Non-radial solutions to a bi-harmonic equation with negative exponent

Ali Hyder*
Department of Mathematics, University of British Columbia, Vancouver BC V6T1Z2, Canada ali.hyder@math.ubc.ca
Juncheng Wei ${ }^{\dagger}$
Department of Mathematics, University of British Columbia, Vancouver BC V6T1Z2, Canada jcwei@math.ubc.ca

June 22, 2018

We prove the existence of non-radial entire solution to

$$
\Delta^{2} u+u^{-q}=0 \quad \text { in } \mathbb{R}^{3}, \quad u>0,
$$

for $q>1$. This answers an open question raised by P. J. McKenna and W. Reichel (E. J. D. E. 37 (2003) 1-13).

1 Introduction

We consider the following bi-harmonic equation with negative exponent

$$
\begin{equation*}
\Delta^{2} u+u^{-q}=0 \quad \text { in } \mathbb{R}^{3}, \quad u>0 \tag{1}
\end{equation*}
$$

where $q>0$.
For $q=7$, problem (1) can be seen as a fourth order analog of the Yamabe equation (see [1, 5, 21]), namely

$$
\begin{equation*}
\Delta^{2} u=\frac{n-4}{2} u^{\frac{n+4}{n-4}} \quad \text { in } \mathbb{R}^{n}, \quad u>0 . \tag{2}
\end{equation*}
$$

In the recent past, radial solutions to equation (1) have been studied by many authors, especially the existence and asymptotic behavior:

[^0]Theorem A ([5, [6, 8, 11, 16, 20])
i) There is no entire solution to (1) for $0<q \leq 1$.
ii) If u has exact linear growth at infinity, that is,

$$
\lim _{|x| \rightarrow+\infty} \frac{u(x)}{|x|}=C>0
$$

then $q>3$. Moreover, for $q=7, u$ is given by $u(x)=\sqrt{\sqrt{1 / 15}+|x|^{2}}$, and is unique up to dilation and translations.
iii) For $q>3$ there exists radial solution with exact linear growth.
iv) For $q>1$ there exists radial solution with exact quadratic growth, that is,

$$
\lim _{|x| \rightarrow+\infty} \frac{u(x)}{|x|^{2}}=C>0 .
$$

v) For $1<q<3$ there exists a radial solution u such that $r^{-\frac{4}{q+1}} u(r) \rightarrow C(q)>0$ as $r \rightarrow \infty$ (the constant $C(q)$ is explicitly known).
vi) For $q=3$ there exists a radial solution u such that $r^{-1}(\log r)^{-\frac{1}{4}} u(r) \rightarrow 2^{\frac{1}{4}}$ as $r \rightarrow \infty$.

It has been shown by Choi-Xu [5] that if u is a solution to (1) with $q>4$, and u has exact linear growth at infinity then u satisfies the integral equation

$$
\begin{equation*}
u(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|}{u^{q}(y)} d y+\gamma, \tag{3}
\end{equation*}
$$

for some $\gamma \in \mathbb{R}$, and $\gamma=0$ if and only if $q=7$. In fact, every positive solution u to

$$
(-\Delta)^{n} u+u^{-(4 n-1)}=0 \quad \text { in } \mathbb{R}^{2 n-1}, \quad n \geq 2,
$$

with exact linear growth at infinity satisfies

$$
u(x)=c_{n} \int_{\mathbb{R}^{2 n-1}} \frac{|x-y|}{u^{4 n-1}(y)} d y,
$$

where c_{n} is a dimensional constant, see [7], [17. For the classification of solutions to the above integral equation we refer the reader to [12, [20].

In 16$]$ McKenna-Reichel proved the existence of non-radial solution to

$$
\begin{equation*}
\Delta^{2} w+w^{-q}=0 \quad \text { in } \mathbb{R}^{n}, \quad w>0 \tag{4}
\end{equation*}
$$

for $n \geq 4$. This was a simple consequence of their existence results to (4) in lower dimension. More precisely, if u is a radial solution to (4) with $n \geq 3$ then $w(x):=$ $u\left(x^{\prime}\right)$ is a non-radial solution to $\Delta^{2} w+w^{-q}=0$ in \mathbb{R}^{n+1}, where $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{n} \times \mathbb{R}$. Then they asked whether in \mathbb{R}^{3} non-radial positive entire solution exist. (See [Open Questions (1), [16]].)

We answer this question affirmatively. (See Theorem 1.2 below.) In fact we prove the following theorems.

Theorem 1.1 Let u be a solution to (1) for some $q>1$. Assume that

$$
\begin{equation*}
\beta:=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} u^{-q} d x<+\infty \tag{5}
\end{equation*}
$$

Then, up to a rotation and translation, we have

$$
\begin{equation*}
u(x)=(\beta+o(1))|x|+\sum_{i \in \mathcal{I}_{1}} a_{i} x_{i}^{2}+\sum_{i \in \mathcal{I}_{2}} b_{i} x_{i}+c, \quad o(1) \xrightarrow{|x| \rightarrow \infty} 0, \tag{6}
\end{equation*}
$$

where

$$
\mathcal{I}_{1}, \mathcal{I}_{2} \subseteq\{1,2,3\}, \quad \mathcal{I}_{1} \cap \mathcal{I}_{2}=\emptyset, \quad a_{i}>0 \text { for } i \in \mathcal{I}_{1}, \quad\left|b_{i}\right|<\beta \text { for } i \in \mathcal{I}_{2}, \quad c>0
$$

Theorem 1.2 Let $q>1$. Then for every $0<\kappa_{1}<\kappa_{2}$ there exists a non-radial solution u to (1) such that

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty} \frac{u(x)}{|x|^{2}}=\kappa_{1} \quad \text { and } \limsup _{|x| \rightarrow \infty} \frac{u(x)}{|x|^{2}}=\kappa_{2} \tag{7}
\end{equation*}
$$

Theorem 1.3 Let $q>7$. Then for every $\kappa>0$ there exists a non-radial solution u to (1) such that

$$
\liminf _{|x| \rightarrow \infty} \frac{u(x)}{|x|} \in(0, \infty) \quad \text { and } \limsup _{|x| \rightarrow \infty} \frac{u(x)}{|x|^{2}}=\kappa
$$

The non-radial solutions constructed in Theorem 1.2 also satisfies the following integral condition

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} u^{-q} d x<+\infty \tag{8}
\end{equation*}
$$

for $q>\frac{3}{2}$. Note that McKenna-Reichel's non-radial example has infinite L^{1} bound: $\int_{\mathbb{R}^{n+1}} w^{-q} d x=+\infty$.

The existence of infinitely many entire non-radial solutions with different growth rates for the conformally invariant equation $\Delta^{2} u+u^{-7}=0$ in \mathbb{R}^{3} is in striking contrast to other conformally invariant equations $-\Delta u=u^{\frac{n+2}{n-2}}$ in $\mathbb{R}^{n}, n \geq 3$ and $(-\Delta)^{m} u=u^{\frac{n+2 m}{n-2 m}}$ in $\mathbb{R}^{n}, n>2 m$. In both cases all solutions are radially symmetric with respect to some point in \mathbb{R}^{n}, see [2], [4], [13] and [18].

Our motivation in the proof of Theorems $1.2,1.3$ come from a similar phenomena exhibited in the following equation

$$
\begin{equation*}
(-\Delta)^{\frac{n}{2}} u=e^{n u} \text { in } \mathbb{R}^{n}, \quad \int_{\mathbb{R}^{n}} e^{n u} d x<+\infty \tag{9}
\end{equation*}
$$

It has been proved that for $n \geq 4$ problem (9) admits non-radial entire solutions with polynomial growth at infinity, see [3], [9], [10], [14], [15], [19] and the references therein. It is surprising to see that conformally invariant equations with negative powers share similar phenomena.

In the remaining part of the paper we prove Theorems 1.1 1.3 respectively. We also give a new proof of $i i i)-i v$) of Theorem A, see sub-section 2.1.

2 Proof of the theorems

We begin by proving Theorem 1.1.
Proof of Theorem 1.1 Let u be a solution to (1)-(5). We set

$$
\begin{equation*}
v(x):=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|-|y|}{u^{q}(y)} d y, \quad w:=u-v . \tag{10}
\end{equation*}
$$

Fixing $\varepsilon>0$ and $R=R(\varepsilon)>0$ so that

$$
\int_{B_{R}^{c}} \frac{d x}{u^{q}(x)}<8 \pi \varepsilon
$$

one gets

$$
v(x) \geq \frac{1}{8 \pi} \int_{B_{R}} \frac{|x|-2|y|}{u^{q}(y)} d y-\frac{1}{8 \pi} \int_{B_{R}^{c}} \frac{|x|}{u^{q}(y)} d y \geq(\beta-2 \varepsilon)|x|-C(R) .
$$

Using that $||x-y|-|y|| \leq|x|$, form 10|, we obtain

$$
|v(x)| \leq \beta|x| \quad \text { in } \mathbb{R}^{3} .
$$

Combining these estimates we deduce that

$$
\lim _{|x| \rightarrow \infty} \frac{v(x)}{|x|}=\beta .
$$

It follows that w satisfies

$$
\Delta^{2} w=0 \quad \text { in } \mathbb{R}^{3}, \quad w(x) \geq-\beta|x|,
$$

and hence, w is a polynomial of degree at most 2 , see for instance [14, Theorem 5]. Indeed, up to a rotation and translation, we can write

$$
w(x)=\sum_{i \in \mathcal{I}_{1}} a_{i} x_{i}^{2}+\sum_{i \in \mathcal{I}_{2}} b_{i} x_{i}+c_{0},
$$

where $\mathcal{I}_{1}, \mathcal{I}_{2}$ are two disjoint (possibly empty) subsets of $\{1,2,3\}, a_{i} \neq 0$ for $i \in \mathcal{I}_{1}$, $b_{i} \neq 0$ for $i \in \mathcal{I}_{2}$ and $c_{0} \in \mathbb{R}$. Therefore, up to a rotation and translation, we have

$$
u(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|-|y|}{u^{q}(y)} d y+\sum_{i \in \mathcal{I}_{1}} a_{i} x_{i}^{2}+\sum_{i \in \mathcal{I}_{2}} b_{i} x_{i}+c .
$$

Now $u>0$ and $|v(x)| \leq \beta|x|$ lead to $a_{i}>0$ for $i \in \mathcal{I}_{1},\left|b_{i}\right| \leq \beta$ for $i \in \mathcal{I}_{2}$ and $c=u(0)>0$.

In order to prove that $\left|b_{i}\right|<\beta$ we assume by contradiction that $\left|b_{i_{0}}\right|=\beta$ for some $i_{0} \in \mathcal{I}_{2}$. Up to relabelling we may assume that $i_{0}=1$. Then

$$
u(x) \leq C+\left|b_{1} x_{1}\right|+b_{1} x_{1} \quad \text { on } \mathcal{C}:=\left\{x=\left(x_{1}, \bar{x}\right) \in \mathbb{R} \times \mathbb{R}^{2}:|\bar{x}| \leq 1\right\},
$$

a contradiction to (5).
We conclude the proof.
Now we move on to the existence results. We look for solutions to (1) of the form $u=v+P$ where P is a polynomial of degree 2 . Notice that $u=v+P$ satisfies (1) if and only if v satisfies

$$
\begin{equation*}
\Delta^{2} v=-(v+P)^{-q}, \quad v+P>0 \tag{11}
\end{equation*}
$$

In particular, if $P \geq 0$, and v satisfies the integral equation

$$
\begin{equation*}
v(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}}|x-y| \frac{1}{(P(y)+v(y))^{q}} d y \tag{12}
\end{equation*}
$$

then v satisfies (11). Thus, we only need to find solutions to (12) (or a variant of it), and we shall do that by a fixed point argument. Let us first define the spaces on which we shall work:

$$
\begin{gathered}
X:=\left\{v \in C^{0}\left(\mathbb{R}^{3}\right):\|v\|_{X}<\infty\right\}, \quad\|v\|_{X}:=\sup _{x \in \mathbb{R}^{3}} \frac{|v(x)|}{1+|x|}, \\
X_{e v}:=\left\{v \in X: v(x)=v(-x) \forall x \in \mathbb{R}^{3}\right\}, \quad\|v\|_{X_{e v}}:=\|v\|_{X}, \\
X_{\text {rad }}:=\{v \in X: v \text { is radially symmetric }\}, \quad\|v\|_{X_{r a d}}:=\|v\|_{X} .
\end{gathered}
$$

The following proposition is crucial in proving Theorem 1.2.
Proposition 2.1 Let P be a positive function on \mathbb{R}^{3} such that $P(-x)=P(x)$ and for some $q>0$

$$
\int_{\mathbb{R}^{3}} \frac{|x|}{(P(x))^{q}} d x<\infty .
$$

Then there exists a function $v \in X_{\text {ev }}$ satisfying $\min _{\mathbb{R}^{3}} v=v(0)=0$,

$$
\begin{equation*}
v(x):=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|-|y|}{(P(y)+v(y))^{q}} d y, \tag{13}
\end{equation*}
$$

and

$$
\lim _{|x| \rightarrow \infty} \frac{v(x)}{|x|}=\alpha_{P, v}:=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{d y}{(P(y)+v(y))^{q}} .
$$

Moreover, if P is radially symmetric then there exists a solution to (13) in $X_{\text {rad }}$.
Proof. Let us define an operator $T: X_{e v} \rightarrow X_{e v}, v \mapsto \bar{v}$, (In case P is radial we restrict the operator T on $X_{\text {rad }}$. Notice that $T\left(X_{r a d}\right) \subset X_{r a d}$.) where

$$
\begin{equation*}
\bar{v}(x):=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|-|y|}{(P(y)+|v(y)|)^{q}} d y . \tag{14}
\end{equation*}
$$

We proceed by steps.
Step $1 T$ is compact.

Using that $||x-y|-|y|| \leq|x|$ we bound

$$
\begin{equation*}
\|\bar{v}\|_{X} \leq \frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{1}{(P(y))^{q}} d y \leq C \quad \text { for every } v \in X \tag{15}
\end{equation*}
$$

Differentiating under the integral sign one gets

$$
|\nabla \bar{v}(x)| \leq \frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{1}{(P(y))^{q}} d y \leq C \quad \text { for every } v \in X, x \in \mathbb{R}^{3} .
$$

We let $\left(v_{k}\right)$ be a sequence in $X_{e v}$. Then $\bar{v}_{k}:=T\left(v_{k}\right)$ is bounded in $C_{l o c}^{1}\left(\mathbb{R}^{3}\right)$. Moreover, up to a subsequence, for some $c_{i} \geq 0$ with $i=0,1$, we have

$$
\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|y|^{i}}{\left(P(y)+\left|v_{k}(y)\right|\right)^{q}} d y \xrightarrow{k \rightarrow \infty} c_{i} .
$$

We rewrite (14) (with $v=v_{k}$ and $\bar{v}=\bar{v}_{k}$) as
$\bar{v}_{k}(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x|-|y|}{\left(P(y)+\left|v_{k}(y)\right|\right)^{q}} d y+\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|-|x|}{\left(P(y)+\left|v_{k}(y)\right|\right)^{q}} d y=: I_{1, k}(x)+I_{2, k}(x)$.
It follows that

$$
I_{1, k}(x) \rightarrow c_{0}|x|-c_{1} \quad \text { in } X .
$$

Using that $||x-y|-|x|| \leq|y|$ we bound

$$
\left|I_{2, k}(x)\right| \leq \frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|y|}{(P(y))^{q}} d y \leq C .
$$

This implies that

$$
\lim _{R \rightarrow \infty} \sup _{k} \sup _{x \in \mathbb{R}^{3} \backslash B_{R}} \frac{I_{2, k}(x)}{1+|x|}=0 .
$$

Since

$$
\sup _{k} \sup _{x \in \mathbb{R}^{3}}\left|\nabla I_{2, k}(x)\right|<\infty,
$$

up to a subsequence,

$$
I_{2, k} \rightarrow I \quad \text { in } X_{e v},
$$

for some $I \in X_{e v}$. This proves Step 1 as T is continuous.
Step $2 T$ has a fixed point in $X_{e v}$.
It follows form (15) that there exists $M>0$ such that $T\left(X_{e v}\right) \subset \mathcal{B}_{M} \subset X_{e v}$. In particular, $T\left(\overline{\mathcal{B}}_{M}\right) \subset \mathcal{B}_{M}$. Hence, by Schauder fixed point theorem there exists a fixed point of T in \mathcal{B}_{M}.
Step $3 \lim _{|x| \rightarrow \infty} \frac{\bar{v}(x)}{|x|}=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{d y}{(P(y)+|v(y)|)^{q}}=: \alpha(P, v)$.
Step 3 follows from

$$
|\bar{v}(x)-\alpha(P, v)| x\left|\left\lvert\, \leq \frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{\| x-y|-|y|-|x||}{(P(y)+|v(y)|)^{q}} d y \leq \frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{|y|}{(P(y))^{q}} d y \leq C .\right.\right.
$$

Step 4 If v is a fixed point of T then $v \geq 0$.
Differentiating under the integral sign, from (14) one can show that the hessian $D^{2} \bar{v}$ is strictly positive definite, and hence \bar{v} is strictly convex. Moreover, using that ($P+|v|$) is an even function, one obtains $\nabla \bar{v}(0)=0$. This leads to

$$
\min _{x \in \mathbb{R}^{3}} \bar{v}(x)=\bar{v}(0)=0 .
$$

We conclude the proposition.
In the same spirit one can prove the following proposition.
Proposition 2.2 Let P be a positive even function on \mathbb{R}^{3} such that for some $q>0$

$$
\int_{\mathbb{R}^{3}} \frac{|x|}{(P(x))^{q}} d x<\infty .
$$

Then there exists a positive function $v \in X_{e v}$ satisfying

$$
\begin{equation*}
v(x):=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|}{(P(y)+v(y))^{q}} d y, \quad \min _{\mathbb{R}^{3}} v=v(0) . \tag{16}
\end{equation*}
$$

Proof of Theorem 1.2 Let $q>1$ and $0<\kappa_{1}<\kappa_{2}$ be fixed. For every $\varepsilon>0$ let $v_{\varepsilon} \in X_{e v}$ be a solution of (13), that is,

$$
\begin{equation*}
v_{\varepsilon}(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|-|y|}{\left(P_{\varepsilon}(y)+v_{\varepsilon}(y)\right)^{q}} d y, \tag{17}
\end{equation*}
$$

where

$$
P_{\varepsilon}(x):=1+\kappa_{1} x_{1}^{2}+\kappa_{2}\left(x_{2}^{2}+x_{3}^{2}\right)+\varepsilon|x|^{4}, \quad x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} .
$$

We claim that for every multi-index $\beta \in \mathbb{N}^{3}$ with $|\beta|=2$

$$
\begin{equation*}
\left|D^{\beta} v_{\varepsilon}(x)\right| \leq C \quad \text { on } B_{2} \quad \text { and }\left|D^{\beta} v_{\varepsilon}(x)\right| \leq C f_{q}(x) \quad \text { on } B_{2}^{c} \text {, } \tag{18}
\end{equation*}
$$

where

$$
f_{q}(x):= \begin{cases}|x|^{-1} & \text { if } q>3 / 2 \\ |x|^{-1} \log |x| & \text { if } q=3 / 2 \\ |x|^{2-2 q} & \text { if } q<3 / 2\end{cases}
$$

For $|\beta|=2$, differentiating under the integral sign, from (17), we obtain

$$
\begin{aligned}
\left|D^{\beta} v_{\varepsilon}((x))\right| & \leq C \int_{\mathbb{R}^{3}} \frac{1}{|x-y|} \frac{d y}{\left(P_{\varepsilon}(y)+v_{\varepsilon}(y)\right)^{q}} \\
& \leq C \int_{\mathbb{R}^{3}} \frac{1}{|x-y|} \frac{d y}{\left(1+\kappa_{1}|y|^{2}\right)^{q}} \\
& =C \sum_{i=1}^{3} I_{i}(x),
\end{aligned}
$$

where

$$
I_{i}(x):=\int_{A_{i}} \frac{1}{|x-y|} \frac{d y}{\left(1+\kappa_{1}|y|^{2}\right)^{q}}, \quad A_{1}:=B_{\frac{|x|}{2}}, A_{2}:=B_{2|x|} \backslash A_{1}, A_{3}:=\mathbb{R}^{3} \backslash B_{2|x|}
$$

Since $q>1$ we have $\left|D^{\beta} v_{\varepsilon}\right| \leq C$ on B_{2}. For $|x| \geq 2$ we bound

$$
\begin{gathered}
I_{1}(x) \leq \frac{2}{|x|} \int_{A_{1}} \frac{d y}{\left(1+\kappa_{1}|y|^{2}\right)^{q}} \leq C f_{q}(x), \\
I_{2}(x) \leq \frac{C}{|x|^{2 q}} \int_{A_{2}} \frac{d y}{|x-y|} \leq \frac{C}{|x|^{2 q}} \int_{|y| \leq 3|x|} \frac{d y}{|y|} \leq C|x|^{2-2 q}, \\
I_{3}(x) \leq 2 \int_{A_{3}} \frac{d y}{|y|\left(1+\kappa_{1}|y|^{2}\right)^{q}} \leq C|x|^{2-2 q} .
\end{gathered}
$$

This proves (18). Since $v_{\varepsilon}(0)=\left|\nabla v_{\varepsilon}(0)\right|=0$, by (18), we have

$$
v_{\varepsilon}(x) \leq C \begin{cases}(1+|x|) \log (2+|x|) & \text { if } q>3 / 2 \tag{19}\\ (1+|x|)(\log (2+|x|))^{2} & \text { if } q=3 / 2 \\ (1+|x|)^{4-2 q} & \text { if } q<3 / 2\end{cases}
$$

Therefore, for some $\varepsilon_{k} \downarrow 0$ we must have $v_{\varepsilon_{k}} \rightarrow v$ in $C_{l o c}^{3}\left(\mathbb{R}^{3}\right)$ for some v in \mathbb{R}^{3}, where v satisfies

$$
\Delta^{2} v=-\frac{1}{\left(v+P_{0}\right)^{q}} \quad \text { in } \mathbb{R}^{3}, \quad v \geq 0 \quad \text { in } \mathbb{R}^{3}, \quad P_{0}(x):=1+\kappa_{1} x_{1}^{2}+\kappa_{2}\left(x_{2}^{2}+x_{3}^{2}\right) .
$$

Hence, $u=v+P_{0}$ is a solution to (11). Moreover, as v satisfies (19), we have

$$
\liminf _{|x| \rightarrow \infty} \frac{u(x)}{|x|^{2}}=\liminf _{|x| \rightarrow \infty} \frac{P_{0}(x)}{|x|^{2}}=\kappa_{1}, \quad \limsup _{|x| \rightarrow \infty} \frac{u(x)}{|x|^{2}}=\limsup _{|x| \rightarrow \infty} \frac{P_{0}(x)}{|x|^{2}}=\kappa_{2} .
$$

This completes the proof.

Proof of Theorem 1.3 Let $q>7$ be fixed. Then for every $\varepsilon>0$ there exists a positive solution v_{ε} to (16) with

$$
P(x)=P_{\varepsilon}(x):=1+\varepsilon x_{1}^{2}+\kappa\left(x_{2}^{2}+x_{3}^{2}\right) .
$$

Setting $u_{\varepsilon}:=v_{\varepsilon}+P_{\varepsilon}$ one gets

$$
\begin{equation*}
u_{\varepsilon}(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|}{u_{\varepsilon}^{q}(y)} d y+P_{\varepsilon}(x), \quad \min _{\mathbb{R}^{3}} u_{\varepsilon}=u_{\varepsilon}(0) . \tag{20}
\end{equation*}
$$

Since $c_{q}:=\frac{1}{2}-\frac{3}{q-1}>0$ for $q>7$, from (23), one obtains

$$
\begin{aligned}
0 & =c_{q} \int_{\mathbb{R}^{3}} \frac{1}{u_{\varepsilon}^{q-1}(x)} d x+\frac{1}{2} \int_{\mathbb{R}^{3}} \frac{2 x \cdot \nabla P_{\varepsilon}(x)-P_{\varepsilon}(x)}{u^{q}(x)} d x \\
& =\frac{1}{2} \int_{\mathbb{R}^{3}} \frac{3 P_{\varepsilon}(x)+2 c_{q} u_{\varepsilon}(x)-4}{u_{\varepsilon}^{q}(x)} d x,
\end{aligned}
$$

which implies that $2 c_{q} u_{\varepsilon}(0)<4$, that is, $u_{\varepsilon}(0) \leq C$. Therefore, by (20)

$$
\begin{equation*}
\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|y|}{u_{\varepsilon}^{q}(y)} d y=u_{\varepsilon}(0)-1 \leq C . \tag{21}
\end{equation*}
$$

Hence, differentiating under the integral sign, from (20)

$$
\left|\nabla\left(u_{\varepsilon}(x)-P_{\varepsilon}(x)\right)\right| \leq \frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{d y}{u_{\varepsilon}^{q}(y)} \leq C .
$$

Thus, $\left(u_{\varepsilon}\right)_{0<\varepsilon \leq 1}$ is bounded in $C_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right)$. This yields

$$
u_{\varepsilon}(x) \geq \frac{1}{8 \pi} \int_{B_{1}} \frac{|x-y|}{u_{\varepsilon}^{q}(y)} d y \geq \delta|x| \quad \text { for }|x| \geq 2,
$$

for some $\delta>0$. Using this, and recalling that $q>4$, we deduce

$$
\lim _{R \rightarrow \infty} \sup _{0<\varepsilon \leq 1} \int_{|y| \geq R} \frac{|y|}{u_{\varepsilon}^{q}(y)} d y=0 .
$$

Therefore, for some $\varepsilon_{k} \downarrow 0$, we have $u_{\varepsilon_{k}} \rightarrow u$, where u satisfies

$$
u(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|}{u^{q}(y)} d y+1+\kappa\left(x_{2}^{2}+x_{3}^{2}\right) .
$$

We conclude the proof.

2.1 A new proof of $i i i)-i v$) of Theorem A

Proof of iii) Let $q>3$ be fixed. Then by Proposition 2.1, for every $\varepsilon>0$, there exists a radial function u_{ε} satisfying

$$
u_{\varepsilon}(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|-|y|}{u_{\varepsilon}^{q}(y)} d y+1+\varepsilon|x|^{2}, \quad \min _{\mathbb{R}^{3}} u_{\varepsilon}=u_{\varepsilon}(0)=1 .
$$

Since u_{ε} is radially symmetric, one has (see Eq. (3.3) in [5)

$$
u_{\varepsilon}(r) \geq \delta\left(1+r^{4}\right)^{\frac{1}{q+1}}
$$

for some $\delta>0$. Therefore, as $q>3$

$$
\int_{\mathbb{R}^{3}} \frac{d x}{u_{\varepsilon}^{q}(x)} \leq C \int_{\mathbb{R}^{3}} \frac{d x}{\left(1+|x|^{4}\right)^{\frac{q}{q+1}}} \leq C,
$$

which gives

$$
\left|\nabla u_{\varepsilon}(x)\right| \leq \frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{1}{u_{\varepsilon}^{q}(y)} d y+2 \varepsilon|x| \leq C+2 \varepsilon|x| .
$$

As $u_{\varepsilon}(0)=1$, one would get

$$
u_{\varepsilon}(x) \leq 1+C|x|+C \varepsilon|x|^{2} .
$$

Thus, the family $\left(u_{\varepsilon}\right)_{0<\varepsilon \leq 1}$ is bounded in $C_{l o c}^{1}\left(\mathbb{R}^{3}\right)$. Hence, for some $\varepsilon_{k} \downarrow 0$ we have $u_{\varepsilon_{k}} \rightarrow u$ where u satisfies

$$
u(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|-|y|}{u^{q}(y)} d y+1, \quad \min _{\mathbb{R}^{3}} u=u(0)=1 .
$$

Finally, as before, we have

$$
\lim _{|x| \rightarrow \infty} \frac{u(x)}{|x|}=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{d y}{u^{q}(y)} .
$$

This completes the proof of $i i i$).
Proof of $i v$) Let $q>1$ be fixed. Then by Proposition 2.1, for every $\varepsilon>0$, there exists a non-negative radial function v_{ε} satisfying

$$
v_{\varepsilon}(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|-|y|}{\left(1+|y|^{2}+\varepsilon|y|^{4}+v_{\varepsilon}(y)\right)^{q}} d y .
$$

The rest of the proof is similar to that of Theorem 1.2 .
In the spirit of [5, Lemma 4.9] we prove the following Pohozaev type identity.
Lemma 2.3 (Pohozaev identity) Let u be a positive solution to

$$
\begin{equation*}
u(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|}{u^{q}(y)} d y+P(x), \tag{22}
\end{equation*}
$$

for some non-negative polynomial P of degree at most 2 and $q>4$. Then

$$
\begin{equation*}
\left(\frac{1}{2}-\frac{3}{q-1}\right) \int_{\mathbb{R}^{3}} \frac{1}{u^{q-1}(x)} d x+\frac{1}{2} \int_{\mathbb{R}^{3}} \frac{2 x \cdot \nabla P(x)-P(x)}{u^{q}(x)} d x=0 \tag{23}
\end{equation*}
$$

Proof. Differentiating under the integral sign, from (22)

$$
x \cdot \nabla u(x)=\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{x \cdot(x-y)}{|x-y|} \frac{1}{u^{q}(y)} d y+x \cdot \nabla P(x) .
$$

Multiplying the above identity by $u^{-q}(x)$ and integrating on B_{R}

$$
\begin{equation*}
\int_{B_{R}} \frac{x \cdot \nabla u(x)}{u^{q}(x)} d x=\frac{1}{8 \pi} \int_{B_{R}} \int_{\mathbb{R}^{3}} \frac{x \cdot(x-y)}{|x-y|} \frac{1}{u^{q}(x) u^{q}(y)} d y d x+\int_{B_{R}} \frac{x \cdot \nabla P(x)}{u^{q}(x)} d x . \tag{24}
\end{equation*}
$$

Integration by parts yields

$$
\begin{aligned}
\int_{B_{R}} \frac{x \cdot \nabla u(x)}{u^{q}(x)} d x & =\frac{1}{1-q} \int_{B_{R}} x \cdot \nabla\left(u^{1-q}(x)\right) d x \\
& =-\frac{3}{1-q} \int_{B_{R}} u^{1-q} d x+\frac{R}{1-q} \int_{\partial B_{R}} u^{1-q} d \sigma .
\end{aligned}
$$

Since $q>4$ and $u(x) \geq \delta|x|$ for some $\delta>0$ and $|x|$ large

$$
\lim _{R \rightarrow \infty} R \int_{\partial B_{R}} u^{1-q} d \sigma=0
$$

Writing $x=\frac{1}{2}((x+y)+(x-y))$, and setting

$$
F(x, y):=\frac{(x+y) \cdot(x-y)}{|x-y|} \frac{1}{u^{q}(x) u^{q}(y)}
$$

we get

$$
\begin{aligned}
& \frac{1}{8 \pi} \int_{B_{R}} \int_{\mathbb{R}^{3}} \frac{x \cdot(x-y)}{|x-y|} \frac{1}{u^{q}(x) u^{q}(y)} d y d x \\
& =\frac{1}{2} \int_{B_{R}} \frac{1}{u^{q}(x)}\left(\frac{1}{8 \pi} \int_{\mathbb{R}^{3}} \frac{|x-y|}{u^{q}(y)} d y\right) d x+\frac{1}{16 \pi} \int_{B_{R}} \int_{\mathbb{R}^{3}} F(x, y) d y d x \\
& =\frac{1}{2} \int_{B_{R}} \frac{1}{u^{q}(x)}(u(x)-P(x)) d x+\frac{1}{16 \pi} \int_{B_{R}} \int_{\mathbb{R}^{3}} F(x, y) d y d x .
\end{aligned}
$$

Notice that $F(x, y)=-F(y, x)$. Hence,

$$
\int_{B_{R}} \int_{B_{R}} F(x, y) d y d x=0
$$

and

$$
\lim _{R \rightarrow \infty} \int_{B_{R}} \int_{\mathbb{R}^{3}} F(x, y) d y d x=\lim _{R \rightarrow \infty} \int_{B_{R}} \int_{B_{R}^{c}} F(x, y) d y d x=0
$$

where the last equality follows from $|x| u^{-q}(x) \in L^{1}\left(\mathbb{R}^{3}\right)$. Combining these estimates and taking $R \rightarrow \infty$ in (24) one gets 23 .

References

[1] T. P. Branson: Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987) 199-291.
[2] L. Caffarelli, B. Gidas, J. Spruck: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271-297.
[3] S-Y. A. Chang, W. Chen: A note on a class of higher order conformally covariant equations, Discrete Contin. Dynam. Systems 63 (2001), 275-281.
[4] W. Chen, C. Li: Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615-622.
[5] Y. S. Choi, X. Xu: Nonlinear biharmonic equations with negative exponents, J. Diff. Equations, 246 (2009) 216-234.
[6] T. V. Duoc, Q. A. Ngô: A note on positive radial solutions of $\Delta^{2} u+u^{-q}=0$ in \mathbb{R}^{3} with exactly quadratic growth at infinity, Diff. Int. Equations 30 (2017), no. 11-12, 917-928.
[7] X. Feng, X. Xu: Entire solutions of an integral equation in \mathbb{R}^{5}, ISRN Math. Anal. (2013), Art. ID 384394, 17 pp.
[8] I. Guerra: A note on nonlinear biharmonic equations with negative exponents, J. Differential Equations 253 (2012) 3147-3157.
[9] A. Hyder: Conformally Euclidean metrics on \mathbb{R}^{n} with arbitrary total Q curvature, Anal. PDE 10 (2017), no. 3, 635-652.
[10] A. Hyder, L. Martinazzi: Conformal metrics on $\mathbb{R}^{2 m}$ with constant Q curvature, prescribed volume and asymptotic behavior, Discrete Contin. Dynam. Systems A. 35 (2015), no. 1, 283-299.
[11] B. Lai: A new proof of I. Guerra's results concerning nonlinear biharmonic equations with negative exponents, J. Math. Anal. Appl. 418 (2014) 469-475.
[12] Y. Li: Remarks on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. 6 (2004) 1-28.
[13] C. S. Lin: A classification of solutions of a conformally invariant fourth order equation in \mathbb{R}^{n}, Comment. Math. Helv. 73 (1998) 206-231.
[14] L. Martinazzi: Classification of solutions to the higher order Liouville's equation on $\mathbb{R}^{2 m}$, Math. Z. 263 (2009), 307-329.
[15] L. Martinazzi: Conformal metrics on $\mathbb{R}^{2 m}$ with constant Q-curvature and large volume, Ann. Inst. H. Poincar Anal. Non Linaire 30 (2013), no. 6, 969982.
[16] P. J. McKenna, W. Reichel: Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differential Equations 37 (2003) 1-13.
[17] Q. A. NGÔ: Classification of entire solutions of $(-\Delta)^{n} u+u^{4 n-1}=0$ with exact linear growth at infinity in $\mathbb{R}^{2 n-1}$, Proc. Amer. Math. Soc. 146 (2018), no. 6, 2585-2600.
[18] J. Wei, X. Xu: Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999) no. 2, 207-228.
[19] J. Wei, D. Ye: Nonradial solutions for a conformally invariant fourth order equation in \mathbb{R}^{4}, Calc. Var. Partial Differential Equations 32 (2008), no. 3, 373386.
[20] X. Xu: Exact solutions of nonlinear conformally invariant integral equations in \mathbb{R}^{3}, Adv. Math. 194 (2005) 485-503.
[21] P. Yang, M. Zhu: On the Paneitz energy on standard three sphere, ESAIM Control Optim. Calc. Var. 10 (2004), no. 2, 211-223.

[^0]: *The author is supported by the Swiss National Science Foundation, Grant No. P2BSP2-172064
 ${ }^{\dagger}$ The research is partially supported by NSERC

