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Abstract The linear stability of steady-state periodic patterns of localized spots in R
2

for the two-component Gierer–Meinhardt (GM) and Schnakenberg reaction–diffusion
models is analyzed in the semi-strong interaction limit corresponding to an asymptot-
ically small diffusion coefficient ε2 of the activator concentration. In the limit ε → 0,
localized spots in the activator are centered at the lattice points of a Bravais lattice with
constant area |�|. To leading order in ν = −1/ log ε, the linearization of the steady-
state periodic spot pattern has a zero eigenvalue when the inhibitor diffusivity satisfies
D = D0/ν for some D0 independent of the lattice and the Bloch wavevector kkk. From a
combination of the method of matched asymptotic expansions, Floquet–Bloch theory,
and the rigorous study of certain nonlocal eigenvalue problems, an explicit analytical
formula for the continuous band of spectrum that lies within an O(ν) neighborhood of
the origin in the spectral plane is derived when D = D0/ν + D1, where D1 = O(1)

is a detuning parameter. The periodic pattern is linearly stable when D1 is chosen
small enough so that this continuous band is in the stable left half-plane Re(λ) < 0 for
all kkk. Moreover, for both the Schnakenberg and GM models, our analysis identifies a
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model-dependent objective function, involving the regular part of the Bloch Green’s
function, that must be maximized in order to determine the specific periodic arrange-
ment of localized spots that constitutes a linearly stable steady-state pattern for the
largest value of D. From a numerical computation, based on an Ewald-type algorithm,
of the regular part of the Bloch Green’s function that defines the objective function,
it is shown within the class of oblique Bravais lattices that a regular hexagonal lattice
arrangement of spots is optimal for maximizing the stability threshold in D.

Keywords Singular perturbations · Localized spots · Logarithmic expansions ·
Bravais lattice · Floquet–Bloch theory · Green’s function · Nonlocal eigenvalue
problem

1 Introduction

Spatially localized spot patterns occur for various classes of reaction–diffusion (RD)
systems with diverse applications to theoretical chemistry, biological morphogenesis,
and applied physics. A survey of experimental and theoretical studies, through RD
modeling, of localized spot patterns in various chemical contexts is given in Vanag
and Epstein (2007). Localized spot patterns have also been analyzed for complex-
valued partial differential equation (PDE) models arising in the field of nonlinear
optics. In this different context, the formation of clusters of localized spots of light
in a driven optical cavity was analyzed in Vladimirov et al. (2002). Owing to the
widespread occurrence of localized patterns in various scientific applications, there has
been considerable focus over the past decade on developing a theoretical understanding
of the dynamics and stability of localized solutions to singularly perturbed RD systems.
A brief survey of some open directions for the theoretical study of localized patterns
in various applications is given in Knobloch (2008). More generally, a wide range of
topics in the analysis of far-from-equilibrium patterns modeled by PDE systems are
discussed in Nishiura (2002).

In the singularly perturbed limit, many two-component RD systems allow for the
existence of localized spot patterns where one or both of the solution components
concentrate, or localize, at certain points in the domain. For the case where only one
of the two solution components is localized, the spots are said to exhibit semi-strong
interactions. The goal of this paper is to analyze the linear stability of steady-state
periodic patterns of localized spots in R

2 for two-component RD systems in the semi-
strong interaction regime characterized by an asymptotically large diffusivity ratio.
For concreteness, we will focus our analysis on two specific models. One model is a
simplified Schnakenberg-type system,

vt = ε2�v − v + uv2, τut = D�u + a − ε−2uv2, (1.1)

where 0 < ε � 1, D > 0, τ > 0, and a > 0 are parameters. The second model is the
prototypical Gierer–Meinhardt (GM) model formulated as

vt = ε2�v − v + v2/u , τut = D�u − u + ε−2v2, (1.2)

where 0 < ε � 1, D > 0, and τ > 0 are parameters.
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Our linear stability analysis for these two models will focus on the semi-strong
interaction regime characterized by ε → 0 with D = O(1). For ε → 0, the localized
spots for v are taken to be centered at the lattice points of a general Bravais lattice
�, where the area |�| of the primitive cell is held constant. A brief outline of lattices
and reciprocal lattices is given in Sect. 2.1. Our main goal for the Schnakenberg and
GM models is to formulate an explicit objective function to be maximized that will
identify the specific lattice arrangement of localized spots that is a linearly stable
steady-state pattern for the largest value of D. Through a numerical computation of
this objective function we will show that it is a regular hexagonal lattice arrangement
of spots that yields this optimal stability threshold. This objective function is described
subsequently in more detail.

There is a rather extensive literature on the existence and stability of one-
dimensional spike patterns for two-component RD systems in the semi-strong regime.
In Doelman et al. (2001, 2002) the existence and stability of spike patterns for the GM
and Gray–Scott (GS) models on the infinite line was analyzed using geometric singular
perturbation theory and Evans function techniques. These techniques, together with a
Floquet-based analysis, were used in Van der Ploeg and Doelman (2005) to analyze
the stability of spatially periodic spikes for the GM model on the infinite line. On a
bounded one-dimensional domain with homogeneous Neumann boundary conditions,
the stability of N -spike steady-state solutions was analyzed in Iron et al. (2001) and
Ward and Wei (2003) through a detailed study of certain nonlocal eigenvalue problems.
On a bounded two-dimensional domain with Neumann boundary conditions, a leading
order in ν = −1/ log ε rigorous theory was developed to analyze the stability of mul-
tispot steady-state patterns for the GM model [cf. Wei (1999), Wei and Winter (2001)],
the Schnakenberg model [cf. Wei and Winter (2008)], and the GS model [cf. Wei and
Winter (2003)] in the parameter regime where D = D0/ν � 1. For the Schnaken-
berg and GM models, the leading-order stability threshold for D0 corresponding to a
zero-eigenvalue crossing was determined explicitly. A hybrid asymptotic-numerical
theory to study the stability, dynamics, and self-replication patterns of spots, which is
accurate to all powers in ν, was developed for the Schnakenberg model in Kolokol-
nikov et al. (2009) and for the GS model in Chen and Ward (2011). In Muratov and
Osipov (2000, 2002), the stability and self-replication behavior of a one-spot solution
for the GS model was analyzed.

One of the key features of the finite-domain problem in comparison with the periodic
problem is that the spectrum of the linearization of the former is discrete rather than
continuous. As far as we are aware, to date there has been no analytical study of the
stability of periodic patterns of localized spots in R

2 on Bravais lattices for singularly
perturbed two-component RD systems. In the weakly nonlinear Turing regime, an
analysis of the stability of patterns on Bravais lattices in R

3 using group-theoretic
tools of bifurcation theory with symmetry was done in Callahan and Knobloch (1997,
2001).

Using the method of matched asymptotic expansions, in the limit ε → 0 a steady-
state localized spot solution is constructed for (1.1) and for (1.2) within the fundamental
Wigner–Seitz cell of the lattice. The solution is then extended periodically to all of
R

2. The stability of this solution with respect to O(1) time-scale instabilities arising
from zero-eigenvalue crossings is then investigated by first using the Floquet–Bloch
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theorem [cf. Krichever (1989), Kuchment (1993)] to formulate a singularly perturbed
eigenvalue problem in the Wigner–Seitz cell � with quasi-periodic boundary condi-
tions on ∂� involving the Bloch vector kkk. In Sect. 2.2, the Floquet–Bloch theory is
formulated and a few key properties of the Bloch Green’s function for the Laplacian
are proved. In Sects. 3 and 4, the spectrum of the linearized eigenvalue problem is ana-
lyzed using the method of matched asymptotic expansions, combined with a spectral
analysis based on perturbations of a nonlocal eigenvalue problem. More specifically,
to leading order in ν = −1/ log ε it is shown that a zero-eigenvalue crossing occurs
when D ∼ D0/ν, where D0 is a constant that depends on the parameters in the RD
system but is independent of the lattice geometry, except through the area |�| of the
Wigner–Seitz cell. Therefore, to leading order in ν, the stability threshold is the same
for any periodic spot pattern on a Bravais lattice � when |�| is held fixed. To determine
the effect of the lattice geometry on the stability threshold, an expansion to a higher
order in ν must be undertaken. In related singularly perturbed eigenvalue problems for
the Laplacian in two-dimensional domains with holes, the leading-order eigenvalue
asymptotics in the limit of small hole radius only depends on the number of holes and
the area of the domain and not on the arrangement of the holes within the domain.
An analytical theory to calculate higher-order terms in the eigenvalue asymptotics for
these problems, which have applications to narrow-escape and capture phenomena in
mathematical biology, is given in Ward et al. (1993), Kolokolnikov et al. (2005), and
Pillay et al. (2010).

To determine a higher-order approximation for the stability threshold for the peri-
odic spot problem, we perform a more refined perturbation analysis in order to calculate
the continuous band λ ∼ νλ1(kkk, D1,�) of spectra that lies within an O(ν) neighbor-
hood of the origin, i.e., that satisfies |λ(kkk, D1,�)| ≤ O(ν), when D = D0/ν + D1
for some detuning parameter D1 = O(1). This band is found to depend on the lattice
geometry � through the regular part of certain Green’s functions. For the Schnaken-
berg model, λ1 depends on the regular part Rb0(kkk) of the Bloch Green’s function for
the Laplacian, which depends on both kkk and the lattice. For the GM model, λ1 depends
on both Rb0(kkk) and the regular part R0p of the periodic source-neutral Green’s func-
tion on �. For both models, this band of continuous spectrum that lies near the origin
when D − D0/ν = O(1) is proved to be real-valued.

For both the Schnakenberg and GM models, the detuning parameter D1 on a given
lattice is chosen so that λ1 < 0 for all kkk. Then, to determine the lattice for which
the steady-state spot pattern is linearly stable for the largest possible value of D, we
simply maximize D1 with respect to the lattice geometry. In this way, for each of
the two RD models we derive a model-dependent objective function in terms of the
regular parts of certain Green’s functions that must be maximized to determine the
specific periodic arrangement of localized spots that is linearly stable for the largest
value of D. The model-dependent objective function K has the general form

K ≡ a min
kkk

Rb0(kkk) − bR0p

for some constants a > 0 and b ≥ 0. Here Rb0(kkk) is the regular part of the Bloch
Green’s function for the Laplacian with Bloch wavevector kkk, and R0p is the regular
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part of the periodic source-neutral Green’s function defined on the Wigner–Seitz cell.
The calculation of the continuous band of spectra near the origin, and the derivation
of the specific objective function to be maximized so as to identify the optimal lattice,
is done for the Schnakenberg and GM models in Sects. 3 and 4, respectively.

In Sects. 5.1 and 5.2, we exhibit a very simple alternative method to readily identify
this objective function for the Schnakenberg and GM models, respectively. In Sect. 5.3,
this simple alternative method is then used to determine an optimal lattice arrangement
of spots for the GS RD model by first calculating the objective function specific to the
GS model.

In Sect. 6, we show how to numerically compute the regular part Rb0(kkk) of the
Bloch Green’s function for the Laplacian that is key for identifying the optimal lattice.
Similar Green’s functions, but for the Helmholtz operator, arise in the linearized theory
of the scattering of water waves by a periodic arrangement of obstacles, and in related
wave phenomena in electromagnetics and photonics. The numerical computation of
Bloch Green’s functions is well known to be a challenging problem owing to the very
slow convergence of their infinite series representations in the spatial domain, and
methodologies to improve the convergence properties based on the Poisson summation
formula are surveyed in Linton (2010) and Moroz (2006). The numerical approach
we use to compute Rb0(kkk) is an Ewald summation method, based on the Poisson
summation formula involving the direct and reciprocal lattices and follows closely the
methodology developed in Beylkin et al. (2008, 2009). Our numerical results show
that within the class of oblique Bravais lattices having a common area |�| of the
primitive cell, it is a regular hexagonal lattice that optimizes the stability threshold for
the Schnakenberg, GM, and GS models.

Finally, optimal lattice arrangements of localized structures in other PDE models
having a variational structure, such as the study of vortices in Ginzburg–Landau the-
ory [cf. Sandier and Serfaty (2012)], the analysis of Abrikosov vortex lattices in the
magnetic Ginzburg–Landau system [cf. Sigal and Tzaneteas (2012a,b)], and the study
of droplets in diblock copolymer theory [cf. Chen and Oshita (2007)], have been iden-
tified through the minimization of certain energy functionals. In contrast, for our RD
systems that have no variational structure, the optimal lattice is identified not through
an energy minimization criterion, but rather from a detailed analysis that determines
the spectrum of the linearization near the origin in the spectral plane when D is near
a critical value.

2 Lattices and Bloch Green’s Functions

In this section we recall some basic facts about lattices and introduce the Bloch-
periodic Green’s function that plays a central role in the analysis in Sects. 3–5. A few
key lemmas regarding this Green’s function are established.

2.1 A Primer on Lattices and Reciprocal Lattices

Let lll1 and lll2 be two linearly independent vectors in R
2, with angle θ between them,

where without loss of generality we take lll1 to be aligned with the positive x-axis. The
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Bravais lattice � is defined by

� = {mlll1 + nlll2 | m, n ∈ Z } , (2.1)

where Z denotes the set of integers. The primitive cell is the parallelogram generated
by the vectors lll1 and lll2 of area |lll1 × lll2|. We will set the area of the primitive cell to
unity, so that |lll1||lll2| sin θ = 1.

We can also write lll1, lll2 ∈ R
2 as complex numbers α, β ∈ C. Without loss of

generality we set Im(β) > 0, Im(α) = 0, and Re(α) > 0. In terms of α and β, the
area of the primitive cell is Im(α β), which we set to unity. For a regular hexagonal
lattice, |α| = |β|, with β = α eiθ , θ = π/3, and α > 0. This yields Im(β) = α

√
3/2,

and the unit area requirement gives α2
√

3/2 = 1, which yields α = (4/3)1/4. For the
square lattice, we have α = 1, β = i , and θ = π/2.

In terms of lll1, lll2 ∈ R
2, we have that lll1 = (Re(α), Im(α)

)
, lll2 = (Re(β), Im(β)

)

generate the lattice (2.1). For a regular hexagonal lattice of unit area for the primitive
cell we have

lll1 =
((

4

3

)1/4

, 0

)

and lll2 =
(

4

3

)1/4
(

1

2
,

√
3

2

)

. (2.2)

In Fig. 1 we plot a portion of the hexagonal lattice generated with this lll1, lll2 pair.
The Wigner–Seitz or Voronoi cell centered at a given lattice point of � consists of

all points in the plane that are closer to this point than to any other lattice point. It is
constructed by first joining the lattice point by a straight line to each of the neighboring
lattice points. Then, by taking the perpendicular bisector to each of these lines, the
Wigner–Seitz cell is the smallest area around this lattice point that is enclosed by all
the perpendicular bisectors. The Wigner–Seitz cell is a convex polygon with the same
area |lll1 × lll2| as the primitive cell P . In addition, it is well known that the union of
the Wigner–Seitz cells for an arbitrary oblique Bravais lattice with arbitrary lattice
vectors lll1, lll2, and angle θ , tile all of R

2 [cf. Ashcroft and Mermin (1976)]. In other
words, there holds

R
2 =
⋃

z∈�

(z + �). (2.3)

By periodicity and the property (2.3), we need only consider the Wigner–Seitz cell
centered at the origin, which we denote by �. In Fig. 1 we show the fundamental
Wigner–Seitz cell for the hexagonal lattice. In Fig. 2 we plot the union of the Wigner–
Seitz cells for an oblique Bravais lattice with lll1 = (1, 0), lll2 = (cot θ, 1), and θ = 74◦.

As in Beylkin et al. (2008), we define the reciprocal lattice �� in terms of the two
independent vectors ddd1 and ddd2, which are obtained from the lattice � by requiring
that

dddi · lll j = δi j , (2.4)

where δi j is the Kronecker symbol. The reciprocal lattice �� is defined by

�� = {mddd1 + nddd2 | m, n ∈ Z } . (2.5)

The first Brillouin zone, labeled �B , is defined as the Wigner–Seitz cell centered at
the origin in the reciprocal space.
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Fig. 1 Hexagonal lattice generated by lattice vectors (2.2). The fundamental Wigner–Seitz cell � for this
lattice is the regular hexagon centered at the origin. The area � and the primitive cell are the same and are
set to unity

Fig. 2 Wigner–Seitz cells for oblique lattice with lll1 = (1, 0), lll2 = (cot θ, 1), and θ = 74◦, so that
|�| = 1. These cells tile the plane. The boundary of the Wigner–Seitz cells consist of three pairs of parallel
lines of equal length
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(a) (b)

Fig. 3 Left panel: triangular lattice � with unit area of primitive cell generated by lattice vectors in (2.6);
right panel: corresponding reciprocal lattice �∗ with reciprocal lattice vectors as in (2.9)

We remark that other authors [cf. Linton (2010), Moroz (2006)] define the reciprocal
lattice as �� = {2πm ddd1, 2πn ddd2}m,n∈Z. Our choice (2.5) for �� is motivated by the
form of the Poisson summation formula of Beylkin et al. (2008) given subsequently
in (6.4) and that is used in Sect. 6 to numerically compute the Bloch Green’s function.

Finally, we make some remarks on the equilateral triangular lattice, which does
not fall into the framework discussed earlier. As observed in Chen and Oshita (2007),
this special lattice requires a different treatment. For the equilateral triangle lattice,
θ = 2π/3 and Im

(
e2iπ/3

) = √
3/2, so that the unit area requirement of the primitive

cell again yields α = (4/3)1/4. Since Re
(
e2iπ/3

) = −1/2, it follows that in terms of
llli ∈ R

2 for i = 1, 2, an equilateral triangle cell structure has

lll1 =
((

4

3

)1/4

, 0

)

and lll2 =
(

4

3

)1/4
(

−1

2
,

√
3

2

)

. (2.6)

This triangular lattice is shown in Fig. 3. The centers of the triangular cells are generated
by (2.1), but there are points in � that are not cell centers (Fig. 3). For example,
(3n + 1)lll1 + lll2, (3n + 2)lll1, 3nlll1 − lll2, and (3n + 1)lll1 − 2lll2 are not centers of cells
of equilateral triangles. In general, for integers p and q the point p lll1 + qlll2 will be a
vertex instead of a cell center when

(p mod 3) + (q mod 3) = 2 , (2.7)

where the positive representation of the mod function is used, i.e., (−1) mod 3 = 2.
Thus, for the equilateral triangular lattice the set of lattice points is

�tr i = {mlll1 + nlll2 | m, n ∈ Z , (m mod 3) + (n mod 3) = 2 } . (2.8)

The corresponding Wigner–Seitz cell is also an equilateral triangle.
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Regarding the reciprocal lattice for the equilateral triangular lattice with lll1 and lll2
given by (2.6), the defining vectors for �� are

ddd1 = 1

121/4

(√
3, 1
)

and ddd2 = 1

121/4 (0, 2) , (2.9)

as can be verified by substitution into (2.4). A plot of a portion of this reciprocal lattice
for the equilateral triangle lattice is shown in the right panel of Fig. 3. From this plot
it follows that, for integers p and q, p ddd1 + q ddd2 will be a vertex, not a center, when

(p − q) mod 3 = 1. (2.10)

Therefore, the reduced reciprocal lattice becomes

��
tr i = {mddd1 + nddd2 | m, n ∈ Z, (m − n) mod 3 = 1 } . (2.11)

Unfortunately, for the equilateral triangular lattice the property (2.3) does not hold.
In other words, the whole R

2 is not the union of cells translated on the Bravais lattice,
and thus one cannot restrict the analysis to one Wigner–Seitz cell at the origin. As such,
it is unclear whether the corresponding Poisson summation formula in (6.4) below still
holds. However, if a homogeneous Neumann boundary condition is imposed on the
cell, it is possible to reflect through the edges and fill the whole R

2. (This fact is used
in Chen and Oshita (2007).) Therefore, the equilibrium contruction of a periodic spot
pattern presented in Sects. 3.1 and 4.1 still applies for the equilateral triangular lattice.
However, the stability of periodic spot patterns on the triangular lattice is an open
problem.

2.2 A Few Key Properties of the Bloch Green’s Functions

In our analysis of the stability of spot patterns in Sects. 3.2 and 4.2 below, the Bloch
Green’s function Gb0(x) for the Laplacian plays a prominent role. In the Wigner–Seitz
cell �, Gb0(x) for kkk/(2π) ∈ �B satisfies

�Gb0 = −δ(x) ; x ∈ �, (2.12a)

subject to the quasi-periodicity condition on R
2 that

Gb0(x + lll) = e−ikkk·lll Gb0(x), lll ∈ �, (2.12b)

where � is the Bravais lattice (2.1). As we show subsequently, (2.12b) indirectly yields
boundary conditions on the boundary ∂� of the Wigner–Seitz cell. The regular part
Rb0(kkk) of this Bloch Green’s function is defined by

Rb0(kkk) ≡ lim
x→0

(
Gb0(x) + 1

2π
log |x|

)
. (2.12c)
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To study the properties of Gb0(x) and Rb0(kkk), we first require a more refined
description of the Wigner–Seitz cell. To do so, we observe that there are eight nearest
neighbor lattice points to x = 0 given by the set

P ≡ { mlll1 + nlll2 | m ∈ {0, 1,−1}, n ∈ {0, 1,−1}, (m, n) = 0} . (2.13)

For each (vector) point PPPi ∈ P , for i = 1, . . . , 8 we define a Bragg line Li . This
is the line that crosses the point PPPi/2 orthogonally to PPPi . We define the unit outer
normal to Li by ηηηi ≡ PPPi/|PPPi |. The convex hull generated by these Bragg lines is the
Wigner–Seitz cell �, and the boundary ∂� of the Wigner–Seitz cell is, generically, the
union of six Bragg lines. For a square lattice, ∂� has four Bragg lines. The centers of
the Bragg lines generating ∂� are reindexed as PPPi for i = 1, . . . , L , where L ∈ {4, 6}
is the number of Bragg lines demarking ∂�. The boundary ∂� of � is the union of
the reindexed Bragg lines Li , for i = 1, . . . , L , and is parameterized segmentwise by
a parameter t as

∂� =
{

x ∈
⋃

i

{
PPPi

2
+ tηηη⊥

i

}
| −ti ≤ t ≤ ti , i = 1, . . . , L , L = {4, 6}

}

.

(2.14)
Here, 2ti is the length of Li , and ηηη⊥

i is the direction perpendicular to PPPi and, therefore,
tangent to Li .

The following observation is central to the subsequent analysis: suppose that PPP is
a neighbor of 0 and that the Bragg line crossing PPP/2 lies on ∂�. Then, by symmetry,
the Bragg line crossing −PPP/2 must also lie on ∂�. In other words, Bragg lines on ∂�

must come in pairs. This fact is evident from the plot of the Wigner–Seitz cell for the
oblique lattice shown in Fig. 2. With this more refined description of the Wigner–Seitz
cell, we now state and prove two key lemmas that are needed subsequently in Sects. 3.2
and 4.2.

Lemma 2.1 The regular part Rb0(kkk) of the Bloch Green’s function Gb0(x) satisfying
(2.12) is real-valued for |kkk| = 0.

Proof Let 0 < ρ � 1, and define �ρ ≡ �− Bρ(0), where Bρ(0) is the ball of radius
ρ centered at x = 0. We multiply (2.12a) by Ḡb0, where the bar denotes conjugation,
and we integrate over �ρ using the divergence theorem to obtain

∫

�ρ

Ḡb0�Gb0 dx +
∫

�ρ

∇Ḡb0 · ∇Gb0 dx =
∫

∂�ρ

Ḡb0 ∂νGb0 dx

=
∫

∂�

Ḡb0 ∂νGb0 dx −
∫

∂ Bρ(0)

Ḡb0 ∂|x|Gb0 dx.

(2.15)
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Here, ∂νGb0 denotes the outward normal derivative of Gb0 on ∂�. For ρ � 1, we use
(2.12c) to calculate

∫

∂ Bρ(0)

Ḡb0 ∂|x|Gb0 dx ∼
2π∫

0

(
− 1

2π
log ρ + Rb0(kkk) + o(1)

)(
− 1

2πρ
+ O(1)

)
ρ dθ

∼ 1

2π
log ρ − Rb0(kkk) + O(ρ log ρ). (2.16)

Upon using (2.16), together with �Gb0 = 0 in �ρ , in Eq. (2.15), we let ρ → 0 to
obtain

Rb0(kkk) = −
∫

∂�

Ḡb0(x) ∂νGb0(x) dx + lim
ρ→0

⎡

⎢
⎣
∫

�ρ

|∇Gb0|2 dx + 1

2π
log ρ

⎤

⎥
⎦ . (2.17)

From (2.17), to show that Rb0(kkk) is real-valued, it suffices to establish that the
boundary integral term in (2.17) vanishes. To show this, we observe that since the
Bragg lines come in pairs, we have

∫

∂�

Ḡb0(x) ∂νGb0(x) dx =
L/2∑

i=1

⎛

⎜⎜
⎝

∫

PPPi
2 +tηηη⊥

i

Ḡb0(x)∇xGb0(x) · ηηηi dx

−
∫

−PPPi
2 +tηηη⊥

i

Ḡb0(x)∇xGb0(x) · ηηηi dx

⎞

⎟⎟
⎠ . (2.18)

Here we have used the fact that the outward normals to the Bragg line pairs PPPi/2+tηηη⊥
i

and −PPPi/2 + tηηη⊥
i are in opposite directions. We then translate x by PPPi to obtain

∫

PPPi
2 +tηηη⊥

i

Ḡb0(x)∇xGb0(x) · ηηηi dx =
∫

−PPPi
2 +tηηη⊥

i +PPPi

Ḡb0(x)∇xGb0(x) · ηηηi dx

=
∫

−PPPi
2 +tηηη⊥

i

Ḡb0(x + PPPi )∇xGb0(x + PPPi ) · ηηηi dx.

(2.19)

Then, since PPPi ∈ �, we have by the quasi-periodicity condition (2.12b) that

Ḡb0(x + PPPi )∇xGb0(x + PPPi ) =
(

Ḡb0(x)eikkk·PPPi
) (

∇xGb0(x)e−ikkk·PPPi
)

= Ḡb0(x)∇xGb0(x).
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Therefore, from (2.19) we conclude that

∫

PPPi
2 +tηηη⊥

i

Ḡb0(x)∇xGb0(x) · ηηηi dx =
∫

−PPPi
2 +tηηη⊥

i

Ḡb0(x)∇xGb0(x) · ηηηi dx ,

which establishes from (2.18) that
∫

∂�

Ḡb0(x) ∂νGb0(x) dx = 0. From (2.17) we con-

clude that Rb0(kkk) is real. ��
Next, we determine the asymptotic behavior of Rb0(kkk) as |kkk| → 0. The fact that

(2.12) has no solution ifkkk = 0 suggests that Rb0(kkk) is singular as |kkk| → 0. To determine
the asymptotic behavior of Gb0 as |kkk| → 0, we introduce a small parameter, σ � 1,
and define kkk = σκκκ , where |κκκ| = O(1). For σ � 1, we expand Gb0(x) as

Gb0(x) = σ−2U0(x) + σ−1U1(x) + U2(x) + · · · . (2.20)

For any lll ∈ �, and for σ � 1, we have from (2.12b) that

U0(x + lll)

σ 2 + U1(x + lll)

σ
+ U2(x + lll) + · · · =

[
1 − iσ(κκκ · lll) − σ 2

2
(κκκ · lll)2 + · · ·

]

×
(U0(x)

σ 2 + U1(x)

σ
+ U2(x) + · · ·

)
.

(2.21)

Upon substituting (2.20) into (2.12a), and then equating powers of σ in (2.21), we
obtain the sequence of problems

�U0 = 0 ; U0(x + lll) = U0(x) , (2.22a)

�U1 = 0 ; U1(x + lll) = U1(x) − i (κκκ · lll)U0(x) , (2.22b)

�U2 = −δ(x) ; U2(x + lll) = U2(x) − i (κκκ · lll) U1(x) − (κκκ · lll)2

2
U0(x). (2.22c)

The solution to (2.22a) is that U0 is an arbitrary constant, while the solution to
(2.22b) is readily calculated as U1(x) = −i (κκκ · x) U0 +U10, where U10 is an arbitrary
constant. Upon substituting U0 and U1 into (2.22c), we obtain for any lll ∈ � that U2
satisfies

�U2 = −δ(x) ; U2(x + lll) = U2(x)− (κκκ · lll) (κκκ · x) U0 − i (κκκ · lll)U10 − (κκκ · lll)2

2
U0.

(2.23)
By differentiating the periodicity condition in (2.23) with respect to x, we have for
any lll ∈ � that

∇xU2(x + lll) = ∇xU2(x) − κκκ (κκκ · lll)U0. (2.24)

Next, to determine U0, we integrate �U2 = 0 over � to obtain from the divergence
theorem and a subsequent decomposition of the boundary integral over the Bragg line
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pairs, as in (2.18), that

− 1 =
∫

∂�

∂νU2 dx =
L/2∑

i=1

⎛

⎜⎜
⎝

∫

PPPi
2 +tηηη⊥

i

∇xU2(x) · ηηηi dx −
∫

−PPPi
2 +tηηη⊥

i

∇xU2(x) · ηηηi dx

⎞

⎟⎟
⎠ .

(2.25)
Then, as in the derivation in (2.19), we calculate the boundary integrals as

∫

PPPi
2 +tηηη⊥

i

∇xU2(x)·ηηηi dx =
∫

−PPPi
2 +tηηη⊥

i +PPPi

∇xU2(x)·ηηηi dx =
∫

−PPPi
2 +tηηη⊥

i

∇xU2(x+PPPi )·ηηηi dx.

(2.26)
Upon using (2.26) in (2.25), we obtain

− 1 =
L/2∑

i=1

∫

− PPPi
2 +tηηη⊥

i

(∇xU2(x + PPPi ) − ∇xU2(x)) · ηηηi dx. (2.27)

Since PPPi ∈ � and ηηηi = PPPi/|PPPi |, we calculate the integrand in (2.27) using (2.24) as

(∇xU2(x + PPPi ) − ∇xU2(x)) · ηηηi = − (κκκ · ηηηi
)
(κκκ · PPPi ) U0 = − (κκκ · PPPi )

2 U0

|PPPi | .
(2.28)

Then, upon substituting (2.28) into (2.27), and by integrating the constant integrand
over the Bragg lines, we obtain that U0 satisfies

− 1 = −U0

L/2∑

i=1

(κκκ · PPPi )
2

|PPPi | 2ti = −U0

L∑

i=1

(κκκ · PPPi )
2

|PPPi | ti = −U0

L∑

i=1

(
κκκ · ηηηi

)2
ti |PPPi | ,

(2.29)
where 2ti is the length of the Bragg line Li . Upon solving for U0, we obtain that

U0 = 1

κκκT Qκκκ
, where Q ≡

L∑

i=1

ηηηiωiηηη
T
i , and ωi ≡ ti |PPPi |. (2.30)

Since ωi > 0, for i = 1, . . . , L , we have yT Qy = ∑L
i=1

(
ηηηT

i y
)2

ωi > 0 for any
y = 0, which proves that the matrix Q is positive definite. We summarize the results
of this perturbation calculation in the following (formal) lemma.

Lemma 2.2 For |kkk| → 0, the regular part Rb0(kkk) of the Bloch Green’s function of
(2.12) has the leading-order singular asymptotic behavior

Rb0(kkk) ∼ 1

kkkT Qkkk
, (2.31)
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where the positive-definite matrix Q is defined in terms of the parameters of the
Wigner–Seitz cell by (2.30).

We remark that a similar analysis can be done for the quasi-periodic reduced-wave
Green’s function, which satisfies

�G(x) − σ 2G = −δ(x) ; x ∈ � ; G(x + lll) = e−ikkk·lll G(x) , lll ∈ �,

(2.32a)
where � is the Bravais lattice (2.1) and kkk/(2π) ∈ �B . The regular part R(kkk) of this
Green’s function is defined by

R(kkk) ≡ lim
x→0

(
G(x) + 1

2π
log |x|

)
. (2.32b)

By a simple modification of the derivation of Lemma 2.1 and 2.2, we obtain the
following result.

Lemma 2.3 Let kkk/(2π) ∈ �B. For the regular part R(kkk) of the reduced-wave Bloch
Green’s function satisfying (2.32), we have the following results:

• (i) Let σ 2 be real. Then R(kkk) is real-valued.
• (ii) R(kkk) ∼ Rb0(kkk) + O(σ 2) for σ → 0 when |kkk| > 0, with |kkk| = O(1). Here,

Rb0(kkk) is the regular part of the Bloch Green’s function (2.12).
• (iii) Let σ → 0, and consider the long-wavelength regime |kkk| = O(σ ), where

kkk = σκκκ , with |κκκ| = O(1). Then

R(kkk) ∼ 1

σ 2
[|�| + κκκT Qκκκ

] , (2.33)

where the positive-definite matrix Q is defined in (2.30).

Proof To prove (i), we proceed as in the derivation of Lemma 2.1 to obtain

R(kkk) = lim
ρ→0

⎡

⎢
⎣
∫

�ρ

(
|∇G|2 + σ 2|G|2

)
dx + 1

2π
log ρ

⎤

⎥
⎦ , (2.34)

which is real-valued. The second result, (ii), is simply a regular perturbation result for
the solution to (2.32) for σ → 0 when |kkk| is bounded away from zero and kkk/(2π) ∈
�B , so that kkk · lll = 2π N . Therefore, when kkk/(2π) ∈ �B , R(kkk) is unbounded only
as |kkk| → 0. To establish the third result, we proceed as in (2.20)–(2.24), with the
modification that �U2 = U0 − δ(x) in �. Therefore, we must add the term U0|�| to
the left-hand sides of (2.25), (2.27), and (2.29). Solving for U0 we obtain (2.33). ��

Subsequently, in Sects. 3.2 and 4.2, we will analyze the spectrum of the linearization
around a steady-state periodic spot pattern for the Schnakenberg and GM models. For
ε → 0, it is the eigenfunction � corresponding to the long-range solution component
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u that satisfies an elliptic PDE with coefficients that are spatially periodic on the lattice.
As such, by the Floquet–Bloch theorem [cf. Kuchment (1993) and Krichever (1989)],
this eigenfunction must satisfy the quasi-periodic boundary conditions �(x + lll) =
e−ikkk·lll�(x) for lll ∈ �, x ∈ R

2, and kkk/(2π) ∈ �B . This quasi-periodicity condition
can be used to formulate a boundary operator on the boundary ∂� of the fundamental
Wigner–Seitz cell �. Let Li and L−i be two parallel Bragg lines on opposite sides of
∂� for i = 1, . . . , L/2. Let xi1 ∈ Li and xi2 ∈ L−i be any two opposing points on
these Bragg lines. We define the boundary operator Pk� by

Pk� =
{
�

∣∣∣∣

(
�(xi1)

∂n�(xi1)

)
= e−ikkk·llli

(
�(xi2)

∂n�(xi2)

)
, ∀ xi1 ∈ Li , ∀ xi2 ∈ L−i ,

llli ∈ �, i = 1, . . . , L/2} .

(2.35)
The boundary operator P0� simply corresponds to a periodicity condition for � on
each pair of parallel Bragg lines. These boundary operators are used subsequently in
Sects. 3 and 4.

3 Periodic Spot Patterns for Schnakenberg Model

We study the linear stability of a steady-state periodic pattern of localized spots for
the Schnakenberg model (1.1), where the spots are centered at the lattice points of
(2.1). The following analysis is based on the fundamental Wigner–Seitz cell �, which
contains exactly one spot centered at the origin.

3.1 Steady-State Solution

We use the method of matched asymptotic expansions to construct a steady-state one-
spot solution to (1.1) centered at x = 0 ∈ �. The construction of such a solution
consists of an outer region where v is exponentially small and u = O(1) and an inner
region of extent O(ε) centered at the origin where both v and u have localized.

In the inner region we look for a locally radially symmetric steady-state solution
of the form

u = 1√
D

U , v = √
DV , y = ε−1x. (3.1)

Then, substituting (3.1) into the steady-state equations of (1.1), we obtain that V ∼
V (ρ) and U ∼ U (ρ), with ρ = |y|, satisfy the following core problem in terms of an
unknown source strength S ≡ ∫∞

0 U V 2ρ dρ to be determined:

�ρV − V + U V 2 = 0 , �ρU − U V 2 = 0 , 0 < ρ < ∞, (3.2a)

U ′(0) = V ′(0) = 0 ; V → 0 , U ∼ S log ρ + χ(S) + o(1) , as ρ → ∞.

(3.2b)
Here we have defined �ρV ≡ V ′′ + ρ−1V ′.
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The core problem (3.2), without the explicit far-field condition (3.2b), was first
identified and its solutions computed numerically in Sect. 5 of Muratov and Osipov
(2000). In Kolokolnikov et al. (2009), the function χ(S) was computed numerically,
and solutions to the core problem were shown to be closely related to the phenomenon
of self-replicating spots.

The unknown source strength S is determined by matching the far-field behavior
of the core solution to an outer solution for u valid away from O(ε) distances of
the origin. In the outer region, v is exponentially small, and from (3.1) we obtain
ε−2uv2 → 2π

√
DSδ(x). Therefore, from (1.1), the outer steady-state problem for u

is
�u = − a

D + 2π√
D

S δ(x) , x ∈ � ; P0u = 0 , x ∈ ∂� ,

u ∼ 1√
D

[
S log |x| + χ(S) + S

ν

]
, as x → 0 ,

(3.3)

where ν ≡ −1/ log ε and � is the fundamental Wigner–Seitz cell. The divergence
theorem then yields

S = a|�|
2π

√
D

. (3.4)

The solution to (3.3) is then written in terms of the periodic Green’s function G0p(x)

as

u(x) = − 2π√
D

[
SG0p(x; 0) − uc

]
, uc ≡ 1

2πν

[
S + 2πνS R0p + νχ(S)

]
,

(3.5)
where the periodic source-neutral Green’s function G0p(x) and its regular part R0p

satisfy

�G0p = 1
|�| − δ(x) , x ∈ � ; P0G0p = 0 x ∈ ∂� ,

G0p ∼ − 1
2π

log |x| + R0p + o(1) , as x → 0 ; ∫

�

G0p dx = 0. (3.6)

An explicit expression for R0p on an oblique Bravais lattice was derived in Theorem 1
of Chen and Oshita (2007). A periodic pattern of spots is then obtained through periodic
extension to R

2 of the one-spot solution constructed within �.
Since the stability threshold occurs when D = O(1/ν), for which S = O(ν1/2) �

1 from (3.4), we must calculate an asymptotic expansion in powers of ν for the solution
to the core problem (3.2). This result, which is required for the stability analysis in
Sect. 3.2, is as follows.

Lemma 3.1 For S = S0ν
1/2+S1ν

3/2+· · · , where ν ≡ −1/ log ε � 1, the asymptotic
solution to the core problem (3.2) is

V ∼ ν1/2 (V0 + νV1 + · · · ) , U ∼ ν−1/2
(

U0 + νU1 + ν2U2 + · · ·
)

,

χ ∼ ν−1/2 (χ0 + νχ1 + · · · ) , (3.7a)
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where U0, U1(ρ), V0(ρ), and V1(ρ) are defined by

U0 = χ0 , U1 = χ1 + 1

χ0
U1p , V0 = w

χ0
, V1 = − χ1

χ2
0

w + 1

χ3
0

V1p. (3.7b)

Here w(ρ) is the unique ground-state solution to �ρw−w+w2 = 0, with w(0) > 0,
w′(0) = 0, and w → 0 as ρ → ∞. In terms of w(ρ), the functions U1p and V1p are
the unique solutions on 0 ≤ ρ < ∞ to

L0V1p = −w2U1p, V ′
1p(0) = 0, V1p → 0 , as ρ → ∞, �ρU1p = w2,

U ′
1p(0) = 0, U1p → b log ρ + o(1), as ρ → ∞; b ≡

∞∫

0
w2ρ dρ,

(3.7c)
where the linear operator L0 is defined by L0V1p ≡ �ρV1p − V1p + 2wV1p. Finally,
in (3.7a), the constants χ0 and χ1 are related to S0 and S1 by

χ0 = b

S0
, χ1 = − S1b

S2
0

+ S0

b2

∞∫

0

V1pρ dρ. (3.7d)

The derivation of this result was given in Sect. 6 of Kolokolnikov et al. (2009) and
is outlined subsequently in Appendix 1. The o(1) condition in the far-field behavior
of U1p in (3.7c) eliminates an otherwise arbitrary constant in the determination of
U1p. This condition, therefore, ensures that the solution to the linear boundary value
problem (BVP) system (3.7c) is unique.

3.2 Spectrum of the Linearization near the Origin

To study the stability of the periodic pattern of spots with respect to fast O(1) time-scale
instabilities, we use the Floquet–Bloch theorem, which allows us to only consider the
Wigner–Seitz cell �, centered at the origin, with quasi-periodic boundary conditions
imposed on its boundaries.

We linearize around the steady-state ue and ve, as calculated in Sect. 3.1, by intro-
ducing the perturbation

u = ue + eλtη , v = ve + eλtφ. (3.8)

By substituting (3.8) into (1.1) and linearizing, we obtain the following eigenvalue
problem for φ and η:

ε2�φ − φ + 2ueveφ + v2
e η = λφ , x ∈ � ; Pkkkφ = 0 , x ∈ ∂� ,

D�η − 2ε−2ueveφ − ε−2v2
e η = λτη , x ∈ � ; Pkkkη = 0 , x ∈ ∂� ,

(3.9)

where Pkkk is the quasi-periodic boundary operator of (2.35).
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In the inner region near x = 0, we introduce the local variables N (ρ) and �(ρ) by

η = 1

D
N (ρ) , φ = �(ρ) , ρ = |y| , y = ε−1x. (3.10)

Upon substituting (3.10) into (3.9), and by using ue ∼ U (ρ)/
√

D and ve ∼ √
DV (ρ),

where U and V satisfy the core problem (3.2), we obtain on 0 < ρ < ∞ that

�ρ� − � + 2U V � + N V 2 = λ� , � → 0 , as ρ → ∞ ,

�ρ N = 2U V � + N V 2 , N ∼ C log ρ + B , as ρ → ∞ ,
(3.11)

with �′(0) = N ′(0) = 0, and where B = B(S; λ). We remark that for Re(λ+1) > 0,
� in (3.11) decays exponentially as ρ → ∞. However, in contrast, we cannot a priori
impose that N in (3.11) is bounded as ρ → ∞. Instead, we must allow for the
possibility of a logarithmic growth for N as ρ → ∞. Upon using the divergence
theorem we identify C as C = ∫∞

0

(
2U V � + N V 2

)
ρ dρ. The constant C will be

determined by matching N to an outer eigenfunction η, valid away from x = 0, that
satisfies (3.9).

To formulate this outer problem, we obtain, since ve is localized near x = 0, that,
in the sense of distributions,

ε−2
(

2ueveφ + ηv2
e

)
→
⎛

⎜
⎝
∫

R2

(
2U V � + N V 2

)
dy

⎞

⎟
⎠ δ(x) = 2πCδ(x). (3.12)

Using this expression in (3.9), we conclude that the outer problem for η is

�η − τλ
D η = 2πC

D δ(x) , x ∈ � ; Pkkkη = 0 , x ∈ ∂� ,

η ∼ 1
D

(
C log |x| + C

ν
+ B
)

, as x → 0.
(3.13)

The solution to (3.13) is η = −2πC D−1Gbλ(x), where Gbλ satisfies

�Gbλ − τλ
D Gbλ = −δ(x) , x ∈ � ; Pkkk Gbλ = 0, x ∈ ∂�,

Gbλ ∼ − 1
2π

log |x| + Rbλ, as x → 0.
(3.14)

From the requirement that the behavior of η as x → 0 must agree with that in (3.13),
we conclude that B + C/ν = −2πC Rbλ. Finally, since the stability threshold occurs
in the regime D = O(ν−1) � 1, we conclude from Lemma 2.3 (ii) that for |kkk| = 0
and kkk/(2π) ∈ �B , (

1 + 2πνRb0 + O(ν2)
)

C = −νB, (3.15)

where Rb0 is the regular part of the Bloch Green’s function Gb0 defined by (2.12)
on �.

We now proceed to determine the portion of the continuous spectrum of the lin-
earization that lies within an O(ν) neighborhood of the origin, i.e., that satisfies
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|λ| ≤ O(ν), when D is close to a certain critical value. To do so, we must first
calculate an asymptotic expansion for the solution to (3.11), together with (3.15).

Using (3.7a) we first calculate the coefficients in the differential operator in (3.11)
as

U V = w + ν (U0V1 + U1V0) + · · · = w + ν

χ2
0

[
V1p + wU1p

]+ · · · ,

V 2 = ν
(
V 2

0 + 2νV0V1
)+ · · · = ν w2

χ2
0

+ 2ν2

χ3
0

(
−χ1w

2 + wV1p
χ0

)
+ · · · ,

so that the local problem (3.11) on 0 < ρ < ∞ becomes

�ρ� − � +
[

2w + 2ν

χ2
0

(
V1p + wU1p

)+ · · ·
]

�

= −ν

[
w2

χ2
0

+ 2ν

χ3
0

(
−χ1w

2 + wV1p
χ0

)
+ · · ·

]
N + λ� ,

�ρ N =
[

2w + 2ν

χ2
0

(
V1p + wU1p

)+ · · ·
]

�

+ν

[
w2

χ2
0

+ 2ν

χ3
0

(
−χ1w

2 + wV1p
χ0

)
+ · · ·

]
N ,

� → 0 , N ∼ C log ρ + B , as ρ → ∞; �′(0) = N ′(0) = 0.

(3.16)

We then introduce the appropriate expansions,

N = 1
ν

(
N̂0 + ν N̂1+· · ·

)
, B = 1

ν

(
B̂0 + ν B̂1 + · · ·

)
, C = C0 + νC1 + · · · ,

� = �0 + ν�1 + · · · , λ = λ0 + νλ1 + · · · ,

(3.17)
into (3.16) and collect powers of ν.

To leading order, we obtain on 0 < ρ < ∞ that

L0�0 ≡ �ρ�0 − �0 + 2w�0 = −w2

χ2
0

N̂0 + λ0�0 , �ρ N̂0 = 0 ,

�0 → 0 , N̂0 → B̂0 as ρ → ∞; �′
0(0) = 0 , N̂ ′

0(0) = 0 ,
(3.18)

where L0 is referred to as the local operator. We conclude that N̂0 = B̂0 for ρ ≥ 0.
At next order, we obtain on ρ > 0 that �1 satisfies

L0�1 + 2

χ2
0

(
V1p + wU1p

)
�0 + 2

χ3
0

(
−χ1w

2 + wV1p

χ0

)
N̂0 = −w2

χ2
0

N̂1 + λ1�0;
�1 → 0, as ρ → ∞, (3.19)
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with �′
1(0) = 0, and that N̂1 on ρ > 0 satisfies

�ρ N̂1 = 2w�0 + w2

χ2
0

N̂0 ; N̂1 ∼ C0 log ρ + B̂1 , as ρ → ∞; N̂ ′
1(0) = 0.

(3.20)
In our analysis, we will also need the problem for N̂2 given by

�ρ N̂2 = 2w�1 + 2
χ2

0

(
V1p + wU1p

)
�0 + 2

χ3
0

(
−χ1w

2 + wV1p
χ0

)
N̂0 + w2

χ2
0

N̂1 ,

N̂2 ∼ C1 log ρ + B̂2 , as ρ → ∞; N̂ ′
2(0) = 0.

(3.21)
In addition, substituting (3.17) into (3.15) we obtain upon collecting powers of ν that

C0 = −B̂0 , C1 + 2π Rb0C0 = −B̂1. (3.22)

Next, we proceed to analyze (3.18)–(3.21). From the divergence theorem we obtain
from (3.20) that

C0 =
∞∫

0

2w�0ρ dρ + b

χ2
0

N̂0 , b ≡
∞∫

0

w2ρ dρ. (3.23)

Since C0 = −B̂0 and B̂0 = N̂0, (3.23) yields that

N̂0 = B̂0 = −2

[

1 + b

χ2
0

]−1 ∞∫

0

w�0ρ dρ. (3.24)

With N̂0 known, (3.18) provides the leading-order nonlocal eigenvalue problem
(NLEP)

L0�0 − 2w2b

χ2
0 + b

∫∞
0 w�0 ρ dρ
∫∞

0 w2ρ dρ
= λ0�0 ; �0 → 0 , as ρ → ∞; �′

0(0) = 0.

(3.25)
For this NLEP, the rigorous result of Wei (1999) (see also Theorem 3.7 of the survey

article Wei (2008)) proves that Re(λ0) < 0 if and only if 2b/(χ2
0 + b) > 1. At the

stability threshold where 2b/(χ2
0 + b) = 1, we have from the identity L0w = w2

that �0 = w and λ0 = 0. From (3.24) and (3.23) we can then calculate B̂0 and C0 at
this leading-order stability threshold. In summary, to leading order in ν, we obtain at
λ0 = 0 that

b

χ2
0

= 1 , �0 = w , B̂0 = N̂0 = −b = −
∞∫

0

w2ρ dρ , C0 = b. (3.26)
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Upon substituting (3.26) into (3.20) we obtain at λ0 = 0 that N̂1 on ρ > 0 satisfies

�ρ N̂1 = w2 ; N̂1 ∼ b log ρ + B̂1 , as ρ → ∞; N̂ ′
1(0) = 0. (3.27)

Upon comparing (3.27) with the problem for U1p, as given in (3.7c), we conclude that

N̂1 = U1p + B̂1. (3.28)

Next, we observe that for D = D0/ν � 1, it follows from (3.4) that S = ν1/2S0 +
· · · , where S0 = a|�|/(2π

√
D0). Then, since S0 = b/χ0 from (3.7d), and b/χ2

0 =
1 when λ0 = 0 from (3.26), the critical value of D0 at the leading-order stability
threshold λ0 = 0 is

D0 = D0c ≡ a2|�|2
4π2b

. (3.29a)

This motivates the definition of the bifurcation parameter μ by

μ ≡ 4π2 Dνb

a2|�|2 , (3.29b)

so that at criticality where χ0 = √
b, we have μ = 1.

We then proceed to analyze the effect of the higher-order terms in powers of ν on
the stability threshold. In particular, we determine the continuous band of spectrum
that is contained within an O(ν) ball near λ = 0 when the bifurcation parameter μ is
O(ν) close to its leading-order critical value μ = 1. As such, we set

λ = νλ1 + · · · , for μ = 1 + νμ1 + · · · , (3.30)

and we derive an expression for λ1 in terms of μ1, the Bloch vector kkk, the lattice
structure, and certain correction terms to the core problem.

To determine an expression for μ1 in terms of χ0 and χ1, we first set D = D0/ν

and write the two-term expansion for the source strength S as

S = a|�|
2π

√
D

= ν1/2 (S0 + νS1 + · · · ) ,

where S0 and S1 are given in (3.7d) in terms of χ0 and χ1. Using (3.7d) and (3.29b),
this expansion for S becomes

√
b

μ
=
⎛

⎝ b

χ0
+ ν

⎡

⎣−χ1b

χ0
+ 1

χ3
0

∞∫

0

V1pρ dρ

⎤

⎦+ · · ·
⎞

⎠ . (3.31)
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As expected, to leading order we have μ = 1 when b = χ2
0 . At λ0 = 0, where

χ0 = √
b, we use μ−1/2 ∼ 1 − νμ1/2 + · · · to relate μ1 to χ1 as

χ1√
b

= μ1

2
+ 1

b2

∞∫

0

V1pρ dρ. (3.32)

Next, we substitute �0 = w, N̂0 = −b, χ2
0 = b, and N̂1 = U1p + B̂1 from (3.28)

into Eq. (3.19) for �1. After some algebra, we conclude that �1 at λ0 = 0 satisfies

L0�1 + w2

b
B̂1 = −2χ1χ0

b
w2 − 3

b
w2U1p + λ1w ; �1 → 0 , as ρ → ∞ ,

(3.33)
with �′

1(0) = 0. In a similar way, at the leading-order stability threshold, prob-
lem (3.21) for N̂2 on ρ > 0 becomes

�ρ N̂2 = 2w�1 + w2

b B̂1 + 3
b w2U1p + 2χ0χ1

b w2 ,

N̂2 ∼ C1 log ρ + B̂2 , as ρ → ∞; N̂ ′
2(0) = 0.

(3.34)

To determine B̂1, as required in (3.33), we use the divergence theorem on (3.34) to
obtain that

C1 = 2

∞∫

0

w�1ρ dρ + B̂1 + 3

b

∞∫

0

w2U1pρ dρ + 2χ0χ1.

Upon combining this expression with C1+2π Rb0C0 = −B̂1, as obtained from (3.22),
where C0 = b, we obtain B̂1 as

B̂1 = −
∞∫

0

w�1ρ dρ − πbRb0 − 3

2b

∞∫

0

w2U1pρ dρ − χ0χ1.

Upon substituting this expression into (3.33), we conclude that �1 satisfies

L�1 ≡ L0�1 − w2

∫∞
0 w�1ρ dρ
∫∞

0 w2ρ dρ
= Rs + λ1w ; �1 → 0 , as ρ → ∞ ,

(3.35a)
with �′

1(0) = 0, where the residual Rs is defined by

Rs ≡ πw2 Rb0 + 3

2b2 w2

∞∫

0

w2U1pρ dρ − χ0χ1w
2

b
− 3

b
w2U1p. (3.35b)
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Then λ1 is determined by imposing a solvability condition on (3.35). The homo-
geneous adjoint operator L� corresponding to (3.35) is

L�� ≡ L0� − w

∫∞
0 w2�ρ dρ
∫∞

0 w2ρ dρ
. (3.36)

We define �� = w+ρw′/2 and readily verify that L0�
� = w and L0w = w2 (see Wei

(1999)). Then we use Green’s second identity to obtain
∫∞

0

[
wL0�

� − ��L0w
]
ρ dρ

= ∫∞
0

(
w2 − ��w2

)
ρ dρ. By the decay of w and �� as ρ → ∞, we obtain that∫∞

0 w2ρ dρ = ∫∞
0 ��w2ρ dρ. Therefore, since the ratio of the two integrals in (3.36)

is unity when � = ��, we conclude that L��� = 0.
Finally, we impose the solvability condition that the right-hand side of (3.35) is

orthogonal to �� in the sense that λ1
∫∞

0 w��ρ dρ + ∫∞
0 Rs�

∗ρ dρ = 0. By the use
of (3.35b) for Rs , this solvability condition yields that

λ1 = −
∫∞

0 w2��ρ dρ

b
∫∞

0 w��ρ dρ

⎛

⎝bπ Rb0 − χ1χ0 + 3

2b

∞∫

0

w2U1pρ dρ

−3

∫∞
0 w2U1p�

�ρ dρ
∫∞

0 w2��ρ dρ

)

.

(3.37)

Equation (3.37) is simplified by first calculating the following integrals using integra-
tion by parts:

∞∫

0
w2��ρ dρ =

∞∫

0
(L0w)

(
L−1

0 w
)

=
∞∫

0
w2ρ dρ = b ,

∞∫

0
w��ρ dρ =

∞∫

0
ρw
(
w + ρ

2 w′) dρ =
∞∫

0
w2ρ dρ + 1

4

∞∫

0

[
w2
]′

ρ2 dρ = b
2 .

(3.38)
In addition, since L0V1p = −w2U1p from (3.7c) and �� = L−1

0 w, we obtain upon
integrating by parts that

∞∫

0

w2U1p�
�ρ dρ = −

∞∫

0

(
L0V1p

) (
L−1

0 w
)

ρ dρ = −
∞∫

0

V1pwρ dρ.

Substituting this expression and (3.38) into (3.37), we obtain

λ1

2
= −1

b

⎡

⎣bπ Rb0 − χ0χ1 + 3

2b

∞∫

0

w2U1pρ dρ + 3

b

∞∫

0

wV1pρ dρ

⎤

⎦ . (3.39)

Next, we use (3.7c) to calculate
∫∞

0 w2U1pρ dρ = ∫∞
0

(
V1p − 2wV1p

)
ρ dρ. Finally,

we substitute this expression, together with χ0 = √
b and (3.32), which relates μ1
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to χ1, into (3.39) to obtain our final expression for λ1. We summarize our result as
follows.

Principal Result 3.1 In the limit ε → 0, consider a steady-state periodic pattern of
spots for the Schnakenberg model (1.1) on the Bravais lattice � when D = O(ν−1),
where ν = −1/ log ε. Then, when

D = a2|�|2
4π2bν

(1 + μ1ν) , (3.40a)

where μ1 = O(1), the portion of the continuous spectrum of the linearization that
lies within an O(ν) neighborhood of the origin λ = 0, i.e., that satisfies |λ| ≤ O(ν),
is given by

λ = νλ1 + · · · , λ1 = 2

⎡

⎣μ1

2
− π Rb0 − 1

2b2

∞∫

0

ρV1p dρ

⎤

⎦ . (3.40b)

Here, |�| is the area of the Wigner–Seitz cell and Rb0 = Rb0(kkk) is the regular part of
the Bloch Green’s function Gb0 defined on � by (2.12), with kkk = 0 and kkk/(2π) ∈ �B.

The result (3.40b) determines how the portion of the band of continuous spectrum
that lies near the origin depends on the detuning parameter μ1, the correction V1p to
the solution of the core problem, and the lattice structure and Bloch wavevector kkk as
inherited from Rb0(kkk).

Remark 3.1 We need only consider kkk/(2π) in the first Brillouin zone �B , defined as
the Wigner–Seitz cell centered at the origin for the reciprocal lattice. Since Rb0 is real-
valued from Lemma 2.1, it follows that the band of spectrum (3.40b) lies on the real
axis in the λ-plane. Furthermore, since, by Lemma 2.2, Rb0 = O (1/(kkkT Qkkk)

)→ +∞
as |kkk| → 0 for some positive definite matrix Q, the continuous band of spectrum that
corresponds to small values of |kkk| is not within an O(ν) neighborhood of λ = 0 but
instead lies at an O (ν/kkkT Qkkk

)
distance from the origin along the negative real axis in

the λ-plane.

We conclude from (3.40b) that a periodic arrangement of spots with a given lattice
structure is linearly stable when

μ1 < 2π R�
b0 + 1

b2

∞∫

0

V1pρ dρ , R�
b0 ≡ min

kkk
Rb0(kkk). (3.41)

For a fixed area |�| of the Wigner–Seitz cell, the optimal lattice geometry is defined
as the one that allows for stability for the largest inhibitor diffusivity D. This leads to
one of our main results.

Principal Result 3.2 The optimal lattice arrangement for a periodic pattern of spots
for the Schnakenberg model (1.1) is the one for which Ks ≡ R∗

b0 is maximized.
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Consequently, this optimal lattice allows for stability for the largest possible value
of D. For ν = −1/ log ε � 1, a two-term asymptotic expansion for this maximal
stability threshold for D is given explicitly in terms of an objective function Ks by

Doptim ∼ a2|�|2
4π2bν

⎡

⎣1 + ν

⎛

⎝2π max
�

Ks + 1

b2

∞∫

0

V1pρ dρ

⎞

⎠

⎤

⎦ , Ks ≡ R�
b0 = min

kkk
Rb0 ,

(3.42)
where max� Ks is taken over all lattices � that have a common area |�| of the Wigner–
Seitz cell. In (3.42), V1p is the solution to (3.7c) and b = ∫∞

0 w2ρ dρ, where w(ρ) > 0
is the ground-state solution to �ρw − w + w2 = 0. Numerical computations yield
b ≈ 4.93 and

∫∞
0 V1pρ dρ ≈ 0.481.

The numerical method to compute Ks is given in Sect. 6. In Sect. 6.1, we show
numerically that within the class of oblique Bravais lattices, Ks is maximized for a
regular hexagonal lattice. Thus, the maximal stability threshold for D is obtained for
a regular hexagonal lattice arrangement of spots.

4 Periodic Spot Patterns for GM Model

In this section, we analyze the linear stability of a steady-state periodic pattern of spots
for the GM model (1.2), where the spots are centered at the lattice points of the Bravais
lattice (2.1).

4.1 Steady-State Solution

We first use the method of matched asymptotic expansions to construct a steady-state
one-spot solution to (1.2) centered at the origin of the Wigner–Seitz cell �.

In the inner region near the origin of �, we look for a locally radially symmetric
steady-state solution of the form

u = D U, v = DV, y = ε−1x. (4.1)

Then, substituting (4.1) into the steady-state equations of (1.2), we obtain that V ∼
V (ρ) and U ∼ U (ρ), with ρ = |y|, satisfy the core problem

�ρV − V + V 2/U = 0, �ρU = −V 2, 0 < ρ < ∞ , (4.2a)

U ′(0) = V ′(0) = 0 ; V → 0 , U ∼ −S log ρ + χ(S) + o(1) , as ρ → ∞ ,

(4.2b)

where �ρV ≡ V ′′ + ρ−1V ′ and S = ∫∞
0 V 2ρ dρ. The unknown source strength S

will be determined by matching the far-field behavior of the core solution to an outer
solution for u valid away from O(ε) distances of the origin.
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Since v is exponentially small in the outer region, we have in the sense of distribu-
tions that ε−2v2 → 2π D2Sδ(x). Therefore, from (1.2), the outer steady-state problem
for u is

�u − 1
D u = −2π DS δ(x), x ∈ �; P0u = 0, x ∈ ∂�,

u ∼ −DS log |x| + D
(− S

ν
+ χ(S)

)
, as x → 0,

(4.3)

where ν ≡ −1/ log ε. We introduce the reduced-wave Green’s function G p(x) and its
regular part Rp, which satisfy

�G p − 1
D G p = −δ(x) , x ∈ � ; P0G p = 0 , x ∈ ∂� ,

G p(x) ∼ − 1
2π

log |x| + Rp , as x → 0 ,
(4.4)

where Rp is the regular part of G p. The solution to (4.3) is u(x) = 2π DSG p(x). Now,
as x → 0, we calculate the local behavior of u(x) and compare it with the required
behavior in (4.3). This yields that S satisfies

(
1 + 2πνRp

)
S = νχ(S). (4.5)

Since the stability threshold occurs when D = O(ν−1) � 1, we expand the solution
to (4.4) for D = D0/ν � 1, with D0 = O(1), to obtain

G p = D0

|�|ν + G0p + O(ν) , Rp = D0

|�|ν + R0p + O(ν) , (4.6)

where G0p and R0p are the periodic source-neutral Green’s function and its regular
part, respectively, defined by (3.6). By combining (4.5) and (4.6), we obtain that S
satisfies (

1 + μ + 2πνR0p + O(ν2)
)

S = νχ(S) , μ ≡ 2π D0

|�| . (4.7)

To determine the appropriate scaling for S in terms of ν � 1 for a solution to
(4.7), we use χ(S) = O(S1/2) as S → 0 from Appendix 2. Thus, to balance the
leading-order terms in (4.7), we require that S = O(ν2) as ν → 0. The next result
determines a two-term expansion for the solution to the core problem (4.2) for ν → 0
when S = O(ν2).

Lemma 4.1 For S = S0ν
2 + S1ν

3 + · · · , where ν ≡ −1/ log ε � 1, the asymptotic
solution to the core problem (4.2) is

V ∼ ν (V0 + νV1 + · · · ) , U ∼ ν
(

U0 + νU1 + ν2U2 + · · ·
)

,

χ ∼ ν (χ0 + νχ1 + · · · ) ,
(4.8a)

where U0, U1(ρ), V0(ρ), and V1(ρ) are defined by

U0 = χ0 , U1 = χ1 + S0U1p , V0 = χ0w , V1 = χ1w + S0V1p. (4.8b)
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Here, w(ρ) is the unique ground-state solution to �ρw−w+w2 = 0, with w(0) > 0,
w′(0) = 0, and w → 0 as ρ → ∞. In terms of w(ρ), the functions U1p and V1p are
the unique solutions on 0 ≤ ρ < ∞ to

L0V1p = w2U1p , V ′
1p(0) = 0 , V1p → 0 , as ρ → ∞ ,

�ρU1p = −w2/b , U ′
1p(0) = 0 , U1p → − log ρ + o(1) ,

as ρ → ∞; b ≡
∫ ∞

0
ρw2 dρ ,

(4.8c)

where L0V1p ≡ �ρV1p − V1p + 2wV1p. Finally, in (4.8a), the constants χ0 and χ1
are related to S0 and S1 by

χ0 =
√

S0

b
, χ1 = S1

2χ0b
− S0

b

∞∫

0

wV1pρ dρ. (4.8d)

The derivation of this result is given subsequently in Appendix 2. The o(1) condition
in the far-field behavior in (4.8c) eliminates an otherwise arbitrary constant in the
determination of U1p. Therefore, this condition ensures that the solution to the linear
BVP (4.8c) is unique.

4.2 Spectrum of the Linearization near the Origin

We linearize around the steady-state solution ue and ve, as calculated in Sect. 4.1,
by introducing the perturbation (3.8). This yields the following eigenvalue problem,
where Pkkk is the quasi-periodic boundary operator of (2.35):

ε2�φ − φ + 2ve
ue

φ − v2
e

u2
e
η = λφ , x ∈ � ; Pkkkφ = 0 , x ∈ ∂� ,

D�η − η + 2ε−2veφ = λτη , x ∈ � ; Pkkkη = 0 , x ∈ ∂�.
(4.9)

In the inner region near x = 0, we introduce the local variables N (ρ) and �(ρ) by

η = N (ρ) , φ = �(ρ) , ρ = |y| , y = ε−1x. (4.10)

Upon substituting (4.10) into (4.9), and using ue ∼ DU and ve ∼ DV , where U and
V satisfy the core problem (4.2), we obtain on 0 < ρ < ∞ that

�ρ� − � + 2V
U � − V 2

U 2 N = λ� , � → 0 , as ρ → ∞ ,

�ρ N = −2V �, N ∼ −C log ρ + B , as ρ → ∞ ,
(4.11)

with �′(0) = N ′(0) = 0, and where B = B(S; λ). The divergence theorem yields
the identity C = 2

∫∞
0 V �ρ dρ.

To determine the constant C , we must match the far-field behavior of the core
solution to an outer solution for η, which is valid away from x = 0. Since ve is
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localized near x = 0, we calculate in the sense of distributions that 2ε−2veφ →
2D
(∫

R2 V � dy
)

δ(x) = 2πC Dδ(x). Using this expression in (4.9), we obtain that
the outer problem for η is

�η − θ2
λη = −2πCδ(x) , x ∈ � ; Pkkkη = 0 , x ∈ ∂� ,

η ∼ −C log |x| − C
ν

− B , as x → 0 ,
(4.12)

where we have defined θλ ≡ √
(1 + τλ)/D. The solution to (4.12) is η = 2πCGbλ(x),

where Gbλ satisfies

�Gbλ − θ2
λGbλ = −δ(x) , x ∈ � ; PkkkGbλ = 0 , x ∈ ∂� ,

Gbλ ∼ − 1
2π

log |x| + Rbλ , as x → 0.
(4.13)

By imposing that the behavior of η as x → 0 agrees with that in (4.12), we conclude that
(1 + 2πνRbλ) C = νB. Then, since D = D0/ν � 1, we have from Lemma 2.3 (ii),
upon taking the D � 1 limit in (4.13), that Rbλ ∼ Rb0 + O(ν) for |kkk| > 0 and
kkk/(2π) ∈ �B . This yields

(
1 + 2πνRb0 + O(ν2)

)
C = νB , (4.14)

where Rb0 = Rb0(kkk) is the regular part of the Bloch Green’s function Gb0 defined on
� by (2.12).

As in Sect. 3.2, we now proceed to determine the portion of the continuous spectrum
of the linearization that lies within an O(ν) neighborhood of the origin λ = 0 when
D is close to a certain critical value. To do so, we must first calculate an asymptotic
expansion for the solution to (4.11) together with (4.14).

Using (4.8a) we first calculate the coefficients in the differential operator in (4.11)
as

V

U
=w+ νS0

χ0

(
V1p − wU1p

)+ · · · ,
V 2

U 2 =w2+ 2νS0

χ0
w
(
V1p − wU1p

)+ · · · ,

so that the local problem (4.11) on 0 < ρ < ∞ becomes

�ρ� − � +
[
2w + 2νS0

χ0
w
(
V1p − wU1p

)+ · · ·
]
�

=
[
w2 + 2νS0

χ0
w
(
V1p − wU1p

)+ · · ·
]

N + λ� ,

�ρ N = −2ν
[
χ0w + ν

(
χ1w + S0V1p

)+ · · · ]�,

� → 0 , N ∼ −C log ρ + B , as ρ → ∞; �′(0) = N ′(0) = 0.

(4.15)
To analyze (4.15) together with (4.14), we substitute the appropriate expansions

N = 1

ν

(
N̂0 + ν N̂1 + · · ·

)
, B = 1

ν

(
B̂0 + ν B̂1 + · · ·

)
, C = C0 + νC1 + · · · ,

� = 1

ν
(�0 + ν�1 + · · · ) , λ = λ0 + νλ1 + · · · (4.16)
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into (4.15) and collect powers of ν.
To leading order, we obtain on 0 < ρ < ∞ that

L0�0 ≡ �ρ�0 − �0 + 2w�0 = w2 N̂0 + λ0�0 , �ρ N̂0 = 0 ,

�0 → 0 , N̂0 → B̂0 as ρ → ∞; �′
0(0) = N̂ ′

0(0) = 0 ,
(4.17)

where L0 is the local operator. We conclude that N̂0 = B̂0 for ρ ≥ 0.
At next order, we obtain on ρ > 0 that �1 satisfies

L0�1 − w2 N̂1 = −2S0

χ0

(
V1p − wU1p

)
�0 + 2S0

χ0
w
(
V1p − wU1p

)
N̂0 + λ1�0 ;

�1 → 0 , as ρ → ∞ , (4.18)

with �′
1(0) = 0, and that N̂1 on ρ > 0 satisfies

�ρ N̂1 = −2χ0w�0 ; N̂1 ∼ −C0 log ρ + B̂1 , as ρ → ∞; N̂ ′
1(0) = 0.

(4.19)
At one higher order, the problem for N̂2 on ρ > 0 is

�ρ N̂2 = −2χ0w�1 − 2
(
χ1w + S0V1p

)
�0 ;

N̂2 ∼ −C1 log ρ + B̂2, as ρ → ∞; N̂ ′
2(0) = 0.

(4.20)

In addition, substituting (4.16) into (4.14) we obtain, upon collecting powers of ν, that

C0 = B̂0 , C1 + 2π Rb0 B̂0 = B̂1. (4.21)

Next, we proceed to analyze (4.17)–(4.20). From the divergence theorem we obtain
from (4.19) that

C0 = 2χ0

∞∫

0

w�0ρ dρ. (4.22)

To identify χ0 in (4.22), we substitute S = ν2S0 + · · · and χ ∼ νχ0 + · · · into (4.7)
to obtain (1 + μ + · · · ) (ν2S0 + · · · ) ∼ ν2(χ0 + · · · ). From the leading-order terms
we obtain χ0 = S0(1 + μ). Then, since S0 = bχ2

0 from (4.8d), we obtain

χ0 = 1

b(1 + μ)
, S0 = 1

b(1 + μ)2 , C0 = B̂0 = N̂0 = 2

b(1 + μ)

∞∫

0

w�0ρ dρ.

(4.23)
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From (4.17) we then obtain the leading-order NLEP on ρ > 0:

L0�0 − 2w2

(1 + μ)

∫∞
0 w�0 ρ dρ
∫∞

0 w2ρ dρ
= λ0�0;

�0 → 0 , as ρ → ∞; �′
0(0) = 0 ; μ ≡ 2π D0

|�| .

(4.24)

For this NLEP, Theorem 3.7 of Wei (2008) proves that Re(λ0) < 0 if and only if
2/(1 + μ) > 1. Therefore, the stability threshold where λ0 = 0 and �0 = w occurs
when μ = 1. At this stability threshold, we calculate from (4.23) that

χ0 = 1

2b
, S0 = 1

4b
, �0 = w , C0 = B̂0 = N̂0 = 1

b

∞∫

0

w�0ρ dρ = 1.

(4.25)
Upon substituting (4.25) into (4.19) we obtain at λ0 = 0 that N̂1 on ρ > 0 satisfies

�ρ N̂1 = −2χ0w
2 = −w2

b
; N̂1 ∼ − log ρ+ B̂1 , as ρ → ∞; N̂ ′

1(0) = 0.

(4.26)
Upon comparing (4.26) with the problem for U1p in (4.8c), we conclude that

N̂1 = U1p + B̂1. (4.27)

As in Sect. 3.2, we now proceed to analyze the effect of the higher-order terms by
determining the continuous band of spectrum that is contained within an O(ν) ball
near λ = 0 when the bifurcation parameter μ is O(ν) close to the leading-order critical
value μ = 1. As such, we set

λ = νλ1 + · · · , for μ = 1 + νμ1 + · · · , (4.28)

and we derive an expression for λ1 in terms of the detuning parameter μ1, the Bloch
wavevector kkk, the lattice structure, and certain correction terms to the core problem.

We first use (4.8d) and (4.7) to calculate χ1 in terms of μ1. Substituting μ =
1 + νμ1 + · · · , together with (4.8a), into (4.7), we obtain

[
1 + (1 + νμ1) + 2πνR0p + · · · ]

[
ν2S0 + ν3S1 + · · ·

]
= ν2 (χ0 + νχ1 + · · · ) .

From the O(ν3) terms we obtain that χ1 = μ1S0 + 2S1 + 2π R0p S0. Upon combining
this result with (4.8d) for χ1, and using χ0 = 1/(2b), we obtain at criticality where
λ0 = 0 that

χ1 = −μ1

4b
− π R0p

2b
− 1

2b2

∞∫

0

wV1pρ dρ. (4.29)

This result is needed subsequently in the evaluation of the solvability condition.
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Next, we substitute (4.25) and (4.27) into (4.18) for �1 to obtain, after some algebra,
that (4.18) reduces at the leading-order stability threshold λ0 = 0 to

L0�1 − w2 B̂1 = λ1w + w2U1p ; �1 → 0 , as ρ → ∞ , (4.30)

with �′
1(0) = 0. In a similar way, at the leading-order stability threshold λ0 = 0, the

problem (4.20) for N̂2 on ρ > 0 reduces to

�ρ N̂2 = −w

b
�1 − 2

(
χ1w + 1

4b
V1p

)
w ; N̂2 ∼ −C1 log ρ + B̂2 ,

as ρ → ∞; N̂ ′
2(0) = 0.

(4.31)

Applying the divergence theorem to (4.31) we obtain

C1 = 1

b

∞∫

0

w�1ρ dρ + 2χ1b + 1

2b

∞∫

0

wV1pρ dρ. (4.32)

Then, using (4.21) with B̂0 = 1 to relate C1 to B̂1, we determine B̂1 as B̂1 = C1 +
2π Rb0, where C1 is given in (4.32). With B̂1 obtained in this way, we find from (4.30)
that �1 satisfies

L�1 ≡ L0�1 − w2

∫∞
0 w�1ρ dρ
∫∞

0 w2ρ dρ
= Rg + λ1w ; �1 → 0 , as ρ → ∞ ,

(4.33a)
with �′

1(0) = 0, where the residual Rg is defined by

Rg ≡ 2π Rb0w
2 + 2χ1bw2 + 1

2b
w2

∞∫

0

wV1pρ dρ + w2U1p. (4.33b)

As discussed in Sect. 3.2, the solvability condition for (4.33) is that the right-hand
side of (4.33a) is orthogonal to the homogeneous adjoint solution �� = w + ρw′/2
in the sense that λ1

∫∞
0 w��ρ dρ + ∫∞

0 Rg�
∗ρ dρ = 0. Upon using (4.29), which

relates χ1 to μ1, to simplify this solvability condition, we readily obtain, using (4.33b)
for Rg , that

λ1 = −
∫∞

0 w2��ρ dρ
∫∞

0 w��ρ dρ

⎛

⎝2π Rb0 − μ1

2
− π R0p − 1

2b

∞∫

0

wV1pρ dρ

⎞

⎠

−
∫∞

0 w2U1p�
�ρ dρ

∫∞
0 w��ρ dρ

. (4.34)
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To simplify the terms in (4.34), we use L0V1p = w2U1p and �ρU1p = −w2/b
from (4.8c), together with w = L−1

0 ��, to calculate, after an integration by parts, that

∞∫

0

w2U1p�
�ρ dρ =

∞∫

0

(
L0V1p

) (
L−1

0 w
)

ρ dρ =
∞∫

0

V1pwρ dρ.

Substituting this expression, together with
∫∞

0 w2��ρ dρ = b and
∫∞

0 w��ρ dρ =
b/2, as obtained from (3.38), into (4.34) we obtain our final result forλ1. We summarize
our result as follows.

Principal Result 4.1 In the limit ε → 0, consider a steady-state periodic pattern of
spots for the GM model (1.2), where D = O(ν−1), with ν = −1/ log ε. Then, when

D ∼ |�|
2πν

(1 + νμ1) , (4.35a)

where μ1 = O(1) and |�| is the area of the Wigner–Seitz cell, the portion of the
continuous spectrum of the linearization that lies within an O(ν) neighborhood of the
origin λ = 0 is given by

λ = νλ1 + · · · , λ1 = 2

⎡

⎣μ1

2
− 2π Rb0 + π R0p − 1

2b

∞∫

0

ρwV1p dρ

⎤

⎦ . (4.35b)

Here, Rb0 = Rb0(kkk) is the regular part of the Bloch Green’s function Gb0 defined on
� by (2.12), kkk/(2π) ∈ �B, and R0p is the regular part of the periodic source-neutral
Green’s function G0p satisfying (3.6).

Remark 4.1 In comparison with the analogous result obtained in Principal Result 3.1
for the Schnakenberg model, λ1 in (4.35b) now depends on the regular parts of two
different Green’s functions. The term R0p only depends on the geometry of the lattice,
whereas Rb0 = Rb0(kkk) depends on both the lattice geometry and the Bloch wavevector
kkk. To calculate Rb0(kkk), we again need only consider the vectors kkk/(2π) in the first
Brillouin zone �B of the reciprocal lattice. Since Rb0 is real-valued from Lemma
2.1, the band of spectrum (4.35b) lies on the real axis in the λ-plane. Moreover, from
Lemma 2.2, small values of |kkk| generate spectra that lie at an O (ν/kkkT Qkkk

)
distance

from the origin along the negative real axis in the λ-plane, where Q is a positive-definite
matrix.

For a given lattice geometry we seek to determine μ1 such that λ1 < 0 for all kkk.
From (4.35b) we conclude that a periodic arrangement of spots with a given lattice
structure is linearly stable when

μ1 < 4π R�
b0 − 2π R0p + 1

b

∞∫

0

wV1pρ dρ , R�
b0 ≡ min

kkk
Rb0(kkk). (4.36)
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We characterize the optimal lattice as the one with a fixed area |�| of the Wigner–Seitz
cell that allows for stability for the largest inhibitor diffusivity D. This leads to our
second main result.

Principal Result 4.2 The optimal lattice arrangement for a periodic pattern of spots
for the GM model (1.2) is the one for which the objective function Kgm is maximized,
where

Kgm ≡ 4π R�
b0 − 2π R0p , R�

b0 ≡ min
kkk

Rb0(kkk). (4.37)

For ν = −1/ log ε � 1, a two-term asymptotic expansion for this maximal stability
threshold for D is given explicitly by

Doptim ∼ |�|
2πν

⎡

⎣1 + ν

⎛

⎝max
�

Kgm + 1

b

∞∫

0

wV1pρ dρ

⎞

⎠

⎤

⎦ , (4.38)

where max� Kgm is taken over all lattices � having a common area |�| of the Wigner–
Seitz cell. In (4.38), V1p is the solution to (4.8c) and b = ∫∞

0 w2ρ dρ ≈ 4.93, where
w(ρ) > 0 is the ground-state solution to �ρw−w+w2 = 0. Numerical computations
yield

∫∞
0 wV1pρ dρ ≈ −0.945.

The numerical method to compute Kgm is given in Sect. 6. In Sect. 6.1, we show
numerically that within the class of oblique Bravais lattices, the maximal stability
threshold for D occurs for a regular hexagonal lattice.

5 A Simple Approach to Calculating the Optimal Diffusivity Value

In this section we implement a very simple alternative approach for calculating the
stability threshold of the Schnakenberg (1.1) and GM models (1.2) in Sects. 5.1 and 5.2,
respectively. In Sect. 5.3, this method is then used to determine an optimal stability
threshold for the GS model. In this alternative approach, we do not calculate the entire
band of continuous spectrum that lies near the origin when the bifurcation parameter
μ is O(ν) close to its critical value. Instead, we determine the critical value of μ,
depending on the Bloch wavevector kkk, such that λ = 0 is in the spectrum of the
linearization. We then perform a min–max optimization of this critical value of μ with
respect to kkk and the lattice geometry � to find the optimal value of D.

5.1 Schnakenberg Model

This alternative approach to calculating the stability threshold requires the following
two-term expansion for χ(S) in terms of S as S → 0.
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Lemma 5.1 For S → 0, the asymptotic solution to the core problem (3.2) is

V ∼ S
b w + S3

b3

(−χ̂1bw + V1p
)+ · · · , U ∼ b

S + S
(
χ̂1 + U1p

b

)
+ · · · ,

χ ∼ b
S + Sχ̂1 + · · · ; χ̂1 ≡ 1

b2

∞∫

0
V1pρ dρ.

(5.1)

Here, w(ρ) is the unique positive ground-state solution to �ρw − w + w2 = 0 and
b ≡ ∫∞

0 w2ρdρ. In terms of w(ρ), the functions U1p and V1p are the unique solutions
on 0 ≤ ρ < ∞ to (3.7c).

The derivation of this result, as outlined at the end of Appendix 1, is readily obtained
by setting S1 = 0 and S = S0ν

1/2 in the results of Lemma 3.1.
The key step in the analysis is to note that at λ = 0, the solution to the inner problem

(3.11) for � and N can be readily identified by differentiating the core problem (3.2)
with respect to S. More specifically, at λ = 0, the solution to (3.11) is � = CVS ,
N = CUS , and B(S; 0) = Cχ ′(S). With B known at λ = 0, we obtain from (3.15)
and (3.4) that the critical value of D at λ = 0 satisfies the nonlinear algebraic problem

1 + 2πνRb0 + νχ ′(S) = 0 , where S = a|�|
2π

√
D

. (5.2)

To determine the critical threshold in D from (5.2), we use the two-term expansion
for χ(S) in (5.1) to obtain χ ′(S) ∼ −b/S2 + χ̂1 + · · · . Using the relation for S in
terms of D from (5.2) when D = D0/ν � 1, we obtain that

χ ′(S) ∼ −μ

ν
+ χ̂1 + · · · , μ ≡ 4π2 D0b

a2|�|2 , D = D0

ν
. (5.3)

Upon substituting this expression into (5.2), we obtain that

1 − μ + νχ̂1 = −2πνRb0 + O(ν2) ,

which determines μ as μ ∼ 1+ν(2π Rb0 + χ̂1). Recalling the definition of μ in (5.3),
we conclude that λ = 0 when D = D�(kkk), where D�(kkk) is given by

D�(kkk) ≡ a2|�|2
4π2bν

[
1 + ν

(
2π Rb0(kkk) + χ̂1

)+ O(ν2)
]

, (5.4)

where χ̂1 is defined in (5.1). If we minimize Rb0(kkk) with respect tokkk and then maximize
the result with respect to the geometry of the lattice �, then (5.4) recovers the main
result (3.42) of Principal Result 3.2. This simple method, which relies critically on
the observation that B = Cχ ′(S) at λ = 0, provides a rather expedient approach to
calculating the optimal threshold in D. However, it does not characterize the spectrum
contained in the small ball |λ| = O(ν) � 1 near the origin when D is near the
leading-order stability threshold a2|�|2/(4π2bν).
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5.2 Gierer–Meinhardt Model

Next, we use a similar approach as in Sect. 5.1 to rederive the stability result in (4.38)
of Principal Result 4.2 for the GM model. We first need the following result, which
gives a two-term expansion in terms of S for χ(S) as S → 0.

Lemma 5.2 For S → 0, the asymptotic solution to the core problem (4.2) is

V ∼
√

S
b w + S

(
χ̂1w + V1p

)+ · · · , U ∼
√

S
b + S

(
χ̂1 + U1p

)+ · · · ,

χ ∼
√

S
b + Sχ̂1 + · · · , χ̂1 ≡ − 1

b

∞∫

0
wV1pρ dρ.

(5.5)

Here, w(ρ) is the unique positive ground-state solution to �ρw − w + w2 = 0 and
b ≡ ∫∞

0 w2ρdρ. In terms of w(ρ), the functions U1p and V1p are the unique solutions
on 0 ≤ ρ < ∞ to (4.8c).

The derivation of this result, as outlined at the end of Appendix 2, is readily obtained
by setting S1 = 0 and S = S0ν

2 in the results of Lemma 4.1.
Like the analysis in Sect. 5.1, the solution to (4.11) for � and N is readily identified

by differentiating the core problem (4.2) with respect to S. In this way, we obtain
B(S, 0) = Cχ ′(S). Therefore, at λ = 0, we obtain from (4.14) and (4.7) that the
critical values of D and S where λ = 0 satisfy the coupled nonlinear algebraic system

(
1 + μ + 2πνR0p + O(ν2)

)
S = νχ(S) , μ ≡ 2π D0|�| , D = D0

ν
,

1 + 2πνRb0 + O(ν2) − νχ ′(S) = 0.
(5.6)

We then use the two-term expansion in (5.5) for χ(S) as S → 0 to find an approximate
solution to (5.6).

In contrast to the related analysis for the Schnakenberg model in Sect. 5.1, this
calculation is slightly more involved since S must first be calculated from a nonlinear
algebraic equation. Substituting (5.5) for χ(S) into the first equation of (5.6) and
expanding μ = μ0 + νμ1 + · · · , we obtain

[
1 + μ0 + ν

(
μ1 + 2πνR0p

)]
S ∼ ν

(√
S

b
+ Sχ̂1

)

,

which can be solved asymptotically when ν � 1 to obtain the two-term expansion for
S in terms of μ0 and μ1 given by

S = ν2
(

Ŝ0 + ν Ŝ1 + · · ·
)

; Ŝ0 ≡ 1

b(1 + μ0)2 ,

Ŝ1 ≡ 2

b(1 + μ0)3

(
χ̂1 − μ1 − 2π R0p

)
.

(5.7)
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From the two-term expansion (5.7) for S we calculate χ ′(S) from (5.5) as

χ ′(S) ∼ 1

2
√

bν

(
Ŝ0 + ν Ŝ1 + · · ·

)−1/2 + χ̂1 ∼ Ŝ−1/2
0

2
√

bν
+
[

χ̂1 − Ŝ1

4
√

bŜ3/2
0

]

+ O(ν).

Using (5.7) for Ŝ0 and Ŝ1, the preceding expression becomes

χ ′(S) ∼ 1

2ν

[
(1 + μ0) + ν

(
χ̂1 + μ1 + 2π R0p

)+ O(ν2)
]
. (5.8)

Then, substituting (5.8) into the second equation of (5.6) we obtain, up to O(ν) terms,
that

1 + 2πνRb0 ∼ (1 + μ0) + ν

2

(
χ̂1 + 2π R0p + μ1

)
,

which determines μ0 and μ1 as

μ0 = 1 , μ1 = −χ̂1 − 2π R0p + 4π Rb0. (5.9)

Finally, recalling the definition of μ and χ̂1 in (5.6) and (5.5), respectively, and
using the two-term expansion μ = μ0 + νμ1 from (5.9), we conclude that λ = 0
when D = D�(kkk), where D�(kkk) is given by

D�(kkk) ≡ |�|
2πν

⎡

⎣1 + ν

⎛

⎝4π Rb0(kkk) − 2π R0p + 1

b

∞∫

0

wV1pρ dρ

⎞

⎠+ O(ν2)

⎤

⎦ .

(5.10)
If we minimize Rb0(kkk) with respect to kkk, and then maximize the result with respect to
the geometry of the lattice �, then (5.10) recovers the main result (4.38) of Principal
Result 4.2.

5.3 Gray–Scott Model

In this subsection, we employ the simple approach of Sects. 5.1 and 5.2 to optimize
a stability threshold for a periodic pattern of localized spots for the GS model, where
the spots are localized at the lattice points of the Bravais lattice � of (2.1). In the
Wigner–Seitz cell �, the GS model in the dimensionless form of Muratov and Osipov
(2000) is

vt = ε2 �v − v + Auv2 , τut = D �u + (1 − u) − uv2 , x ∈ � ;
P0u = P0v = 0 , x ∈ ∂� ,

(5.11)

where ε > 0, D > 0, τ > 1, and the feed-rate parameter A > 0 are constants. In
various parameter regimes of A and D, the stability and self-replication behavior of
localized spots for (5.11) were studied in Muratov and Osipov (2000, 2001, 2002), Wei
and Winter (2003), and Chen and Ward (2011) (see also the references therein). We will
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consider the parameter regime D = O(ν−1) � 1 and A = O(ε) of Wei and Winter
(2003). In this regime, and to leading order in ν, an existence and stability analysis of
N -spot patterns in a finite domain was undertaken via a Lypanunov–Schmidt reduction
and a rigorous study of certain nonlocal eigenvalue problems. We briefly review the
main stability result of Wei and Winter (2003) following (5.16b) below.

We first construct a one-spot steady-state solution to (5.11) with spot centered at
x = 0 in � in the regime D = O(ν−1) and A = O(ε) using the approach in Sect. 2
of Chen and Ward (2011).

In the inner region near x = 0, we introduce the local variables U , V , and y, defined
by

u = ε

A
√

D
U , v =

√
D

ε
V , y = ε−1x , (5.12)

into the steady-state problem for (5.11). We obtain that U ∼ U (ρ) and V ∼ V (ρ),
with ρ = |y|, satisfy the same core problem,

�ρV − V + U V 2 = 0 , �ρU − U V 2 = 0 , 0 < ρ < ∞ , (5.13a)

U ′(0)=V ′(0)=0 ; V → 0 , U ∼ S log ρ + χ(S)+o(1) , as ρ → ∞ ,

(5.13b)

as that for the Schnakenberg model studied in Sect. 3.1, where S ≡ ∫∞
0 U V 2ρ dρ and

�ρV ≡ V ′′ + ρ−1V ′. Therefore, for S → 0, the two-term asymptotics of χ(S) is
given in (5.1) of Lemma 5.1.

To formulate the outer problem for u, we observe that, since v is localized near x =
0, we have in the sense of distributions that uv2 → ε2

(∫
R2

√
D (Aε)−1 U V 2 dy

)
δ(x)

∼ 2πε
√

D A−1S δ(x). Then, matching u to the core solution U , we obtain from (5.11)
that

�u + 1
D (1 − u) = 2π ε

A
√

D
S δ(x) , x ∈ � ; P0u = 0 , x ∈ ∂� ,

u ∼ ε
A
√

D

(
S log |x| + S

ν
+ χ(S)

)
, as x → 0 ,

(5.14)

where ν ≡ −1/ log ε. The solution to (5.14) is u = 1 − 2πεSG p(x)/(A
√

D), where
G p(x) is the Green’s function of (4.4). Next, we calculate the local behavior of u as
x → 0 and compare it with the required behavior in (5.14). This yields that S satisfies

S + ν
[
χ(S) + 2π S Rp

] = Aν
√

D

ε
, (5.15)

where Rp is the regular part of G p as defined in (4.4).
We consider the regime D = D0/ν � 1 with D0 = O(1). Using the two-term

expansion (4.6) for Rp in terms of the regular part R0p of the periodic source-neutral
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Fig. 4 Plot, to leading order in ν, of saddle-node bifurcation diagram S versus A, obtained from (5.17),
for GS model, with |�| = 1 and D0 = 1. The leading-order spot amplitude V (0) = ε−1

√
D0Sw(0)/b is

directly proportional to S. The heavy solid branch of large-amplitude spots is linearly stable to competition
instabilities, while the dotted branch is unstable to competition instabilities. To leading order in ν, the zero-
eigenvalue crossing corresponding to the competition instability threshold occurs at A0 = (2 + μ)

√
b/μ ≈

7.34, where S0 = √
b ≈ 2.22

Green’s of (3.6), (5.15) becomes

S (1 + μ) + ν
[
2π S R0p + χ(S)

]+ O(ν2) = A√
νμ , (5.16a)

where we have defined μ and A = O(1) in terms of A = O(ε) by

A = A

ε

√ |�|
2π

, μ ≡ 2π D0

|�| , D = D0

ν
. (5.16b)

To illustrate the bifurcation diagram associated with (5.16a), we use χ(S) ∼ b/S
as S → 0 from (5.1) of Lemma 5.1. Upon writing S = ν1/2S, with S = O(1), we
obtain from (5.16) that, to leading order in ν,

A√
μ = S(1 + μ) + b

S ; μ = 2π D0

|�| , b =
∞∫

0

w2ρ dρ. (5.17)

From Lemma 5.1 and (5.12), the spot amplitude V (0) to leading order in ν is related
to S by V (0) = ε−1√D0Sw(0)/b. In Fig. 4 we use (5.17) to plot the leading-order
saddle-node bifurcation diagram of S versus A, where the upper solution branch cor-
responds to a pattern with large-amplitude spots. The saddle-node point occurs when
S f = √

b/(1 + μ) and A f = 2
√

b
√

(1 + μ)/μ. As we show subsequently, there is a
zero-eigenvalue crossing corresponding to an instability for some Bloch wavevector kkk,
with |kkk| > 0 and kkk/(2π) ∈ �B , that occurs within an O(ν) neighborhood of the point
(S0,A0) on the upper branch of Fig. 4 given by S0 = √

b and A0 = (2 + μ)
√

b/μ.
Since |kkk| > 0 for this instability, we refer to it as a competition instability. In what
follows, we will expand A = A0 + νA1 + · · · and determine the optimal lattice
arrangement of spots that minimizes A1. This has the effect of maximizing the extent
of the upper solution branch in Fig. 4 that is stable to competition instabilities.
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Before proceeding with the calculation of the optimal lattice for the periodic prob-
lem, we recall some prior rigorous results of Wei and Winter (2003) for the finite-
domain problem with N localized spots in a finite domain �N with homogeneous
Neumann boundary conditions. From Wei and Winter (2003), the bifurcation diagram
to leading order in ν is

A√
μN = S(1 + μN ) + b

S , b =
∞∫

0

w2ρ dρ , μN = 2π N D0

|�N | ,

A = A

ε

√ |�N |
2π N

,

which shows that we need only replace |�| in (5.17) with |�N |/N . From a rigorous
NLEP analysis of the finite-domain problem, it was proved in Wei and Winter (2003)
that the lower solution branch in Fig. 4 is unstable to synchronous instabilities, while
the upper branch is stable to such instabilities. In contrast, it is only the portion of
the upper solution branch with S > S0 that is stable to competition instabilities
(Fig. 4). Therefore, there are two zero-eigenvalue crossings, one at the saddle-node
point corresponding to a synchronous instability and one at the point (S0,A0) on the
upper branch corresponding to a competition instability.

Similarly, for the periodic spot problem there is also a zero-eigenvalue crossing
whenkkk = 0, i.e., a synchronous instability, which occurs at the saddle-node bifurcation
point. However, since it is the zero-eigenvalue crossing for the competition instability
that sets the instability threshold for A (Fig. 4), we will not analyze the effect of the
lattice geometry on the zero-eigenvalue crossing for the synchronous instability mode.

We now proceed to analyze the zero-eigenvalue crossing for the competition insta-
bility. To determine the stability of the steady-state solution ue and ve, we introduce
(3.8) into (5.11) to obtain the Floquet–Bloch eigenvalue problem

ε2�φ − φ + 2Aueveφ + Av2
e η = λφ , x ∈ � ; Pkkkφ = 0 , x ∈ ∂� ,

D�η − η − 2ueveφ − v2
e η = λτη ; Pkkkφ = 0 , x ∈ ∂�.

(5.18)

In the inner region near x = 0, we look for a locally radially symmetric eigenpair
N (ρ) and �(ρ), with ρ = |y|, defined in terms of η and φ by

η = ε

A
√

D
N (ρ) , φ =

√
D

ε
�(ρ) , ρ = |y| , y = ε−1x. (5.19)

From (5.18) we obtain, to within negligible O(ε2) terms, that N (ρ) and �(ρ) satisfy

�ρ� − � + 2U V � + N V 2 = λ� , � → 0 , as ρ → ∞ ,

�ρ N = 2U V � + N V 2 , N ∼ C log ρ + B , as ρ → ∞ ,
(5.20)

with �′(0) = N ′(0) = 0, B = B(S; λ), and C = ∫∞
0

(
2U V � + N V 2

)
ρ dρ.
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To determine the outer problem for η, we first calculate in the sense of distributions
that

2ueveφ + v2
e η →

√
D

Aε

⎡

⎢
⎣ε2
∫

R2

(
2U V � + V 2 N

)
dy

⎤

⎥
⎦ δ(x) = 2πε

√
D

A
Cδ(x).

(5.21)
Then, by asymptotically matching η as x → 0 with the far-field behavior of N in
(5.20), we obtain from (5.21) and (5.18) that the outer problem for η is

�η − θ2
λη = 2πε

A
√

D
Cδ(x) , x ∈ � ; Pkkkη = 0 , x ∈ ∂� ,

η ∼ ε
A
√

D

[
C log |x| + C

ν
B
]

, as x → 0.
(5.22)

Here we have defined θλ ≡ √
(1 + τλ)/D. The solution to (5.22) is η =

−2πεCGbλ(x)/(A
√

D), where Gbλ satisfies (4.13). By imposing that the behavior of
η as x → 0 agrees with that in (5.22), we conclude that (1 + 2πνRbλ) C + νB = 0,
where Rbλ is the regular part of Gbλ defined in (4.13). Then, since D = D0/ν � 1, we
have from Lemma 2.3 (ii) upon taking the D � 1 limit in (4.13) that Rbλ ∼ Rb0+O(ν)

for |kkk| > 0 and kkk/(2π) ∈ �B . Thus, we have

(
1 + 2πνRb0 + O(ν2)

)
C − νB = 0, (5.23)

where Rb0 = Rb0(kkk) is the regular part of the Bloch Green’s function Gb0 defined
on � by (2.12). If we were to consider zero-eigenvalue crossings for a synchronous
instability where kkk = 0, we would instead use Rbλ = Rp ∼ D0/ν|�| + R0p + · · ·
from (4.6) to obtain

(
1 + μ + 2πνRp0 + O(ν2)

)
C + νB = 0 instead of (5.23).

As in Sect. 5.1, we use the key fact that at λ = 0, we have B(S; 0) = Cχ ′(S).
Therefore, at λ = 0, we obtain from (5.23) and (5.16a) that the critical values of A
and S where λ = 0 satisfy the coupled nonlinear algebraic system

S (1 + μ) + ν
[
2π S R0p + χ(S)

]+ O(ν2) = A√
νμ ,

1 + 2πνRb0 + O(ν2) + νχ ′(S) = 0.
(5.24)

The final step in the calculation is to use the two-term expansion for χ(S), as given
in (5.1) of Lemma 5.1, to obtain a two-term approximate solution in powers of ν to
(5.24). By substituting χ ′(S) ∼ −bS−2 + χ̂1 for S � 1 into the second equation of
(5.24), we readily calculate a two-term expansion for S as

S ∼ √
bν
(

1 + ν Ŝ1 + · · ·
)

, Ŝ1 ≡ −1

2

(
χ̂1 + 2π Rb0

)
. (5.25)

Then we substitute (5.25), together with the two-term expansion

A = A0 + νA1 + · · · , (5.26)
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into the first equation of (5.24) and equate powers of ν. From the O(ν1/2) terms in the
resulting expression we obtain that A0 = √

b(2 + μ)/
√

μ, while at order O(ν3/2) we
obtain that A1 = A1(kkk) satisfies

A1√
bμ

= 2π R0p

μ
+ χ̂1

μ
+ Ŝ1 = 2π R0p

μ
− π Rb0(kkk) + χ̂1

(2 − μ)

2μ
, (5.27)

where χ̂1 is given in (5.1) of Lemma 5.1.
To determine the optimal lattice that allows for stability for the smallest value of

A, we first fix a lattice � and then maximize A1 in (5.27) by minimizing Rb0(kkk) with
respect to the Bloch wavevector kkk. Then we minimize A1 with respect to the lattice
geometry � while fixing |�|. We summarize this third main result as follows.

Principal Result 5.1 The optimal lattice arrangement for a steady-state periodic pat-
tern of spots for the GS model (5.11) in the regime D = D0/ν � 1 and A = O(ε) is
the one for which the objective function Kgs is maximized, where

Kgs ≡ πμR�
b0 − 2π R0p , R�

b0 ≡ min
kkk

Rb0(kkk) , μ ≡ 2π D0

|�| . (5.28)

For ν = −1/ log ε � 1, a two-term asymptotic expansion for the competition insta-
bility threshold of A on the optimal lattice is

Aoptim = ε

√
2π

|�|Aoptim ,

Aoptim ∼
√

b(2 + μ)√
μ

+ ν

√
b

μ

⎛

⎝− max
�

Kgs + 1

b2

(
1 − μ

2

) ∞∫

0

V1pρ dρ

⎞

⎠+ · · · ,

(5.29)
where max� Kgs is taken over all lattices � having a common area |�| of the Wigner–
Seitz cell. In (5.29), V1p is the solution to (3.7c), while b = ∫∞

0 w2ρ dρ ≈ 4.93, where
w(ρ) > 0 is the ground-state solution of �ρw − w + w2 = 0, and

∫∞
0 V1pρ dρ ≈

0.481.

Note that (5.29) can also be derived through the more lengthy but systematic
approach given in Sects. 3 and 4 of first calculating the portion of the continuous
spectrum that satisfies |λ| ≤ O(ν) when A = A0 + O(ν).

The numerical method to compute Kgs is given in Sect. 6. In Sect. 6.1, we show
numerically that within the class of oblique Bravais lattices, Kgs is maximized for
a regular hexagonal lattice. Thus, the minimal stability threshold for the feed rate A
occurs for this hexagonal lattice.

6 Numerical Computation of Bloch Green’s Function

We seek a rapidly converging expansion for the Bloch Green’s function Gb0 satisfying
(2.12) on the Wigner–Seitz cell � for the Bravais lattice � of (2.1). It is the regular
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part Rb0 of this Green’s function that is needed in Principal Results 3.2, 4.2, and 5.1.
Since only one Green’s function needs to be calculated numerically in this section, for
clarity of notation we remove its subscript. In Sect. 6.1, we will revert to the notation
of Sect. 2–5 to determine the optimal lattice for the stability thresholds in Principal
Results 3.2, 4.2, and 5.1.

Instead of computing the Bloch Green’s function on �, it is computationally more
convenient to equivalently compute the Bloch Green’s function G ≡ Gb0 on all of R

2

that satisfies

�G(x) = −δ(x) ; G(x + lll) = e−ikkk·lll G(x) , lll ∈ �, (6.1)

where kkk/(2π) ∈ �B . The regular part R(0) ≡ Rb0(0) of this Bloch Green’s function
is defined by

R(0) ≡ lim
x→0

(
G(x) + 1

2π
log |x|

)
. (6.2)

To derive a computationally tractable expression for R(0), we will follow closely the
methodology of Beylkin et al. (2008).

We construct the solution to (6.1) as the sum of free-space Green’s functions

G(x) =
∑

lll∈�

Gfree(x + lll) eikkk·lll . (6.3)

This sum guarantees that the quasi-periodicity condition in (6.1) is satisfied. That is,
if G(x) = ∑lll∈� Gfree(x + lll) eikkk·lll , then, upon choosing any lll� ∈ �, it follows that
G(x + lll�) = e−ikkk·lll� G(x). To show this, we use lll� + lll ∈ � and calculate

G(x + lll∗) =
∑

lll∈�

Gfree(x + lll∗ + lll) eikkk·lll =
∑

lll∈�

Gfree(x + lll∗ + lll) eikkk·(lll∗+lll) e−ikkk·lll∗

= e−ikkk·lll∗ G(x).

To analyze (6.3), we will use the Poisson summation formula which converts a sum
over � to a sum over the reciprocal lattice �� of (2.5). In the notation of Beylkin et
al. (2008), we have (see Proposition 2.1 of Beylkin et al. (2008))

∑

lll∈�

f (x + lll) eikkk·lll = 1

V

∑

ddd∈�∗
f̂ (2πddd − kkk) eix·(2πddd−kkk) , x ,kkk ∈ R

2 , (6.4)

where f̂ is the Fourier transform of f and V = |�| is the area of the primitive cell of
the lattice.

Remark 6.1 Other authors [cf. Linton (2010); Moroz (2006)] define the reciprocal
lattice as �� = {2πm ddd1, 2πn ddd2}m,n∈Z, so that for any lll ∈ � and ddd ∈ �∗ it follows
that lll · ddd = 2Kπ for some integer K , and hence eilll·ddd = 1. The form of the Poisson
summation formula will then differ slightly from (6.4).
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By applying (6.4) to (6.3), it follows that the sum over the reciprocal lattice consists
of free-space Green’s functions in the Fourier domain, and we will split each Green’s
function in the Fourier domain into two parts in order to obtain a rapidly converging
series. In R

2, we write the Fourier transform pair as

f̂ (ppp) =
∫

R2

f (x) e−ix·ppp dx , f (x) = 1

4π2

∫

R2

f̂ (ppp) ei ppp·x dppp. (6.5)

The free-space Green’s function satisfies �Gfree = −δ(x). By taking Fourier trans-
forms, we obtain −|ppp|2 Ĝfree(ppp) = −1, so that

Ĝfree(ppp) = 1

|ppp|2 . (6.6)

With the right-hand side of the Poisson summation formula (6.4) in mind, we write

1

V

∑

ddd∈�∗
Ĝfree(2πddd − kkk) eix·(2πddd−kkk) =

∑

ddd∈�∗

eix·(2πddd−kkk)

|2πddd − kkk|2 (6.7)

since V = 1. To obtain a rapidly converging series expansion, we introduce the
decomposition

Ĝfree(2πddd−kkk) = α(2πddd−kkk, η) Ĝfree(2πddd−kkk)+
(

1−α(2πddd−kkk, η)
)

Ĝfree(2πddd−kkk)

(6.8)
for some function α(2πddd − kkk, η). We choose α(2πddd − kkk, η), so that the sum over
ddd ∈ �∗ of the first set of terms converges absolutely. We apply (6.5) to the second set
of terms after first writing (1 − α) Ĝfree as an integral. In the decomposition (6.8), we
choose the function α as

α(2πddd − kkk, η) = exp

(
−|2πddd − kkk|2

4η2

)
, (6.9)

where η > 0 is a cutoff parameter to be chosen. We readily observe that

lim
η→0

α(2πddd − kkk, η) = 0 ; lim
η→∞ α(2πddd − kkk, η) = 1 ; ∂α

∂η
= |2πddd − kkk|2 α

2η3 > 0 ,

since α > 0 and η > 0. This shows that 0 < α < 1 when 0 < η < ∞. Since
0 < α < 1, the choice of η determines the portion of the Green’s function that is
determined from the sum of terms in the reciprocal lattice �∗ and the portion that is
determined from the sum of terms in the lattice �.
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With the expressions (6.9) for α and (6.6) for Ĝfree, we obtain

α(2πddd − kkk, η) Ĝfree(2πddd − kkk) eix·(2πddd−kkk) = exp

(
−|2πddd − kkk|2

4η2

)
eix·(2πddd−kkk)

|2πddd − kkk|2 .

(6.10)
Since 2πddd − kkk = 0, which follows since kkk/(2π) ∈ �B , the sum of these terms

over ddd ∈ �∗ converges absolutely. Following Beylkin et al. (2008), we define

Gfourier(x) ≡
∑

ddd∈�∗
exp

(
−|2πddd − kkk|2

4η2

)
eix·(2πddd−kkk)

|2πddd − kkk|2 . (6.11)

For the (1 − α) Ĝfree term, we define ρ by ρ ≡ |2πddd − kkk|, so that from (6.9), (6.6),
and Ĝfree = Ĝfree(|ppp|) we obtain

(1 − α(2πddd − kkk, η)) Ĝfree(2πddd − kkk) = 1

ρ2

(
1 − e−ρ2/(4η2)

)
. (6.12)

Since
∫

e−ρ2 e2s+2s ds = −e−ρ2 e2s
/(2ρ2), the right-hand side of (6.12) can be calcu-

lated as

2

− log(2η)∫

−∞
e−ρ2 e2s+2s ds = 1

ρ2

(
1 − e−ρ2/(4η2)

)
,

so that

(1 − α(2πddd − kkk, η)) Gfree(2πddd − kkk) = 2

∞∫

log(2η)

e−ρ2 e−2s−2s ds. (6.13)

To take the inverse Fourier transform of (6.13), we recall that the inverse Fourier
transform of a radially symmetric function is the inverse Hankel transform of order
zero [cf. Piessens (2000)], so that f (r) = (2π)−1

∫∞
0 f̂ (ρ) J0(ρr) ρ dρ. Upon using

the well-known inverse Hankel transform [cf. Piessens (2000)]

∞∫

0

e−ρ2 e−2s
ρ J0(ρr) dρ = 1

2
e2s−r2 e2s/4 ,

we calculate the inverse Fourier transform of (6.13) as

1

2π

∞∫

0

∞∫

log(2η)

2 e−ρ2e−2s−2s ρ J0(ρr) ds dρ
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= 1

π

∞∫

log(2η)

e−2s

⎛

⎝
∞∫

0

e−ρ2 e−2s
ρ J0(ρr) dρ

⎞

⎠ ds

= 1

2π

∞∫

log(2η)

e−2s e2s− r2
4 e2s

ds = 1

2π

∞∫

log(2η))

e− r2
4 e2s

ds .

In the notation of Beylkin et al. (2008), we then define Fsing(x) as

Fsing(x) ≡ 1

2π

∞∫

log(2η)

e− |x|2
4 e2s

ds , (6.14)

so that by the Poisson summation formula (6.4), we have

Gspatial(x) ≡
∑

lll∈�

eikkk·lll Fsing(x + lll). (6.15)

In this way, for kkk/(2π) ∈ �B , we write the Bloch Green’s function in the spatial
domain as the sum of (6.11) and (6.15)

G(x) =
∑

ddd∈�∗
exp

(
−|2πddd − kkk|2

4η2

)
eix·(2πddd−kkk)

|2πddd − kkk|2 + 1

2π

∑

lll∈�

eikkk·lll
∞∫

log(2η)

e− |x+lll|2
4 e2s

ds.

(6.16)
From (6.11) and (6.15) it readily follows that GFourier → 0 as η → 0, while Gspatial →
0 as η → ∞.

Now consider the behavior of the Bloch Green’s function as x → 0. From (6.11)
we have

GFourier(0) =
∑

ddd∈�∗
exp

(
−|2πddd − kkk|2

4η2

)
1

|2πddd − kkk|2 , for kkk/(2π) ∈ �B ,

(6.17)
which is finite since |2πddd − kkk| = 0 and η < ∞. It is also real-valued. Next, we
decompose Gspatial in (6.15) as

Gspatial(x) = Fsing(x) +
∑

lll∈�
lll =0

eikkk·lll Fsing(x + lll). (6.18)

For the second term in (6.18), we can take the limit x → 0 since from (6.14) we have

∣∣∣∣∣
∣∣

∑

lll∈�
lll =0

eikkk·lll Fsing(lll)

∣∣∣∣∣
∣∣
< ∞.
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In contrast, Fsing(x) is singular at x = 0. To calculate its singular behavior as x → 0,
we write Fsing(x) = Fsing(r), with r = |x|, and convert Fsing(r) to an exponential
integral by introducing u by u = r2e2s/4 in (6.14). This gives

Fsing(r) = 1

2π

∞∫

log(2η)

e− r2
4 e2s

ds = 1

4π

∞∫

r2 η2

e−u

u
du = 1

4π
E1(r

2η2) , (6.19)

where E1(z) = ∫∞
z t−1e−t dt is the exponential integral [cf. Sect. 5.1.1 of Abramowitz

and Stegun (1965)]. Upon using the series expansion of E1(z)

E1(z) = −γ − log(z) −
∞∑

n=1

(−1)n zn

n n! , for | arg z| < π , (6.20)

as given in Sect. 5.1.11 of Abramowitz and Stegun (1965), where γ = 0.57721 · · · is
Euler’s constant, we have from (6.19) and (6.20) that

Fsing(r) ∼ − γ

4π
− log η

2π
− log r

2π
+ o(1) , as r → 0. (6.21)

This shows that the Bloch Green’s function in (6.16) has the expected logarithmic
singularity as x → 0.

We write the Bloch Green’s function as the sum of regular and singular parts as

G(x) = − 1

2π
log |x| + R(x) , R(x) = GFourier(x) + GSpatial(x) + 1

2π
log |x|.

(6.22)
By letting x → 0, we have from (6.18), (6.21), (6.17), and (6.22) that for kkk/(2π) ∈ �B

R(0) =
∑

ddd∈�∗
exp

(
−|2πddd − kkk|2

4η2

)
1

|2πddd − kkk|2 +
∑

lll∈�
lll =0

eikkk·lll Fsing(lll) − γ

4π
− log η

2π
,

(6.23)
where Fsing(lll) = E1(|lll|2η2)/(4π).

For a square lattice, with unit area of the primitive cell and with η = 2 and kkk =
(sin π

3 , cos π
3 ), in Table 1 we give numerical results for R(x) for various values of x as

x → 0. The computations show that Im (R(x)) → 0 as x → 0. This provides a partial
check on the accuracy of our numerical scheme in the sense that from Lemma 2.1 of
Sect. 2.2 we must have that R(0) is real-valued. From Table 1, our computations at
x = (10−10, 10−10) show that R(x) is real-valued to within nine decimal places.

6.1 Optimal Lattice for Stability Thresholds

In this subsection we determine the lattice that optimizes the stability thresholds given
in Principal Results 3.2, 4.2, and 5.1 for the Schnakenberg, GM, and GS models,
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Table 1 Regular part R(x) of Bloch Green’s function, as defined in (6.22), for x tending to the origin for
square lattice with unit area of primitive cell and with η = 2 and kkk = (sin π

3 , cos π
3 )

x G(x) R(x)

(.1,.1) 1.1027–.12568 i .79138–.12568 i

(.01,01) 1.4730–.012593 i .79526–.012593 i

(10−3, 10−3) 1.8396–.0012593 i .79531–.0012593 i

(10−4, 10−4) 2.2060–.00012593 i .79530–.00012593 i

(10−5, 10−5) 2.5725–.000012593 i .79529–.000012593 i

(10−6, 10−6) 2.9389–.0000012593 i .79531–.0000012593 i

(10−7, 10−7) 3.3054–.00000012593 i .79530–.00000012593 i

(10−8, 10−8) 3.6719–.000000012593 i .79531–.000000012593 i

(10−9, 10−9) 4.0383–.0000000012593 i .79529–.0000000012593 i

(10−10, 10−10) 4.4048–.00000000012593 i .79530–.00000000012593 i

(10−11, 10−11) 4.7713–.000000000012594 i .79529–.000000000012594 i

Notice that the imaginary part of R(x) becomes increasingly small as x → 0, as expected from Lemma 2.1
of Sect. 2.2, where it was established that R(0) is real-valued

respectively. Recall that in the notation of Sects. 2–5, Rb0(kkk) = R(0), where R(0) is
given in (6.23). The minimum of R(0) with respect to kkk is denoted by R�

b0.
In our numerical computations of R(0) from (6.23), we truncate the direct and

reciprocal lattices � and �∗ by the subsets �̄ and �̄∗ of � and �∗, respectively,
defined by

�̄ = {n1lll1 + n2lll2
∣∣−M1 < n1, n2 < M1

}
,

�̄∗ = {n1ddd1 + n2ddd2
∣∣−M2 < n1, n2 < M2

}
, n1, n2 ∈ Z.

For each lattice, we must pick M1, M2, and η such that G can be calculated accurately
with relatively few terms in the sum. The computations were done in Maple, with
these parameters found by numerical experimentation. For the two regular lattices
(square, hexagonal) we used (M1, M2, η) = (2, 5, 3). For an arbitrary oblique lattice
with angle θ between lll1 and lll2 we took M1 = 5 and M2 = 3, and we set η = 3. The
numerical results given below in Table 2 are believed to be correct to the number of
digits shown. Increasing the values of M1 and M2 did not change these results.

In Table 2 we give numerical results for R�
b0 for the square and hexagonal lattices.

These results show that R�
b0 is largest for the hexagonal lattice. For these two simple

lattices, in Table 2 we also give numerical results for R0p, defined by (3.6), as obtained
from the explicit formula in Theorem 1 of Chen and Oshita (2007) and Sect. 4 of Chen
and Oshita (2007). In Theorem 2 of Chen and Oshita (2007) it was proved that,
within the class of oblique Bravais lattices with unit area of the primitive cell, R0p is
minimized for a hexagonal lattice. Finally, in the fourth and fifth columns of Table 2
we give numerical results for Ks and Kgm, as defined in Principal Results 3.2 and
4.2. Of the two lattices, we conclude that Ks and Kgm are largest for the hexagonal
lattice. In addition, since R�

b0 is maximized and R0p is minimized for a hexagonal
lattice, it follows that Kgs in Principal Result 5.1 is also largest for a hexagonal lattice.
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Table 2 Numerical values for R�
b0 = minkkk R(0), where R(0) is computed from (6.23), for the square and

hexagonal lattice for which |�| = 1

Lattice R�
b0 R0p Ks Kgm

Square −0.098259 −0.20706 −0.098259 0.06624

Hexagonal −0.079124 −0.21027 −0.079124 0.32685

The third column is the regular part R0p of the periodic source-neutral Green’s function (3.6). The last two
columns are Ks and Kgm, as defined in Principal Results 3.2 and 4.2, respectively. Of the two lattices, the
hexagonal lattice gives the largest values for Ks and Kgm

Fig. 5 Minimum value R�
b0 of Rb0(kkk) for all oblique lattices of unit area for which lll1 = (1/

√
sin(θ), 0) and

lll2 = (cos(θ)/
√

sin(θ),
√

sin(θ)), so that |lll1| = |lll2| and |�| = 1. The vertical line denotes the hexagonal
lattice for which θ = π/3. Left figure: angle θ between lattice vectors ranges over 0.6 < θ < 1.7; right
figure: enlargement of left figure near θ = π/3. The vertical line again denotes the hexagonal lattice

Thus, with respect to the two simple lattices, we conclude that the optimal stability
thresholds in Principal Results 3.2, 4.2, and 5.1, occur for a hexagonal lattice.

To show that the same conclusion regarding the optimal stability thresholds occurs
for the class of oblique lattices, we need only show that R�

b0 is still maximized for the
hexagonal lattice. This is done numerically below.

We first consider lattices for which |lll1| = |lll2|. For this subclass of lattices, the
lattice vectors are lll1 = (1/

√
sin(θ), 0) and lll2 = (cos(θ)/

√
sin(θ),

√
sin(θ)). In our

computations, we first use a coarse grid to find an approximate location in kkk-space of
the minimum of R(0), and then we refine the search. After establishing by a coarse
discretization that the minimum arises near a vertex of the adjoint lattice, we then
sample more finely near this vertex. The finest mesh has a resolution of π/100. To
determine the value of R�

b0, we interpolate a paraboloid through the approximate
minimum and the four neighboring points and evaluate the minimum of the paraboloid.
As we vary the lattice by increasing θ , we use the approximate location of the previous
minimum as an initial guess. The value of θ is increased by increments of 0.01. Our
numerical results in Fig. 5 show that the optimum lattice where R�

b0 ≡ minkkk R(0) is
maximized occurs for the hexagonal lattice where θ = π/3. In Fig. 6, we also plot
R0p versus θ [cf. Theorem 1 of Chen and Oshita (2007)], given by

R0p = − 1

2π
log(2π) − 1

2π
ln

∣∣
∣∣∣

√
sin θ e (ξ/12)

∞∏

n=1

(1 − e(nξ))2

∣∣
∣∣∣
,

e(z) ≡ e2π i z , ξ = eiθ .

(6.24)
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Fig. 6 Plot of regular part R0p , as given in (6.24) [cf. Chen and Oshita (2007)], of the periodic source-
neutral Green’s function for all oblique lattices of unit area for which lll1 = (1/

√
sin(θ), 0) and lll2 =

(cos(θ)/
√

sin(θ),
√

sin(θ)), so that |lll1| = |lll2| and |�| = 1. The vertical line denotes the hexagonal lattice
for which θ = π/3. The minimum occurs for the hexagon

Finally, we consider a more general sweep through the class of oblique Bravais
lattices. We let lll1 = (a, 0) and lll2 = (b, c), so that with unit area of the primitive
cell, we have ac = 1 and b = a−1 cot θ , where θ is the angle between lll1 and lll2. We
introduce a parameter α by a = (sin θ)α , so that

c = (sin θ)−α and b = cos θ (sin θ)−α−1 . (6.25)

Then |lll1| = |lll2| when α = −1/2, |lll1| = 1 (which is independent of θ ) when α = 0,
and |lll2| = 1 when α = −1. In the left panel of Fig. 7, we plot R�

b0 versus θ for
α = −0.5,−0.4,−0.3,−0.2,−0.1, 0. The angle, θ , at which the maximum occurs
increases from π/3 at α = −0.5 to approximately 1.107 = π/3 + .06 for α = 0.
However, the value of the maximum is largest for α = −0.5 and decreases as α

increases to zero. The regular hexagon occurs only at α = −0.5 and θ = π/3. The
vertical line in the plot is at θ = π/3. Similarly, in the right panel of Fig. 7, we plot
R�

b0 versus θ for α = −0.5,−0.6,−0.7,−0.8,−0.9,−1.0. Since there is no preferred
angular orientation for the lattice and since the scale is arbitrary, the plot is identical
to the previous plot, in the sense that the curves for α = −0.6 and α = −0.4 in Fig. 7
are identical. We conclude that it is the regular hexagon that maximizes R�

b0. These
computational results lead to the following conjecture.

Conjecture 6.1 Within the class of Bravais lattices of a common area, R�
b0 is maxi-

mized for a regular hexagonal lattice.

7 Discussion

We have studied the linear stability of steady-state periodic patterns of localized spots
for the GM and Schnakenberg RD models when the spots are centered for ε → 0
at the lattice points of a Bravais lattice with constant area |�|. To leading order in
ν = −1/ log ε, the linearization of the steady-state periodic spot pattern has a zero
eigenvalue when D = D0/ν for some D0 independent of the lattice and the Bloch
wavevector kkk. The critical value D0 can be identified from the leading-order NLEP
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theory of Wei and Winter (2001) and Wei and Winter (2008). This zero eigenvalue cor-
responds to a competition instability of the spot amplitudes [cf. Wei and Winter (2001),
Kolokolnikov et al. (2009), Chen and Ward (2011), and Wei and Winter (2008)]. Using
a combination of the method of matched asymptotic expansions, Floquet–Bloch the-
ory, and the rigorous imposition of solvability conditions for perturbations of certain
nonlocal eigenvalue problems, we have explicitly determined the continuous band of
spectrum that lies within an O(ν) neighborhood of the origin in the spectral plane
when D = D0/ν + D1, where D1 = O(1) is a detuning parameter. This continuous
band is real-valued and depends on the regular part of the Bloch Green’s function
and D1. In this way, for each RD model, we derived a specific objective function
that must be maximized to determine the specific periodic arrangement of localized
spots that is linearly stable for the largest value of D. A simple alternative method
to derive this objective function was also given and applied to the GS model. From a
numerical computation, based on an Ewald-type algorithm, of the regular part of the
Bloch Green’s function that defines the objective function, we showed within the class
of oblique Bravais lattices that a hexagonal lattice arrangement of spots was the most
stable to competition instabilities.

Although we focused our analysis only on the Schnakenberg, GM, and GS models,
our asymptotic methodology to derive the model-dependent objective function that
determines the optimally stable lattice arrangement of spots is readily extended to
general RD systems in the semi-strong interaction regime, such as the Brusselator
RD model [cf. Rozada et al. (2014)]. Either the simple method of Sect. 5 or the more
elaborate but systematic method of Sects. 3 and 4 can then be used to derive the
objective function.

There are a few open problems that warrant further investigation. One central issue
is to place our formal asymptotic theory on a more rigorous footing. In this direction,
it is an open problem to rigorously characterize the continuous band of spectrum that
lies near the origin when D is near the critical value. In addition, is it possible to
analytically prove Conjecture 6.1 that, within the class of oblique Bravais lattices of
a common area, R�

b0 is maximized for a hexagonal lattice?
As possible extensions to this work, it would be interesting to characterize lattice

arrangements of spots that maximize the Hopf bifurcation threshold in τ . To analyze
this problem, one would have to calculate any continuous band of spectra that lies
within an O(ν) neighborhood of the Hopf bifurcation frequency λ = iλI 0 when
τ − τI � 1, where τI and λI 0 is the Hopf bifurcation threshold and frequency,
respectively, on the Wigner–Seitz cell.

We have not analyzed any weak instabilities due to eigenvalues of order λ = O(ε2)

associated with the translation modes. It would be interesting to determine steady-state
lattice arrangements of localized spots that optimize the linear stability properties
of these modes. For these translation modes we might expect, in contrast to what
we found in this paper for competition instabilities (Remark 3.1 and Lemma 2.2),
that it is the long-wavelength instabilities with |kkk| � 1 that destabilize the pattern.
Long-wavelength instabilities have been shown to be the destabilizing mechanism
for periodic solutions on three-dimensional Bravais lattices of two-component RD
systems in the weakly nonlinear Turing regime [cf. Callahan and Knobloch (1997),
Callahan and Knobloch (2001)].
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Finally, it would be interesting to examine the linear stability properties of a col-
lection of N � 1 regularly spaced localized spots on a large but finite domain with
Neumann boundary conditions and to compare the spectral properties of this finite-
domain problem with that of the periodic problem in R

2. For the finite-domain prob-
lem, we expect that there are N discrete eigenvalues (counting multiplicity) that are
asymptotically close to the origin in the spectral plane when D is close to a critical
threshold. Research in this direction is in progress.
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8 Appendix 1: Schnakenberg Model: Expansion of Core Problem

We outline the derivation of the results of Lemma 3.1, as given in Sect. 6 of Kolokol-
nikov et al. (2009), and those of Lemma 5.1. We first motivate the appropriate scaling
for solutions U , V , and χ to (3.2) for S → 0. Upon writing U = U S−p, V = VS p,
where U and V are O(1) as S → 0, we obtain that the V equation in (3.2) is unchanged
but that the U equation becomes

�ρU = S2p UV2 ; U ∼ S1+p log ρ + S pχ as ρ → ∞.

From equating powers of S after first applying the divergence theorem, we obtain that
2p = p + 1, which yields p = 1. Then, to ensure that U = O(1), we must have
χ = O(S−p). This shows that if S = S0ν

1/2 where ν � 1, the appropriate scalings
are V = O(ν1/2), U = O(ν−1/2), and χ = O(ν−1/2).

With this basic scaling, we then proceed to calculate higher-order terms in the
expansion of the solution to the core problem by writing S = S0ν

1/2 + S1ν
3/2 + · · ·

and then determining the first two terms in the asymptotic solution U , V , and χ to
(3.2) in terms of S0 and S1. The appropriate expansion for these quantities is [see (6.2)
of Kolokolnikov et al. (2009)]

V ∼ ν1/2 (V0 + νV1 + · · · ) , (χ , U ) = ν−1/2 [(χ0 , U0) + ν (χ1 , U1) + · · · ] .

(8.1)
Upon substituting (8.1) into (3.2) and collecting powers of ν, we obtain that U0 and
V0 satisfy

�ρV0 − V0 + U0V 2
0 = 0 ; �ρU0 = 0 , 0 ≤ ρ < ∞ ,

V0 → 0 , U0 → χ0 as ρ → ∞; V ′
0(0) = U ′

0(0) = 0 ,
(8.2)

where �ρV0 ≡ V ′′
0 + ρ−1V ′

0. At next order, U1 and V1 satisfy

�ρV1 − V1 + 2U0V0V1 = −U1V 2
0 ; �ρU1 = U0V 2

0 , 0 ≤ ρ < ∞ ,

V1 → 0 , U1 → S0 log ρ + χ1 as ρ → ∞; V ′
1(0) = U ′

1(0) = 0.
(8.3)
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Then, at one higher order, we obtain that U2 satisfies

�ρU2 = U1V 2
0 + 2U0V0V1 , 0 ≤ ρ < ∞; U2 ∼ S1 log ρ + χ2

as ρ → ∞; U ′
2(0) = 0.

(8.4)

The solution to (8.2) is simply U0 = χ0 and V0 = w/χ0, where w(ρ) > 0 is the
unique radially symmetric solution to �ρw−w+w2 = 0, with w(0) > 0 and w → 0
as ρ → ∞. To determine χ0 in terms of S0, we apply the divergence theorem to the
U1 equation in (8.3) to obtain

S0 =
∞∫

0

U0V 2
0 ρ dρ = b

χ0
, b ≡

∞∫

0

ρw2 dρ. (8.5)

It is then convenient to decompose U1 and V1 in terms of new variables U1p and
V1p by

U1 = χ1 + U1p

χ0
, V1 = −χ1w

χ2
0

+ V1p

χ3
0

. (8.6)

Substituting U0 = χ0, V0 = w/χ0, (8.5), and (8.6) into (8.3), and using �ρw − w +
2w2 = w2, we readily obtain that U1p and V1p are the unique radially symmetric
solutions to (3.7c). Finally, we use the divergence theorem on the U2 equation in (8.4)
to determine χ1 in terms of S1 as

S1 =
∞∫

0

(
2U0V0V1 + U1V 2

0

)
ρ dρ

= − χ1

χ2
0

∞∫

0

w2ρ dρ + 1

χ3
0

∞∫

0

(
2wV1p + w2U1p

)
ρ dρ.

We then use �ρV1p−V1p = −w2U1p−2wV1p in the integral, as obtained from (3.7c),
and simplify the resulting expression using U0 = χ0 and V0 = w/χ0. This yields
S1 = −b−1χ1S2

0 +b−3S3
0

∫∞
0 V1pρ dρ, which gives (3.7d) for χ1. This completes the

derivation of Lemma 3.1.
To obtain the result in Lemma 5.1, we set S = S0ν

1/2 and S1 = 0 in (3.7) to obtain

V ∼ S

S0

(
w

χ0
+ S2

S2
0

(

−χ1w

χ2
0

+ V1p

χ3
0

))

, U ∼ S0

S

(

χ0 + S2

S2
0

(
χ1 + U1p

χ0

))

,

χ ∼ S0χ0

S
+ S

b2

∞∫

0

V1pρ dρ (8.7)

since χ1 = S0b−2
∫∞

0 V1pρ dρ from (3.7d). Finally, since S0χ0 = b from (3.7d), (8.7)
reduces to (5.1) of Lemma 5.1.
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9 Appendix 2: GM Model: Expansion of Core Problem

We outline the derivation of the results of Lemmas 4.1 and 5.2. To motivate the scalings
for the solution U , V , and χ to (4.2) as S → 0, we write U = U S p, V = VS p, where
U and V are O(1) as S → 0. We obtain that the V equation in (4.2) is unchanged but
that the U equation becomes

�ρU = −S pV2 ; U ∼ −S1−p log ρ + S−pχ as ρ → ∞.

From equating powers of S after applying the divergence theorem it follows that
p = 1 − p, which yields p = 1/2. Then, χ = O(S1/2) ensures that U = O(1). This
shows that if S = S0ν

2 where ν � 1, the appropriate scalings are that V , U , and χ

are all O(ν). To obtain a two-term expansion for the solution to the core problem, as
given in Lemma 4.1, we expand S = S0ν

2 + S1ν
3 + · · · and seek to determine the

solution U , V , and χ to (4.2) in terms of S0 and S1. The appropriate expansion for
these quantities has the form

(V , U , χ) = ν (V0 , U0 , χ0) + ν2 (V1 , U1 , χ1) + ν3 (V2 , U2 , χ2) + · · · . (9.1)

Substituting (9.1) into (4.2) and collecting powers of ν, we obtain that U0 and V0
satisfy

�ρV0 − V0 + V 2
0 /U0 = 0 ; �ρU0 = 0 , 0 ≤ ρ < ∞ ,

V0 → 0 , U0 → χ0 as ρ → ∞; V ′
0(0) = U ′

0(0) = 0 ,
(9.2)

where �ρV0 ≡ V ′′
0 + ρ−1V ′

0. At next order, U1 and V1 satisfy

�ρV1 − V1 + 2V0
U0

V1 = V 2
0

U 2
0

U1 ; �ρU1 = −V 2
0 , 0 ≤ ρ < ∞ ,

V1 → 0 , U1 → −S0 log ρ + χ1 as ρ → ∞; V ′
1(0) = U ′

1(0) = 0.
(9.3)

Then, at one higher order, we obtain that U2 satisfies

�ρU2 = −2V0V1 , 0 ≤ ρ < ∞; U2 ∼ −S1 log ρ + χ2

as ρ → ∞; U ′
2(0) = 0.

(9.4)

The solution to (9.2) is simply U0 = χ0 and V0 = χ0w, where w(ρ) > 0 is the
radially symmetric ground-state solution to �ρw − w + w2 = 0. Next, applying the
divergence theorem to the U1 equation in (9.3) we obtain

S0 =
∞∫

0

ρV 2
0 dρ = χ2

0 b , b ≡
∞∫

0

ρw2 dρ. (9.5)

It is then convenient to decompose U1 and V1 in terms of new variables U1p and
V1p by

U1 = χ1 + S0U1p , V1 = χ1w + S0V1p. (9.6)
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Substituting U0 = χ0, V0 = χ0w, (9.5), and (9.6) into (9.3) and using �ρw − w +
2w2 = w2, we readily obtain that U1p and V1p are the unique radially symmetric
solutions to (4.8c). Finally, we use the divergence theorem on the U2 equation in (9.4)
to obtain 2χ0χ1b + 2χ0S0

∫∞
0 wV1pρ dρ = S1, which readily yields (4.8d).

To obtain the result in Lemma 5.2, we set S = S0ν
2 and S1 = 0 in (4.8), with

χ2
0 = S0/b from (4.8d), to obtain

V ∼
√

S

S0
χ0w + S

S0

(
χ1w + S0V1p

)
, U ∼

√
S

S0
χ0 + S

S0

(
χ1 + S0U1p

)
,

χ ∼
√

S

S0
χ0 + S

S0
χ1 ,

(9.7)

where χ1 = −S0b−1
∫∞

0 wV1pρ dρ from (4.8d). Since S0 = bχ2
0 from (4.8d), (9.7)

reduces to (5.5) of Lemma 5.2.
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