Non-radial solutions to a bi-harmonic equation with negative exponent

Ali Hyder^{*}

Department of Mathematics, University of British Columbia, Vancouver BC V6T1Z2, Canada ali.hyder@math.ubc.ca

Juncheng Wei[†]

Department of Mathematics, University of British Columbia, Vancouver BC V6T1Z2, Canada jcwei@math.ubc.ca

June 22, 2018

Abstract

We prove the existence of non-radial entire solution to

 $\Delta^2 u + u^{-q} = 0 \quad \text{in } \mathbb{R}^3, \quad u > 0,$

for q > 1. This answers an open question raised by P. J. McKenna and W. Reichel (E. J. D. E. **37** (2003) 1-13).

1 Introduction

We consider the following bi-harmonic equation with negative exponent

$$\Delta^2 u + u^{-q} = 0 \quad \text{in } \mathbb{R}^3, \quad u > 0, \tag{1}$$

where q > 0.

For q = 7, problem (1) can be seen as a fourth order analog of the Yamabe equation (see [1, 5, 21]), namely

$$\Delta^2 u = \frac{n-4}{2} u^{\frac{n+4}{n-4}} \quad \text{in } \mathbb{R}^n, \quad u > 0.$$
 (2)

In the recent past, radial solutions to equation (1) have been studied by many authors, especially the existence and asymptotic behavior:

^{*}The author is supported by the Swiss National Science Foundation, Grant No. P2BSP2-172064 †The research is partially supported by NSERC

Theorem A ([5, 6, 8, 11, 16, 20])

- i) There is no entire solution to (1) for $0 < q \leq 1$.
- ii) If u has exact linear growth at infinity, that is,

$$\lim_{|x| \to +\infty} \frac{u(x)}{|x|} = C > 0$$

then q > 3. Moreover, for q = 7, u is given by $u(x) = \sqrt{\sqrt{1/15} + |x|^2}$, and is unique up to dilation and translations.

- iii) For q > 3 there exists radial solution with exact linear growth.
- iv) For q > 1 there exists radial solution with exact quadratic growth, that is,

$$\lim_{|x| \to +\infty} \frac{u(x)}{|x|^2} = C > 0$$

- v) For 1 < q < 3 there exists a radial solution u such that $r^{-\frac{4}{q+1}}u(r) \to C(q) > 0$ as $r \to \infty$ (the constant C(q) is explicitly known).
- vi) For q = 3 there exists a radial solution u such that $r^{-1}(\log r)^{-\frac{1}{4}}u(r) \to 2^{\frac{1}{4}}$ as $r \to \infty$.

It has been shown by Choi-Xu [5] that if u is a solution to (1) with q > 4, and u has exact linear growth at infinity then u satisfies the integral equation

$$u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y|}{u^q(y)} dy + \gamma,$$
(3)

for some $\gamma \in \mathbb{R}$, and $\gamma = 0$ if and only if q = 7. In fact, every positive solution u to

$$(-\Delta)^n u + u^{-(4n-1)} = 0$$
 in \mathbb{R}^{2n-1} , $n \ge 2$,

with exact linear growth at infinity satisfies

$$u(x) = c_n \int_{\mathbb{R}^{2n-1}} \frac{|x-y|}{u^{4n-1}(y)} dy,$$

where c_n is a dimensional constant, see [7], [17]. For the classification of solutions to the above integral equation we refer the reader to [12], [20].

In [16] McKenna-Reichel proved the existence of non-radial solution to

$$\Delta^2 w + w^{-q} = 0 \quad \text{in } \mathbb{R}^n, \quad w > 0 \tag{4}$$

for $n \ge 4$. This was a simple consequence of their existence results to (4) in lower dimension. More precisely, if u is a radial solution to (4) with $n \ge 3$ then w(x) := u(x') is a non-radial solution to $\Delta^2 w + w^{-q} = 0$ in \mathbb{R}^{n+1} , where $x = (x', x'') \in \mathbb{R}^n \times \mathbb{R}$. Then they asked whether in \mathbb{R}^3 non-radial positive entire solution exist. (See [Open Questions (1), [16]].)

We answer this question affirmatively. (See Theorem 1.2 below.) In fact we prove the following theorems.

Theorem 1.1 Let u be a solution to (1) for some q > 1. Assume that

$$\beta := \frac{1}{8\pi} \int_{\mathbb{R}^3} u^{-q} dx < +\infty.$$
(5)

Then, up to a rotation and translation, we have

$$u(x) = (\beta + o(1))|x| + \sum_{i \in \mathcal{I}_1} a_i x_i^2 + \sum_{i \in \mathcal{I}_2} b_i x_i + c, \quad o(1) \xrightarrow{|x| \to \infty} 0, \tag{6}$$

where

$$\mathcal{I}_1, \mathcal{I}_2 \subseteq \{1, 2, 3\}, \quad \mathcal{I}_1 \cap \mathcal{I}_2 = \emptyset, \quad a_i > 0 \text{ for } i \in \mathcal{I}_1, \quad |b_i| < \beta \text{ for } i \in \mathcal{I}_2, \quad c > 0.$$

Theorem 1.2 Let q > 1. Then for every $0 < \kappa_1 < \kappa_2$ there exists a non-radial solution u to (1) such that

$$\liminf_{|x|\to\infty} \frac{u(x)}{|x|^2} = \kappa_1 \quad and \ \limsup_{|x|\to\infty} \frac{u(x)}{|x|^2} = \kappa_2. \tag{7}$$

Theorem 1.3 Let q > 7. Then for every $\kappa > 0$ there exists a non-radial solution u to (1) such that

$$\liminf_{|x|\to\infty} \frac{u(x)}{|x|} \in (0,\infty) \quad and \ \limsup_{|x|\to\infty} \frac{u(x)}{|x|^2} = \kappa.$$

The non-radial solutions constructed in Theorem 1.2 also satisfies the following integral condition

$$\int_{\mathbb{R}^3} u^{-q} dx < +\infty,\tag{8}$$

for $q > \frac{3}{2}$. Note that McKenna-Reichel's non-radial example has infinite L^1 bound: $\int_{\mathbb{R}^{n+1}} w^{-q} dx = +\infty$.

The existence of infinitely many entire non-radial solutions with different growth rates for the conformally invariant equation $\Delta^2 u + u^{-7} = 0$ in \mathbb{R}^3 is in striking contrast to other conformally invariant equations $-\Delta u = u^{\frac{n+2}{n-2}}$ in \mathbb{R}^n , $n \ge 3$ and $(-\Delta)^m u = u^{\frac{n+2m}{n-2m}}$ in \mathbb{R}^n , n > 2m. In both cases all solutions are radially symmetric with respect to some point in \mathbb{R}^n , see [2], [4], [13] and [18].

Our motivation in the proof of Theorems 1.2-1.3 come from a similar phenomena exhibited in the following equation

$$(-\Delta)^{\frac{n}{2}}u = e^{nu} \quad \text{in } \mathbb{R}^n, \quad \int_{\mathbb{R}^n} e^{nu} dx < +\infty.$$
(9)

It has been proved that for $n \ge 4$ problem (9) admits non-radial entire solutions with polynomial growth at infinity, see [3], [9], [10], [14], [15], [19] and the references therein. It is surprising to see that conformally invariant equations with negative powers share similar phenomena.

In the remaining part of the paper we prove Theorems 1.1-1.3 respectively. We also give a new proof of iii)-iv) of Theorem A, see sub-section 2.1.

2 Proof of the theorems

We begin by proving Theorem 1.1.

Proof of Theorem 1.1 Let u be a solution to (1)-(5). We set

$$v(x) := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y| - |y|}{u^q(y)} dy, \quad w := u - v.$$
(10)

Fixing $\varepsilon > 0$ and $R = R(\varepsilon) > 0$ so that

$$\int_{B_R^c} \frac{dx}{u^q(x)} < 8\pi\varepsilon,$$

one gets

$$v(x) \geq \frac{1}{8\pi} \int_{B_R} \frac{|x| - 2|y|}{u^q(y)} dy - \frac{1}{8\pi} \int_{B_R^c} \frac{|x|}{u^q(y)} dy \geq (\beta - 2\varepsilon)|x| - C(R).$$

Using that $||x - y| - |y|| \le |x|$, form (10), we obtain

$$|v(x)| \le \beta |x| \quad \text{in } \mathbb{R}^3.$$

Combining these estimates we deduce that

$$\lim_{|x| \to \infty} \frac{v(x)}{|x|} = \beta.$$

It follows that w satisfies

$$\Delta^2 w = 0 \quad \text{ in } \mathbb{R}^3, \quad w(x) \ge -\beta |x|.$$

and hence, w is a polynomial of degree at most 2, see for instance [14, Theorem 5]. Indeed, up to a rotation and translation, we can write

$$w(x) = \sum_{i \in \mathcal{I}_1} a_i x_i^2 + \sum_{i \in \mathcal{I}_2} b_i x_i + c_0$$

where $\mathcal{I}_1, \mathcal{I}_2$ are two disjoint (possibly empty) subsets of $\{1, 2, 3\}, a_i \neq 0$ for $i \in \mathcal{I}_1$, $b_i \neq 0$ for $i \in \mathcal{I}_2$ and $c_0 \in \mathbb{R}$. Therefore, up to a rotation and translation, we have

$$u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y| - |y|}{u^q(y)} dy + \sum_{i \in \mathcal{I}_1} a_i x_i^2 + \sum_{i \in \mathcal{I}_2} b_i x_i + c$$

Now u > 0 and $|v(x)| \leq \beta |x|$ lead to $a_i > 0$ for $i \in \mathcal{I}_1$, $|b_i| \leq \beta$ for $i \in \mathcal{I}_2$ and c = u(0) > 0.

In order to prove that $|b_i| < \beta$ we assume by contradiction that $|b_{i_0}| = \beta$ for some $i_0 \in \mathcal{I}_2$. Up to relabelling we may assume that $i_0 = 1$. Then

$$u(x) \le C + |b_1x_1| + b_1x_1$$
 on $\mathcal{C} := \{x = (x_1, \bar{x}) \in \mathbb{R} \times \mathbb{R}^2 : |\bar{x}| \le 1\},\$

a contradiction to (5).

We conclude the proof.

Now we move on to the existence results. We look for solutions to (1) of the form u = v + P where P is a polynomial of degree 2. Notice that u = v + P satisfies (1) if and only if v satisfies

$$\Delta^2 v = -(v+P)^{-q}, \quad v+P > 0.$$
(11)

In particular, if $P \ge 0$, and v satisfies the integral equation

$$v(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} |x - y| \frac{1}{(P(y) + v(y))^q} dy,$$
(12)

then v satisfies (11). Thus, we only need to find solutions to (12) (or a variant of it), and we shall do that by a fixed point argument. Let us first define the spaces on which we shall work:

$$X := \left\{ v \in C^0(\mathbb{R}^3) : \|v\|_X < \infty \right\}, \quad \|v\|_X := \sup_{x \in \mathbb{R}^3} \frac{|v(x)|}{1 + |x|},$$
$$X_{ev} := \left\{ v \in X : v(x) = v(-x) \,\forall x \in \mathbb{R}^3 \right\}, \quad \|v\|_{X_{ev}} := \|v\|_X,$$

 $X_{rad} := \{ v \in X : v \text{ is radially symmetric} \}, \quad \|v\|_{X_{rad}} := \|v\|_X.$

The following proposition is crucial in proving Theorem 1.2.

Proposition 2.1 Let P be a positive function on \mathbb{R}^3 such that P(-x) = P(x) and for some q > 0

$$\int_{\mathbb{R}^3} \frac{|x|}{(P(x))^q} dx < \infty.$$

Then there exists a function $v \in X_{ev}$ satisfying $\min_{\mathbb{R}^3} v = v(0) = 0$,

$$v(x) := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y| - |y|}{(P(y) + v(y))^q} dy,$$
(13)

and

$$\lim_{|x| \to \infty} \frac{v(x)}{|x|} = \alpha_{P,v} := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{dy}{(P(y) + v(y))^q}.$$

Moreover, if P is radially symmetric then there exists a solution to (13) in X_{rad} .

Proof. Let us define an operator $T : X_{ev} \to X_{ev}, v \mapsto \overline{v}$, (In case P is radial we restrict the operator T on X_{rad} . Notice that $T(X_{rad}) \subset X_{rad}$.) where

$$\bar{v}(x) := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y| - |y|}{(P(y) + |v(y)|)^q} dy.$$
(14)

We proceed by steps.

Step 1 T is compact.

Using that $||x - y| - |y|| \le |x|$ we bound

$$\|\bar{v}\|_X \le \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{1}{(P(y))^q} dy \le C \quad \text{for every } v \in X.$$
(15)

Differentiating under the integral sign one gets

$$|\nabla \bar{v}(x)| \le \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{1}{(P(y))^q} dy \le C \quad \text{for every } v \in X, \, x \in \mathbb{R}^3$$

We let (v_k) be a sequence in X_{ev} . Then $\bar{v}_k := T(v_k)$ is bounded in $C^1_{loc}(\mathbb{R}^3)$. Moreover, up to a subsequence, for some $c_i \ge 0$ with i = 0, 1, we have

$$\frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|y|^i}{(P(y) + |v_k(y)|)^q} dy \xrightarrow{k \to \infty} c_i.$$

We rewrite (14) (with $v = v_k$ and $\bar{v} = \bar{v}_k$) as

$$\bar{v}_k(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x| - |y|}{(P(y) + |v_k(y)|)^q} dy + \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x - y| - |x|}{(P(y) + |v_k(y)|)^q} dy =: I_{1,k}(x) + I_{2,k}(x).$$

It follows that

$$I_{1,k}(x) \to c_0|x| - c_1$$
 in X.

Using that $||x - y| - |x|| \le |y|$ we bound

$$|I_{2,k}(x)| \le \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|y|}{(P(y))^q} dy \le C.$$

This implies that

$$\lim_{R \to \infty} \sup_{k} \sup_{x \in \mathbb{R}^3 \setminus B_R} \frac{I_{2,k}(x)}{1+|x|} = 0.$$

Since

$$\sup_{k} \sup_{x \in \mathbb{R}^3} |\nabla I_{2,k}(x)| < \infty,$$

up to a subsequence,

$$I_{2,k} \to I \quad \text{in } X_{ev},$$

for some $I \in X_{ev}$. This proves Step 1 as T is continuous.

Step 2 T has a fixed point in X_{ev} .

It follows form (15) that there exists M > 0 such that $T(X_{ev}) \subset \mathcal{B}_M \subset X_{ev}$. In particular, $T(\bar{\mathcal{B}}_M) \subset \mathcal{B}_M$. Hence, by Schauder fixed point theorem there exists a fixed point of T in \mathcal{B}_M .

Step 3 $\lim_{|x|\to\infty} \frac{\overline{v}(x)}{|x|} = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{dy}{(P(y)+|v(y)|)^q} =: \alpha(P, v).$ Step 3 follows from

$$|\bar{v}(x) - \alpha(P, v)|x|| \le \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{||x - y| - |y| - |x||}{(P(y) + |v(y)|)^q} dy \le \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{|y|}{(P(y))^q} dy \le C.$$

Step 4 If v is a fixed point of T then $v \ge 0$.

Differentiating under the integral sign, from (14) one can show that the hessian $D^2 \bar{v}$ is strictly positive definite, and hence \bar{v} is strictly convex. Moreover, using that (P + |v|) is an even function, one obtains $\nabla \bar{v}(0) = 0$. This leads to

$$\min_{x \in \mathbb{R}^3} \bar{v}(x) = \bar{v}(0) = 0.$$

We conclude the proposition.

In the same spirit one can prove the following proposition.

Proposition 2.2 Let P be a positive even function on \mathbb{R}^3 such that for some q > 0

$$\int_{\mathbb{R}^3} \frac{|x|}{(P(x))^q} dx < \infty.$$

Then there exists a positive function $v \in X_{ev}$ satisfying

$$v(x) := \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y|}{(P(y)+v(y))^q} dy, \quad \min_{\mathbb{R}^3} v = v(0).$$
(16)

Proof of Theorem 1.2 Let q > 1 and $0 < \kappa_1 < \kappa_2$ be fixed. For every $\varepsilon > 0$ let $v_{\varepsilon} \in X_{ev}$ be a solution of (13), that is,

$$v_{\varepsilon}(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y| - |y|}{(P_{\varepsilon}(y) + v_{\varepsilon}(y))^q} dy, \tag{17}$$

where

$$P_{\varepsilon}(x) := 1 + \kappa_1 x_1^2 + \kappa_2 (x_2^2 + x_3^2) + \varepsilon |x|^4, \quad x = (x_1, x_2, x_3) \in \mathbb{R}^3.$$

We claim that for every multi-index $\beta \in \mathbb{N}^3$ with $|\beta| = 2$

$$|D^{\beta}v_{\varepsilon}(x)| \le C$$
 on B_2 and $|D^{\beta}v_{\varepsilon}(x)| \le Cf_q(x)$ on B_2^c , (18)

where

$$f_q(x) := \begin{cases} |x|^{-1} & \text{if } q > 3/2\\ |x|^{-1} \log |x| & \text{if } q = 3/2\\ |x|^{2-2q} & \text{if } q < 3/2. \end{cases}$$

For $|\beta| = 2$, differentiating under the integral sign, from (17), we obtain

$$\begin{split} |D^{\beta}v_{\varepsilon}((x))| &\leq C \int_{\mathbb{R}^{3}} \frac{1}{|x-y|} \frac{dy}{(P_{\varepsilon}(y)+v_{\varepsilon}(y))^{q}} \\ &\leq C \int_{\mathbb{R}^{3}} \frac{1}{|x-y|} \frac{dy}{(1+\kappa_{1}|y|^{2})^{q}} \\ &= C \sum_{i=1}^{3} I_{i}(x), \end{split}$$

where

$$I_i(x) := \int_{A_i} \frac{1}{|x-y|} \frac{dy}{(1+\kappa_1|y|^2)^q}, \quad A_1 := B_{\frac{|x|}{2}}, A_2 := B_{2|x|} \setminus A_1, A_3 := \mathbb{R}^3 \setminus B_{2|x|}.$$

Since q > 1 we have $|D^{\beta}v_{\varepsilon}| \leq C$ on B_2 . For $|x| \geq 2$ we bound

$$I_{1}(x) \leq \frac{2}{|x|} \int_{A_{1}} \frac{dy}{(1+\kappa_{1}|y|^{2})^{q}} \leq Cf_{q}(x),$$

$$I_{2}(x) \leq \frac{C}{|x|^{2q}} \int_{A_{2}} \frac{dy}{|x-y|} \leq \frac{C}{|x|^{2q}} \int_{|y| \leq 3|x|} \frac{dy}{|y|} \leq C|x|^{2-2q},$$

$$I_{3}(x) \leq 2 \int_{A_{3}} \frac{dy}{|y|(1+\kappa_{1}|y|^{2})^{q}} \leq C|x|^{2-2q}.$$

This proves (18). Since $v_{\varepsilon}(0) = |\nabla v_{\varepsilon}(0)| = 0$, by (18), we have

$$v_{\varepsilon}(x) \le C \begin{cases} (1+|x|)\log(2+|x|) & \text{if } q > 3/2\\ (1+|x|)(\log(2+|x|))^2 & \text{if } q = 3/2\\ (1+|x|)^{4-2q} & \text{if } q < 3/2. \end{cases}$$
(19)

Therefore, for some $\varepsilon_k \downarrow 0$ we must have $v_{\varepsilon_k} \to v$ in $C^3_{loc}(\mathbb{R}^3)$ for some v in \mathbb{R}^3 , where v satisfies

$$\Delta^2 v = -\frac{1}{(v+P_0)^q} \quad \text{in } \mathbb{R}^3, \quad v \ge 0 \quad \text{in } \mathbb{R}^3, \quad P_0(x) := 1 + \kappa_1 x_1^2 + \kappa_2 (x_2^2 + x_3^2).$$

Hence, $u = v + P_0$ is a solution to (1). Moreover, as v satisfies (19), we have

$$\liminf_{|x| \to \infty} \frac{u(x)}{|x|^2} = \liminf_{|x| \to \infty} \frac{P_0(x)}{|x|^2} = \kappa_1, \quad \limsup_{|x| \to \infty} \frac{u(x)}{|x|^2} = \limsup_{|x| \to \infty} \frac{P_0(x)}{|x|^2} = \kappa_2.$$

This completes the proof.

Proof of Theorem 1.3 Let q > 7 be fixed. Then for every $\varepsilon > 0$ there exists a positive solution v_{ε} to (16) with

$$P(x) = P_{\varepsilon}(x) := 1 + \varepsilon x_1^2 + \kappa (x_2^2 + x_3^2).$$

Setting $u_{\varepsilon} := v_{\varepsilon} + P_{\varepsilon}$ one gets

$$u_{\varepsilon}(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y|}{u_{\varepsilon}^q(y)} dy + P_{\varepsilon}(x), \quad \min_{\mathbb{R}^3} u_{\varepsilon} = u_{\varepsilon}(0).$$
(20)

Since $c_q := \frac{1}{2} - \frac{3}{q-1} > 0$ for q > 7, from (23), one obtains

$$0 = c_q \int_{\mathbb{R}^3} \frac{1}{u_{\varepsilon}^{q-1}(x)} dx + \frac{1}{2} \int_{\mathbb{R}^3} \frac{2x \cdot \nabla P_{\varepsilon}(x) - P_{\varepsilon}(x)}{u^q(x)} dx$$
$$= \frac{1}{2} \int_{\mathbb{R}^3} \frac{3P_{\varepsilon}(x) + 2c_q u_{\varepsilon}(x) - 4}{u_{\varepsilon}^q(x)} dx,$$

which implies that $2c_q u_{\varepsilon}(0) < 4$, that is, $u_{\varepsilon}(0) \leq C$. Therefore, by (20)

$$\frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|y|}{u_{\varepsilon}^q(y)} dy = u_{\varepsilon}(0) - 1 \le C.$$
(21)

Hence, differentiating under the integral sign, from (20)

$$|\nabla(u_{\varepsilon}(x) - P_{\varepsilon}(x))| \le \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{dy}{u_{\varepsilon}^q(y)} \le C.$$

Thus, $(u_{\varepsilon})_{0<\varepsilon\leq 1}$ is bounded in $C^1_{loc}(\mathbb{R}^3)$. This yields

$$u_{\varepsilon}(x) \ge \frac{1}{8\pi} \int_{B_1} \frac{|x-y|}{u_{\varepsilon}^q(y)} dy \ge \delta |x| \quad \text{for } |x| \ge 2,$$

for some $\delta > 0$. Using this, and recalling that q > 4, we deduce

$$\lim_{R \to \infty} \sup_{0 < \varepsilon \le 1} \int_{|y| \ge R} \frac{|y|}{u_{\varepsilon}^q(y)} dy = 0$$

Therefore, for some $\varepsilon_k \downarrow 0$, we have $u_{\varepsilon_k} \to u$, where u satisfies

$$u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y|}{u^q(y)} dy + 1 + \kappa (x_2^2 + x_3^2).$$

We conclude the proof.

2.1 A new proof of iii)-iv) of Theorem A

Proof of *iii*) Let q > 3 be fixed. Then by Proposition 2.1, for every $\varepsilon > 0$, there exists a radial function u_{ε} satisfying

$$u_{\varepsilon}(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y| - |y|}{u_{\varepsilon}^q(y)} dy + 1 + \varepsilon |x|^2, \quad \min_{\mathbb{R}^3} u_{\varepsilon} = u_{\varepsilon}(0) = 1.$$

Since u_{ε} is radially symmetric, one has (see Eq. (3.3) in [5])

$$u_{\varepsilon}(r) \ge \delta(1+r^4)^{\frac{1}{q+1}},$$

for some $\delta > 0$. Therefore, as q > 3

$$\int_{\mathbb{R}^3} \frac{dx}{u_{\varepsilon}^q(x)} \le C \int_{\mathbb{R}^3} \frac{dx}{(1+|x|^4)^{\frac{q}{q+1}}} \le C,$$

which gives

$$|\nabla u_{\varepsilon}(x)| \leq \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{1}{u_{\varepsilon}^q(y)} dy + 2\varepsilon |x| \leq C + 2\varepsilon |x|.$$

As $u_{\varepsilon}(0) = 1$, one would get

$$u_{\varepsilon}(x) \le 1 + C|x| + C\varepsilon |x|^2.$$

Thus, the family $(u_{\varepsilon})_{0 < \varepsilon \leq 1}$ is bounded in $C^1_{loc}(\mathbb{R}^3)$. Hence, for some $\varepsilon_k \downarrow 0$ we have $u_{\varepsilon_k} \to u$ where u satisfies

$$u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y| - |y|}{u^q(y)} dy + 1, \quad \min_{\mathbb{R}^3} u = u(0) = 1.$$

Finally, as before, we have

$$\lim_{|x|\to\infty}\frac{u(x)}{|x|} = \frac{1}{8\pi}\int_{\mathbb{R}^3}\frac{dy}{u^q(y)}.$$

This completes the proof of *iii*).

Proof of iv) Let q > 1 be fixed. Then by Proposition 2.1, for every $\varepsilon > 0$, there exists a non-negative radial function v_{ε} satisfying

$$v_{\varepsilon}(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y| - |y|}{(1+|y|^2 + \varepsilon |y|^4 + v_{\varepsilon}(y))^q} dy.$$

The rest of the proof is similar to that of Theorem 1.2.

In the spirit of [5, Lemma 4.9] we prove the following Pohozaev type identity.

Lemma 2.3 (Pohozaev identity) Let u be a positive solution to

$$u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y|}{u^q(y)} dy + P(x),$$
(22)

for some non-negative polynomial P of degree at most 2 and q > 4. Then

$$\left(\frac{1}{2} - \frac{3}{q-1}\right) \int_{\mathbb{R}^3} \frac{1}{u^{q-1}(x)} dx + \frac{1}{2} \int_{\mathbb{R}^3} \frac{2x \cdot \nabla P(x) - P(x)}{u^q(x)} dx = 0$$
(23)

Proof. Differentiating under the integral sign, from (22)

$$x \cdot \nabla u(x) = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{x \cdot (x-y)}{|x-y|} \frac{1}{u^q(y)} dy + x \cdot \nabla P(x).$$

Multiplying the above identity by $u^{-q}(x)$ and integrating on B_R

$$\int_{B_R} \frac{x \cdot \nabla u(x)}{u^q(x)} dx = \frac{1}{8\pi} \int_{B_R} \int_{\mathbb{R}^3} \frac{x \cdot (x-y)}{|x-y|} \frac{1}{u^q(x)u^q(y)} dy dx + \int_{B_R} \frac{x \cdot \nabla P(x)}{u^q(x)} dx.$$
(24)

Integration by parts yields

$$\int_{B_R} \frac{x \cdot \nabla u(x)}{u^q(x)} dx = \frac{1}{1-q} \int_{B_R} x \cdot \nabla (u^{1-q}(x)) dx$$
$$= -\frac{3}{1-q} \int_{B_R} u^{1-q} dx + \frac{R}{1-q} \int_{\partial B_R} u^{1-q} d\sigma.$$

Since q > 4 and $u(x) \ge \delta |x|$ for some $\delta > 0$ and |x| large

$$\lim_{R \to \infty} R \int_{\partial B_R} u^{1-q} d\sigma = 0$$

Writing $x = \frac{1}{2}((x+y) + (x-y))$, and setting

$$F(x,y) := \frac{(x+y) \cdot (x-y)}{|x-y|} \frac{1}{u^q(x)u^q(y)}$$

we get

$$\begin{split} &\frac{1}{8\pi} \int_{B_R} \int_{\mathbb{R}^3} \frac{x \cdot (x-y)}{|x-y|} \frac{1}{u^q(x)u^q(y)} dy dx \\ &= \frac{1}{2} \int_{B_R} \frac{1}{u^q(x)} \left(\frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{|x-y|}{u^q(y)} dy \right) dx + \frac{1}{16\pi} \int_{B_R} \int_{\mathbb{R}^3} F(x,y) dy dx \\ &= \frac{1}{2} \int_{B_R} \frac{1}{u^q(x)} (u(x) - P(x)) dx + \frac{1}{16\pi} \int_{B_R} \int_{\mathbb{R}^3} F(x,y) dy dx. \end{split}$$

Notice that F(x, y) = -F(y, x). Hence,

$$\int_{B_R} \int_{B_R} F(x, y) dy dx = 0,$$

and

$$\lim_{R \to \infty} \int_{B_R} \int_{\mathbb{R}^3} F(x, y) dy dx = \lim_{R \to \infty} \int_{B_R} \int_{B_R^c} F(x, y) dy dx = 0,$$

where the last equality follows from $|x|u^{-q}(x) \in L^1(\mathbb{R}^3)$. Combining these estimates and taking $R \to \infty$ in (24) one gets (23).

References

- T. P. BRANSON: Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987) 199-291.
- [2] L. CAFFARELLI, B. GIDAS, J. SPRUCK: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271-297.
- [3] S-Y. A. CHANG, W. CHEN: A note on a class of higher order conformally covariant equations, Discrete Contin. Dynam. Systems **63** (2001), 275-281.
- [4] W. CHEN, C. LI: Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622.
- Y. S. CHOI, X. XU: Nonlinear biharmonic equations with negative exponents, J. Diff. Equations, 246 (2009) 216-234.

- [6] T. V. DUOC, Q. A. NGÔ: A note on positive radial solutions of Δ²u+u^{-q} = 0 in ℝ³ with exactly quadratic growth at infinity, Diff. Int. Equations **30** (2017), no. 11-12, 917-928.
- [7] X. FENG, X. XU: Entire solutions of an integral equation in ℝ⁵, ISRN Math. Anal. (2013), Art. ID 384394, 17 pp.
- [8] I. GUERRA: A note on nonlinear biharmonic equations with negative exponents, J. Differential Equations 253 (2012) 3147-3157.
- [9] A. HYDER: Conformally Euclidean metrics on \mathbb{R}^n with arbitrary total Q-curvature, Anal. PDE 10 (2017), no. 3, 635-652.
- [10] A. HYDER, L. MARTINAZZI: Conformal metrics on ℝ^{2m} with constant Qcurvature, prescribed volume and asymptotic behavior, Discrete Contin. Dynam. Systems A. **35** (2015), no. 1, 283-299.
- [11] B. LAI: A new proof of I. Guerra's results concerning nonlinear biharmonic equations with negative exponents, J. Math. Anal. Appl. 418 (2014) 469-475.
- [12] Y. LI: Remarks on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. 6 (2004) 1-28.
- [13] C. S. LIN: A classification of solutions of a conformally invariant fourth order equation in \mathbb{R}^n , Comment. Math. Helv. **73** (1998) 206-231.
- [14] L. MARTINAZZI: Classification of solutions to the higher order Liouville's equation on ℝ^{2m}, Math. Z. 263 (2009), 307-329.
- [15] L. MARTINAZZI: Conformal metrics on R^{2m} with constant Q-curvature and large volume, Ann. Inst. H. Poincar Anal. Non Linaire **30** (2013), no. 6, 969-982.
- [16] P. J. MCKENNA, W. REICHEL: Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differential Equations 37 (2003) 1-13.
- [17] Q. A. NGÔ: Classification of entire solutions of $(-\Delta)^n u + u^{4n-1} = 0$ with exact linear growth at infinity in \mathbb{R}^{2n-1} , Proc. Amer. Math. Soc. **146** (2018), no. 6, 2585-2600.
- [18] J. WEI, X. XU: Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999) no. 2, 207-228.
- [19] J. WEI, D. YE: Nonradial solutions for a conformally invariant fourth order equation in ℝ⁴, Calc. Var. Partial Differential Equations **32** (2008), no. 3, 373-386.
- [20] X. XU: Exact solutions of nonlinear conformally invariant integral equations in ℝ³, Adv. Math. **194** (2005) 485-503.
- [21] P. YANG, M. ZHU: On the Paneitz energy on standard three sphere, ESAIM Control Optim. Calc. Var. 10 (2004), no. 2, 211-223.