + d̄1)d̄2))

āb̄j(1− ā)(1 + d̄2)2(ā+ (ā− 1)d̄2)(ā(b̄j − 1) + (ā− 1)b̄j d̄2)

=
(ā− b̄j)2nd̄2

2σ2
3 ā

3b̄3j (1− ā)[(b̄j − 1)2 + c0d2]
(1 +O(

1

`
)),

where

ā = sin2 π

k
, b̄j = sin2 jπ

k
, d̄1 =

σ1

`
, d̄2 =

σ2

`
.

From the above computation, we know that for j = 1, k − 1, Det(Dfj ) = 0, the matrix Dfj has one

kernel, and all the other eigenvalues have a lower bound C
`τ . For j 6= 0, 1, k − 1, the matrix Dfj is

non-degenerate, and the eigenvalues have a lower bound C
`τ .

From the above analysis, we know that M̄1 has three kernels. Furthermore, the other eigenvalues of
M̄1 have a lower bound C

`τ . Moreover, we can check that w1,w2,w3 are in the kernels of M̄1. Thus,
we have proved part (a) of Proposition 4.1.
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5. Proof of (3.10)

First, we have the following a priori estimate on the linear equation.

Proposition 5.1. Assume that h is a function such that ‖h‖∗ <∞, where the norm ‖ · ‖∗ is defined
in (2.14). Let φ be a solution of the following equation:

L(φ) = h,

∫
φZij,α = 0 for i = 0, · · · , k − 1, j = 1, · · · ,m+ 2n, α = 1, · · · , N. (5.1)

Then, for large `, there exists a constant C independent of ` such that φ satisfies the following estimate:

‖φ‖∗ ≤ C‖h‖∗. (5.2)

Proof. This can be proved by contradiction. Assume that there exists `n →∞ and φn, hn correspond-
ing to (5.1) such that

‖φn‖∗ = 1, ‖hn‖∗ → 0 as n→∞. (5.3)

In the following, we omit the index n in the absence of ambiguity. Following the argument in
Proposition 3.1 in [19], one can obtain that there exists Rikyj such that

‖φ‖L∞(B(Rikyj ,ρ))
≥ C > 0, (5.4)

for some fixed C and large ρ. By employing elliptic estimates together with the Ascoli-Arzela theorem,
we can find a sequence Rikyj such that φ(x+Rikyj) converges to φ∞, which is a solution of

∆φ∞ − φ∞ + pwp−1φ∞ = 0,

and satisfies the following orthogonality conditions:∫
φ∞

∂w

∂xα
= 0, α = 1, · · · , N.

Thus, φ∞ = 0. This contradicts (5.4), and so this completes the proof.
�

Because

L(Zij,α) = p(|u|p−1 − wp−1(x−Rikyj))Zij,α +O(e−
1+ξ
2 `),

one can easily verify that

‖L(Zij,α)‖∗ ≤ Ce−
1+ξ
2 ` (5.5)

for some ξ that is independent of `, which is assumed to be large, where we have applied the estimate
(2.18).

Thus, from Proposition 5.1 and the estimate (5.5), we obtain that

‖ϕ⊥‖∗ ≤ Ce−
1+ξ
2 `

N∑
α=1

‖cα‖. (5.6)

6. Proof of Proposition 3.1

Let us consider (3.11), with β = 1. That is,

N∑
α=1

cα ·
∫

Zαz1 = −
∫
ϕ⊥z1. (6.1)

First, we write f1 = −
∫
ϕ⊥z1∫

(
∂w(x)
∂x1

)2
. A straightforward computation gives that |f1| ≤ C(2n + m) ×

k‖ϕ⊥‖∗ ≤ `τ‖ϕ⊥‖∗, for a certain constant τ that is independent of `, which is assumed to be large,
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where we have assumed that m,n satisfy (2.9). Second, by direct computation we find for j =
1, · · · ,m+ 1 that∫

Zij,1z1 =

∫
∂u

∂x1
Ri · ∇w(x−Rikyj)dx+O(e−

1+ξ
2 `)

=

∫
B `

2
(Rikyj)

∂u

∂x1
Ri · ∇w(x−Rikyj)dx

+

∫
RN−B `

2
(Rikyj)

∂u

∂x1
Ri · ∇w(x−Rikyj)dx+O(e−

1+ξ
2 `)

= cos θi

∫
(
∂w

∂x1
)2dx+O(e−

(1+ξ)`
2 ).

Similarly, one can obtain that∫
Zij,2z1 =

∫
∂u

∂x1
R⊥i · ∇w(x−Rikyj)dx+O(e−

1+ξ
2 `)

= sin θi

∫
(
∂w

∂x1
)2dx+O(e−

(1+ξ)`
2 ),

and for α = 3, · · · , N , ∫
Zij,αz1 =

∫
∂u

∂x1

∂

∂xα
w(x−Rikyj) = 0,

by the evenness of u in xα.
Moreover, for j = m+ 2, · · · ,m+ 2n we have that∫

Zij,1z1 = − sin(θi +
π

k
)

∫
(
∂w

∂x1
)2 +O(e−

(1+ξ)`
2 ),

∫
Zij,2z1 = cos(θi +

π

k
)

∫
(
∂w

∂x1
)2 +O(e−

(1+ξ)`
2 ),

and ∫
Zij,αz1 = 0

for α = 3, · · · , N .
A direct consequence of the above calculation is that

N∑
α=1

cα ·
∫

Zαz1 = c1 ·



cosk
cosk

cos(θ0)
...

cos(θk−1)
−sin(θ0 + π

k )
...

−sin(θ0 + π
k )


+ c2 ·



sink
sink

sin(θ0)
...

sin(θk−1)
cos(θ0 + π

k )
...

cos(θ0 + π
k )


+O(e−

(1+ξ)`
2 )L

 c1

...
cN

 ,

where L is a linear function whose coefficients are uniformly bounded in ` as ` to ∞. Thus, (3.12)
follows straightforwardly. The proofs of (3.13) to (3.17) are similar, and left to the reader.
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7. Proof of Proposition 3.2

In this section, we prove Proposition 3.2. A key ingredient in the proof is the estimates on the right
hand side of (3.18). We have the following result.

Proposition 7.1. There exist positive constants C and ξ such that for α = 1, · · · , N , it holds that

‖rα‖ ≤ Ce−
1+ξ
2 `‖ϕ⊥‖∗ (7.1)

for any sufficiently large `.

Proof. Recall that

rα =



∫
L(ϕ⊥)Zv,α∫
L(ϕ⊥)Z0

Y1,α
...∫

L(ϕ⊥)Zk−1
Y1,α∫

L(ϕ⊥)Z0
Y2,α

...∫
L(ψ⊥)Zk−1

Y2,α


.

Then, the estimate follows from

|
∫
L(ϕ⊥)Zij,α| ≤ Ce−

1+ξ
2 `‖ϕ⊥‖∗.

To prove the above estimate, we fix, for example j = 1, i = 0, α = 3, and we write∫
L(ϕ⊥)Z0

1,3 =

∫
L(Z0

1,3)ϕ⊥

=

∫
L(
∂w(x− y1)

∂x3
)ϕ⊥ + L(

π3

k
)ϕ⊥

=

∫
p(|u|p−1 − wp−1(x− y1))

∂w(x− y1)

∂x3
ϕ⊥ +O(e−

1+ξ
2 `)‖ϕ⊥‖∗

≤ C
∫
wp−2(x− y1)|∂w(x− y1)

∂x3
|
∑
z∈Πy1

w(x− z) +O(e−
1+ξ
2 `)‖ϕ⊥‖∗

≤ Ce−
1+ξ
2 `‖ϕ⊥‖∗

for some ξ > 0 that is independent of `, which is assumed to be large, where we have used the estimate
for φ in (2.18), i.e.,

‖φ‖∗ ≤ Ce−
1+ξ
2 `.

Thus, we have proved the estimate for α = 3. The other cases can be treated similarly.
�

We have now the tools for the following proof.
Proof of Proposition 3.2. By Proposition 4.1, we need only show the following orthogonality
conditions: (

r1

r2

)
·w1 =

(
r1

r2

)
·w2 =

(
r1

r2

)
·w3 = 0 (7.2)

and

rα ·w4 = rα ·w5 = rα ·w6 = 0. (7.3)
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First, recall that L(z1) = 0. Then, we have that∫
L(z1)ϕ⊥ =

∫
L(ϕ⊥)z1 = 0.

This gives us precisely the first orthogonality condition in (7.2). Similarly, from L(z2) = 0 one can
obtain that ∫

L(z2)ϕ⊥ =

∫
L(ϕ⊥)z2 = 0.

This gives us precisely the second orthogonality condition in (7.2).
For α = 3, · · · , N , it follows from L(zα) = 0 that∫

L(zα)ϕ⊥ =

∫
L(ϕ⊥)zα = 0.

This gives us precisely the first orthogonality condition in (7.3).
Second, let us recall that

L(ϕ⊥) = −
N∑
α=1

cα · L(Zα). (7.4)

Thus, the function x → L(ϕ⊥)(x) is invariant under a rotation by the angle 2π
k in the (x1, x2) plane.

Therefore, we can obtain that

k−1∑
i=0

(

m+1∑
j=1

∫
L(ϕ⊥)|yj |Zij,2 +

m+2n∑
j=m+2

∫
L(ϕ⊥)(Rikyj · niZij,1 −Rikyj · tiZij,2) = 0.

This gives us the third orthogonality condition in (7.2).
For α = 3, · · · , N , we can obtain that

k−1∑
i=0

2m+n∑
j=1

∫
L(ϕ⊥)Zij,αR

i
kyj · e1 = 0,

and
k−1∑
i=0

2m+n∑
j=1

∫
L(ϕ⊥)Zij,αR

i
kyj · e2 = 0.

These give the final two orthogonality conditions in (7.3).
By combining the results of Proposition 4.1 and the a priori estimates in (7.1), we obtain the proof

of Proposition 3.2.

8. Some useful computations

In this section, we compute the entries of the matrices A, B, C, and Hα for α = 3, · · · , N .
We first introduce the following useful functions:

Ψ1(`) =

∫
div(wp(x)e)div(w(x− `e)e)dx, (8.1)

Ψ2(`) =

∫
div(wp(x)e⊥)div(w(x− `e)e⊥)dx, (8.2)

where e is any unit vector. It is simple to check that this definition is independent of the choice of the
unit vector e. It is known that

Ψ1(`) = CN,p,1e
−``−

N−1
2 (1 +O(

1

`
)) (8.3)

and

Ψ2(`) = CN,p,2e
−``−

N+1
2 (1 +O(

1

`
)), (8.4)

where CN,p,i > 0 are constants that depend only on p and N . See, for example, [19, 18] for details.
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In fact, one can see from the definitions of Ψ1 and Ψ that

Ψ′1(`) = 2 sin
π

k
Ψ′1(¯̀)

d¯̀

d`
. (8.5)

By these two definitions, one can easily obtain that∫
pwp−1a · ∇w(x)b · ∇w(x− `e) = (a · e)(b · e)Ψ1(`) + (a · e⊥)(b · e⊥)Ψ2(`).

(8.6)

Computation of A.∫
L(Z0

1,1)Z0
1,1dx =

∫
p(|u|p−1 − wp−1(x− y1))(

∂w(x− y1)

∂x1
)2

= p(p− 1)

∫
wp−2(x− y1)(φ+

∑
z∈Πy1

w(x− z))(∂w(x− y1)

∂x1
)2

+ O(e−(1+ξ)`),

where Πy1 denotes the set of closest neighbors of y1 of Π defined in (2.3). Recall that φ solves the
following equation:

∆φ− φ+ p|U |p−1φ+ E +N(φ) = 0, (8.7)

where

E = ∆U − U + |U |p−1U

and

N(φ) = |U + φ|p−1(U + φ)− |U |p−1U − p|U |p−1φ.

Hence, one has that

p(p− 1)

∫
wp−2φ(

∂w(x− y1)

∂x1
)2

=

∫
∂

∂x1
(pwp−1(x− y1))φ

∂

∂x1
w(x− y1)

= −
∫
pwp−1(x− y1)

∂

∂x1
(φ
∂w(x− y1)

∂x1
)

= −
∫
pwp−1(x− y1)

∂w(x− y1)

∂x1

∂φ

∂x1
−
∫
pwp−1(x− y1)φ

∂2w(x− y1)

∂x2
1

=

∫
[p(|U |p−1 − wp−1(x− y1))φ+ E +N(φ)]

∂2w(x− y1)

∂x2
1

=

∫
E
∂2w(x− y1)

∂x2
1

+O(e−(1+ξ)`)

=

∫
(|U |p−1U − wp(x− y1))

∂2w(x− y1)

∂x2
1

+O(e−(1+ξ)`)

=

∫
pwp−1(x− y1)(

∑
z∈Πy1

w(x− z))∂
2w(x− y1)

∂x2
1

+O(e−(1+ξ)`).
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Taking this into account, we have that∫
L(Z0

1,1)Z0
1,1dx = p(p− 1)

∫
wp−2(

∑
z∈Πy1

w(x− z))(∂w(x− y1)

∂x1
)2

+

∫
pwp−1(x− y1)(

∑
z∈Πy1

w(x− z))∂
2w(x− y1)

∂x2
1

+O(e−(1+ξ)`)

=

∫
∂

∂x1
(pwp−1(x− y1)

∂w(x− y1)

∂x1
)
∑
z∈Πy1

w(x− z)) +O(e−(1+ξ)`)

= −p
∫
wp−1(x− y1)

∂w(x− y1)

∂x1

∑
z∈Πy1

∂w(x− z)
∂x1

) +O(e−(1+ξ)`).

By (8.6), we can obtain that∫
L(Z0

1,α)Z0
1,αdx = −[Ψ1(`) + 2(Ψ1(¯̀) sin2 π

k
+ Ψ2(¯̀) cos2 θ0)].

Next, we consider∫
L(Z0

1,1)Z1
1,1 =

∫
(p|u|p−1 − pwp−1(x− y1))

∂w(x− y1)

∂x1
R1
k · ∇w(x−R1

ky1)

=

∫
pwp−1(x−R1

ky1)
∂w(x− y1)

∂x1
R1
k · ∇w(x−R1

ky1) +O(e−(1+ξ)`)

= − sin2 π

k
Ψ1(¯̀) + cos2 π

k
Ψ2(¯̀) +O(e−(1+ξ)`).

Similarly, one can obtain that∫
L(Z0

1,1)Zk−1
1,1 = − sin2 π

k
Ψ1(¯̀) + cos2 π

k
Ψ2(¯̀) +O(e−(1+ξ)`),∫

L(Z0
1,1)Zji,1 = O(e−(1+ξ)`) for (i, j) 6= (1, 0), (1, 1), (1, k − 1), (2, 0).

Another observation is that ∫
L(Zsi,1)Ztj,1 =

∫
L(Z0

i,1)Zt−sj,1 ,

where we use the notation Zt−sj,1 = Zk+t−s
j,1 if t− s < 0.

Moreover, for i ≥ 2, it holds that

∫
L(Zsi,1)Ztj,1 =



−2Ψ1(`) +O(e−(1+ξ)`), if i = j, s = t, i ≤ m,

Ψ1(`) +O(e−(1+ξ)`) if j = i− 1 or i+ 1, s = t i ≤ m,

2Ψ1(¯̀) +O(e−(1+ξ)`) if i = j, s = t, m+ 2 ≤ i ≤ 2n+m,

Ψ1(¯̀) +O(e−(1+ξ)`) if j = i− 1 or i+ 1, s = t, m+ 2 ≤ i ≤ 2n+m,

−[Ψ1(`)− 2(Ψ1(¯̀) sin2 π
k + Ψ2(¯̀) cos2 π

k )] +O(e−(1+ξ)`)
if i, j = m+ 1, s = t,

Ψ1(¯̀) sin π
k +O(e−(1+ξ)`) if (i, j) = (m+ 1,m+ 2), s = t,

−Ψ1(¯̀) sin π
k +O(e−(1+ξ)`) if (i, j) = (m+ 1,m+ 2n), t = s− 1,

O(e−(1+ξ)`) otherwise .
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Computation of C: Similarly, we have that∫
L(Z0

1,2)Z0
1,2 = −p

∫
wp−1(x− y1)

∂w(x− y1)

∂x2

∑
z∈Πy1

∂w(x− z)
∂x2

) +O(e−(1+ξ)`)

= −
[
Ψ2(`) + 2

(
Ψ1(¯̀) cos2 π

k
+ Ψ2(¯̀) sin2 π

k

)]
+O(e−(1+ξ)`)

and ∫
L(Z0

1,2)Zji,2 =


Ψ1(¯̀) cos2 π

k −Ψ2(¯̀) sin2 π
k +O(e−(1+ξ)`)

if (i, j) = (1, 1) or (1, k − 1),

O(e−(1+ξ)`) otherwise.

(8.8)

Furthermore, for i ≥ 2 one can obtain that

∫
L(Zsi,2)Ztj,2 =



−2Ψ2(`) +O(e−(1+ξ)`), if i = j, s = t, i ≤ m,

Ψ2(`) +O(e−(1+ξ)`) if j = i− 1 or i+ 1, s = t i ≤ m,

2Ψ2(¯̀) +O(e−(1+ξ)`) if i = j, s = t, m+ 2 ≤ i ≤ 2n+m,

Ψ2(¯̀) +O(e−(1+ξ)`) if j = i− 1 or i+ 1, s = t, m+ 2 ≤ i ≤ 2n+m,

−[Ψ2(`)− 2(Ψ1(¯̀) cos2 π
k + Ψ2(¯̀) sin2 π

k )] +O(e−(1+ξ)`)
if i, j = m+ 1, s = t,

Ψ2(¯̀) sin π
k +O(e−(1+ξ)`) if (i, j) = (m+ 1,m+ 2), s = t,

−Ψ2(¯̀) sin π
k +O(e−(1+ξ)`) if (i, j) = (m+ 1,m+ 2n), t = s− 1,

O(e−(1+ξ)`) otherwise .

Computation of B: Next, we consider
∫
L(Zsi,1)Ztj,2 and

∫
L(Zsi,2)Ztj,1. First, by the symmetry we

have that ∫
L(Z0

1,1)Z0
1,2 = 0

and ∫
L(Z0

1,1)Z1
1,2 =

∫
pwp−1(x−R1

ky1)
∂w(x− y1)

∂x1
R1,⊥
k · ∇w(x−R1

ky1)

= sin
π

k
cos

π

k

(
Ψ1(¯̀) + Ψ2(¯̀)

)
+O(e−(1+ξ)`).

Similarly, we can obtain that∫
L(Z0

1,1)Zk−1
1,2 = − sin

π

k
cos

π

k

(
Ψ1(¯̀) + Ψ2(¯̀)

)
+O(e−(1+ξ)`),

∫
L(Z0

m+1,1)Z0
m+2,2 =

∫
L(Z0

m+1,1)Zk−1
2n+m,2 = −Ψ2(¯̀) cos

π

k
+O(e−(1+ξ)`),

and ∫
L(Zsi,1)Ztj,2 = O(e−(1+ξ)`) otherwise .
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Similarly, we have the following expansion for
∫
L(Zsi,2)Ztj,1:

∫
L(Zsi,2)Ztj,1 =



− sin π
k cos πk

(
Ψ1(¯̀) + Ψ2(¯̀)

)
+O(e−(1+ξ)`) if i, j = 1, t = s− 1,

sin π
k cos πk

(
Ψ1(¯̀) + Ψ2(¯̀)

)
+O(e−(1+ξ)`) if i, j = 1, t = s+ 1,

Ψ1(¯̀) cos πk +O(e−(1+ξ)`) if (i, j) = (m+ 2,m+ 1), s = t or
(i, j) = (2n+m,m+ 1), t = s+ 1,

O(e−(1+ξ)`) otherwise .

Computation of Hα: For the matrix Hα for α = 3, · · · , N , the computation is simpler, we directly
employ (8.6) to obtain the following expansion:

∫
L(Zsi,α)Ztj,α =



−
(

Ψ2(`) + 2Ψ2(¯̀)
)

+O(e−(1+ξ)`) if (i, j) = (1, 1), s = t,

Ψ2(¯̀) +O(e−(1+ξ)`) if (i, j) = (1, 1), t = s− 1 or s+ 1,(
2Ψ2(¯̀)−Ψ2(`)

)
+O(e−(1+ξ)`) if (i, j) = (m+ 1,m+ 1), s = t,

−2Ψ2(`) +O(e−(1+ξ)`) if i = j, s = t, 2 ≤ i ≤ m,

Ψ2(`) +O(e−(1+ξ)`) if j = i+ 1 or i− 1, s = t, 2 ≤ i ≤ m,

2Ψ2(¯̀) +O(e−(1+ξ)`) if i = j, s = t,m+ 2 ≤ i ≤ m+ 2n,

Ψ2(¯̀) +O(e−(1+ξ)`) if j = i+ 1 or i− 1, s = t,m+ 2 ≤ i ≤ m+ 2n,

O(e−(1+ξ)`) otherwise.
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