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Abstract

Blowup ring profiles have been investigated by finding non-vortex blowup solutions of nonlinear
Schrödinger equations (NLSE) (cf. [5] and [6]). However, those solutions have infinite L2 norm so
one may not maintain the ring profile all the way up to the singularity. To find H1 non-vortex
blowup solutions with ring profiles, we study blowup solutions of two-component systems of NLSE
with nonlinear coefficients β and νj , j = 1, 2. When β < 0 and ν1 � ν2 > 0, the two-component
system can be transformed into a multi-scale system with fast and slow variables which may produce
H1 blowup solutions with non-vortex ring profiles. We use the localized energy method with
symmetry reduction to construct these solutions rigorously. On the other hand, these solutions
may describe steady non-vortex bright ring solitons. Various types of ring profiles including m-ring
and ring-ring profiles are presented by numerical solutions.
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1 Introduction

Blowup solutions of nonlinear Schrödinger equations (NLSE) may describe nonlinear wave col-
lapse which is universal to many areas of physics including nonlinear optics (cf. [12]), plasma physics
(cf. [24]), and Bose-Einstein condensates (BEC) (cf. [25]). The spatial profile of a collapsing wave
may evolve into a universal, self-similar, circularly symmetric shape with a single peak known as the
Townes profile which has been observed experimentally by amplified laser beams (cf. [18]). Theo-
retically, one may find the Townes profile by investigating self-similar solutions of self-focusing cubic
NLSE as follows: 




i∂tΨ + 4Ψ + ν|Ψ|2Ψ = 0 ,
Ψ = Ψ(x, t) ∈ C , x = (x1, x2) ∈ R

2 , t > 0 ,
Ψ(·, t) ∈ H1(R2) , t > 0 ,

(1.1)

where ν is a positive constant. It is well-known that the equation (1.1) has self-similar H1 solutions
with the Townes profile to express finite-time blowup behavior and have the singularity at t = T
(i.e. ‖Ψ(·, t)‖L∞ <∞ for 0 < t < T and ‖Ψ(·, t)‖L∞ → ∞ as t ↑ T <∞) (cf. [26]). Hence the Townes
profile can be maintained all the way up to the singularity.

In high-power laser beams, different collapsing behaviors may develop blowup ring profiles which
break into filaments with multi-Townes profiles under the effect of noise (cf. [10]). It would be naive
to think that ring profiles can be obtained by finding blowup solutions of the equation (1.1). One may
find blowup solutions of (1.1) with ring profiles in [5] and [6]. However, those solutions have infinite
L2 norm so one may not maintain the ring profile all the way up to the singularity. Recently, H1

vortex blowup solutions with ring profiles have been found (cf. [7]). However, until now, it is still an
open issue whether there exist H1 non-vortex blowup solutions with ring profiles.
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In order to findH1 non-vortex blowup solutions with ring profiles, we study two-component systems
of self-focusing cubic NLSE given by





i∂tΦ + 4Φ + ν1|Φ|2Φ + β|Ψ|2Φ = 0 ,
i∂tΨ + 4Ψ + ν2|Ψ|2Ψ + β|Φ|2Ψ = 0 ,
Φ = Φ(x, t) ,Ψ = Ψ(x, t) ∈ C , x = (x1, x2) ∈ R2 , t > 0 ,
Φ(·, t) ,Ψ(·, t) ∈ H1(R2) , t > 0 ,

(1.2)

under the condition ν1 � ν2 > 0 , where 4 = ∂2
x1

+ ∂2
x2

, νj’s are positive constants and β 6= 0 is
a coupling constant. The system (1.2) is a well-known model for photorefractive media in nonlinear
optics (cf. [1]). Besides, the system (1.2) may also describe two-component BEC in the limit of strong
transverse confinement (cf. [8]). Physically, the coefficients νj’s and β satisfy νj ∼ −ajj, j = 1, 2, and
β ∼ −a12, where aij’s are the scattering lengths. Due to Feshbach resonance, aij ’s can be tuned over
a very large range by adjusting the externally applied magnetic field (cf. [14]). Consequently, we may
let ajj < 0 i.e. νj > 0, j = 1, 2, and a12 > 0 i.e. β < 0. Recently, a small and negative scattering length
has been achieved by experiments (cf. [23]) so we may assume 0 < −a22 � −a11 i.e. 0 < ν2 � ν1.

To study the system (1.2) with ν1 � ν2 > 0 and β < 0, we may set ν1 = hµ1 , ν2 = h−1 µ2 ,
Φ(x, t) = φ(x, t) , and Ψ(x, t) =

√
hψ(x, t) , where µj’s positive constants and h ∼

√
ν1/ν2 � 1 a

large parameter. Then the system (1.2) can be transformed into the following system





iε2∂tφ+ ε24φ+ µ1|φ|2φ+ β|ψ|2φ = 0 ,
i∂tψ + 4ψ + µ2|ψ|2ψ + β|φ|2ψ = 0 ,
φ = φ(x, t) , ψ = ψ(x, t) ∈ C , x = (x1, x2) ∈ R

2 , t > 0 ,
φ(·, t) , ψ(·, t) ∈ H1(R2) , t > 0 ,

(1.3)

where ε = h−1/2 > 0 a small parameter and β < 0 a coupling constant. Similar systems of NLSE with
trap potentials and different dispersion coefficients can be found in [22]. Note that due to the small
parameter ε, the system (1.3) can be regarded as a multi-scale system having fast and slow variables.
In this paper, we want to prove that the system (1.3) may have H1 blowup solutions with ring profiles.

Pseudo-conformal transformations are useful to construct explicit blowup solutions of the equa-
tion (1.1) (cf. [29]). To get blowup solutions of the system (1.3), as for [15], we consider the following
pseudo-conformal transformations

φ(x, t) = A1(x, t) e
iθ1(x,t) , ψ(x, t) = A2(x, t) e

iθ2(x,t) , (1.4)

where

A1(x, t) = u(ξ) exp

(
−
∫ t

0
a(τ)dτ

)
, A2(x, t) = v(ξ) exp

(
−
∫ t

0
a(τ)dτ

)
, (1.5)

θj(x, t) = a(t)
|x|2
4

+ γj(t) , j = 1, 2 , (1.6)

and

γ′1(t) =
λ1

ε2
exp

(
−2

∫ t

0
a(τ)dτ

)
, γ′2(t) = λ2 exp

(
−2

∫ t

0
a(τ)dτ

)
. (1.7)

Here u and v are real-valued functions, λj ’s are positive constants, ξ = (ξ1, ξ2) ∈ R
2 is defined by

ξ = x exp

(
−
∫ t

0
a(τ)dτ

)
, x = (x1, x2) ∈ R

2 , (1.8)

and a(·) is defined by an ordinary differential equation given by

a′(t) + a2(t) = 0 , ∀ t > 0 , (1.9)

with initial data
a(0) = a0 < 0 . (1.10)



By (1.4)-(1.9), we may transform the system (1.3) into





ε24u− λ1u+ µ1u
3 + βv2u = 0 in R

2 ,

4 v − λ2v + µ2v
3 + βu2v = 0 in R

2 ,

u, v ∈ H1(R2) , u, v > 0 in R
2 ,

(1.11)

where 0 < ε � 1 is a small parameter, λj ’s and µj’s are positive constants, and β is a negative

constant. Here 4 is the Laplacian corresponding to ξ-coordinates denoted as 4 =

2∑

j=1

∂2
ξj

. To get

non-vortex solutions, we only consider positive solutions of (1.11) i.e. u, v > 0 in R
2. Moreover, (1.9)

and (1.10) imply

a(t) =
a0

a0t+ 1
→ −∞ as t ↑ T = −1/a0 , (1.12)

and then both |φ| and |ψ| blowup at the same time T = −1/a0 by (1.4) and (1.5). One may remark
that the sign of β may affect the blowup profile of |φ| and |ψ|. Suppose β > 0. Then the system (1.11)
becomes cooperative and only provides the Towne profile for |φ| and |ψ|. Hence we must assume β < 0
in order to obtain blowup ring-profile from the system (1.3).

Blowup profiles for blowup solutions of (1.2) and (1.3) are governed by the system (1.11). Here we
prove that as ε > 0 sufficiently small, there are two kinds of H1 positive solutions (uε, vε)’s of (1.11)
having different asymptotic behaviors. One is that uε concentrates at vertices of a regular k-polygon
(for any k ≥ 2) and vε concentrates at the origin (see Theorem 2.1 in Section 2). The other is that
uε concentrates on a circle away from the origin and vε concentrates at the origin (see Theorem 2.2
in Section 2). Now we fix ε > 0 as a small enough constant. Then the graph of uε may approach to
a single ring profile without any vortex. Hereafter, the single ring profile is defined as the graph of a
positive function f = f(r) (r = |x| is the radial variable for x ∈ R

2) such that f(∞) = 0, and f is
increasing on (0, r1) but decreasing on (r1,∞), where r1 a positive constant. Hence by (1.4), (1.5) and
(1.12), we may obtain H1 non-vortex blowup solutions (φ,ψ)’s of (1.3) i.e. (Φ,Ψ)’s of (1.2) blowing
up at T = −1/a0, and the blowup profile of Φ is of ring profiles. This may provide non-vortex ring
profiles which can be maintained all the way up to the singularity.

Another motivation of the system (1.11) may come from bright ring solitons which exist as station-
ary localized states observed in self-focusing Kerr media modelled by NLSE (cf. [27]). One may find
quantized vortices corresponding to bright ring solitons by solving vortex solutions of the equation (1.1)
(cf. [3]). However, until now, steady non-vortex bright ring solitary wave solutions of (1.1) have not yet
been found. To learn steady non-vortex bright ring solitons, we study steady solitary wave solutions of
the system (1.3) by setting φ(x, t) = eiλ1 t/ε2

u(x) and ψ(x, t) = eiλ2 t v(x) for x = (x1, x2) ∈ R
2, t > 0,

where both u and v are positive functions. Then the system (1.3) can be transformed into (1.11) with
4 = ∂2

x1
+∂2

x2
. Hence Theorem 2.2 may also provide steady solitary wave solutions of the system (1.3)

to describe non-vortex bright ring solitons.
In addition, non-vortex ring profiles can be obtained by numerical simulations on the system (1.11)

with 4 = ∂2
x1

+ ∂2
x2

. Setting u = u(r), v = v(r), and r = |x| for x ∈ R
2, we may rewrite the system

(1.11) as follows:





ε2 (u′′ + 1
ru

′) − λ1u+ µ1u
3 + βv2u = 0 , for r > 0 ,

(v′′ + 1
rv

′) − λ2v + µ2v
3 + βu2v = 0 , for r > 0 ,

u, v > 0 , for r > 0 ,

u′(0) = v′(0) = 0, u(∞) = v(∞) = 0 .

(1.13)

We may use a singular boundary value problem solver BVP4C in MATLAB to solve (1.13) and obtain
numerical solutions with ring profiles as described in Theorem 2.2 and Remark 3 (see also Figs 1-3
in Section 5). Our numerical scheme is reliable since it produces numerical solutions of (1.13) with
computational errors of order O(10−15) (see, e.g., Fig 1(c)). Besides, numerical solutions with m-ring



and ring-ring profiles can be shown in Fig 4 and Fig 5, respectively. Here the m-ring profile is the
graph of a positive function g = g(r) (r = |x| is the radial variable for x ∈ R

2) with m bumps. The
ring-ring profile means that both u and v have ring profiles. Until now, we have no theoretical result
to support the existence of the ring-ring profile.

The rest of this paper is organized as follows: We state Theorem 2.1 and 2.2 in Section 2. In
Section 3 and 4, we give rigorous arguments to prove Theorem 2.1 and 2.2 using the localized energy
method with symmetry reduction. In Section 5, various numerical solutions of (1.13) are given.
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2 Main Results

Let ωj be the unique positive solution of





4ωj − λjωj + µjω
3
j = 0 in R

2 ,

ωj = ωj(r) > 0 for r = |x| > 0 ,
limr→∞ ωj(r) = 0 , j = 1, 2 .

(2.1)

Note that the equation (2.1) is of semilinear elliptic equations. By the symmetry result of Gidas-Ni-
Nirenberg [11], each wj is radially symmetric and strictly decreasing. For the uniqueness theorem,
one may refer to [21] for the uniqueness of semilinear elliptic equations covering the case of cubic
nonlinearity but those are totally different from the equation (2.1). Hence we need the result of

Kwong [13] to assure the uniqueness of ωj’s. Then it is easy to check that ωj = ωj(r) =
√

λj

µj
ω(
√
λjr),

where ω = ω(r) is the unique positive solution of 4ω− ω+ ω3 = 0 in R
2. Our first result is stated as

follows:

THEOREM 2.1. Let k ∈ N, k ≥ 2. Then for ε sufficiently small, problem (1.11) has a solution
(uε, vε) with the following properties

(a) vε(x) = ω2(|x|)(1 + oε(1)),

(b) uε(x) =

k∑

l=1

ω1

(∣∣∣∣
x− Pε,l

ε

∣∣∣∣
)

(1 + oε(1)),

where Pε,l’s are spike centers of uε satisfying

|Pε,i − Pε,j| ∼ ε log
1

ε
, Pε,i = oε(1) , (2.2)

for i, j = 1, · · · , k and i 6= j. Moreover, Pε,l’s are located at vertices of a regular k-polygon in R
2.

In this paper, we use the notation ∼ to denote Aε ∼ Bε which means C1Bε ≤ Aε ≤ C2Bε as ε → 0,
where Cj ’s are positive constant independent of ε. Besides, oε(1) is a small quantity tending to zero
as ε goes to zero.

REMARK 1. We can also prove the existence of solutions with more complex structures: for example,
uε may have spikes at concentric polygons. For the different case that ε = 1 and −β is a positive but
small parameter, one may refer to [15] to get multi-Townes profiles far away from the origin.

In Theorem 2.1, we rigorously prove that as ε sufficiently small, there exist (uε, vε)’s solutions
of (1.11) with uε concentrating at Pε,l, l = 1, · · · , k vertices of a regular k-polygon near the ori-
gin and vε concentrating at the origin. Now we fix ε > 0 as a sufficiently small constant. By



(1.4)-(1.8) and (1.12), the associated solution (Φ,Ψ) of (1.2) satisfies |Φ|(x, t) = T
T−t uε

(
T x
T−t

)
∼

T
T−t

k∑

l=1

w1

(∣∣∣∣
Tx

ε(T − t)
− ε−1 Pε,l

∣∣∣∣
)

and |Ψ|(x, t) = ε−1 T
T−t vε

(
T x
T−t

)
∼ ε−1 T

T−t w2

(
T |x|
T−t

)
. Thus |Φ|

has the k-fold Townes profile with k peaks at T−t
T Pε,l’s and |Ψ| has the Townes profile with a single

peak at the origin such that as t ↑ T , |Φ|(x, t) → ∞ for x = T−t
T Pε,l, l = 1, · · · , k and |Ψ|(0, t) → ∞.

Note that both |Φ| and |Ψ| blow up at the same time T . Moreover, both uε and vε have finite H1

norms which may imply that the the k-fold Townes profile of |Φ| and the Townes profile of |Ψ| can be
maintained all the way up to the singularity.

Next theorem shows that there exist solutions (u, v)’s with u concentrating on a circle away from
the origin and v concentrating at the origin. To state the result, we need to introduce some functions.
Let U be the unique homoclinic solution of

U ′′ − U + µ1 U
3 = 0, U(y) = U(−y), U > 0, U → 0 at ∞. (2.3)

Let

M(r) = r2/3 V (r) and V (r) = λ1 − βω2
2(r). (2.4)

Then r−2/3M ′(r) = 2
3rV (r) + V ′(r). Due to β < 0, it is obvious that V (r) > 0 and V ′(r) < 0 for

r > 0. Moreover, M ′(r) > 0 for r sufficiently close to zero or infinity. Suppose

max
r>0

|rV ′(r)|
V (r)

>
2

3
. (2.5)

Then M ′(r0) < 0 for some r0 > 0. Hence the function M may have two critical points rj, j = 1, 2 such
that 0 < r1 < r0 < r2 <∞.

REMARK 2. To fulfill the condition (2.5), we remark that due to β < 0, we have

V ′(r) = −2βω2(r)ω
′
2(r) = 2|β|λ

3/2
2

µ2
ω(
√
λ2r)ω

′(
√
λ2r) ,

and hence

r
V ′(r)
V (r)

=
tω(t)ω′(t)
A+ ω2(t)

, (2.6)

where t =
√
λ2r and A = λ1µ2

|β|λ2
. Now we set f(a) = maxt>0

|tω(t)ω′(t)|
a+ω2(t)

for a > 0. Then it is obvious that

f is monotone decreasing in a, lima→0 f(a) = ∞ and lima→∞ f(a) = 0. Consequently, there exists a

unique A0 > 0 such that f(A0) = 2
3 i.e. maxr>0

|rV ′(r)|
V (r) = 2

3 if A = A0. Therefore the condition (2.5)
can be replaced by A < A0 i.e.

−β > λ1µ2

λ2A0
> 0 . (2.7)

Now we state another main theorem as follows:

THEOREM 2.2. Assume (2.7) holds. Then the problem (1.11) has two solutions (uε,1, vε,1) and
(uε,2, vε,2) such that

(a) uε,i(r) ∼
√
V (rε,i)U

(√
V (rε,i)

|r − rε,i|
ε

)
, i = 1, 2,

(b) vε,i(r) ∼ ω2(r), i = 1, 2 ,

where rε,i → ri as ε→ 0+, and r1 < r2 are two critical points of M(r).



REMARK 3. Following the proof of [17], we can also show the existence of clustered ring solutions,

i.e, uε,i(r) ∼
∑K

j=1

√
V (rj

ε,i)U

(√
V (rj

ε,i)
|r − rj

ε,i|
ε

)
, where rj

ε,i → ri, j = 1, ...,K.

In Theorem 2.2, we rigorously prove that as ε sufficiently small, there exist (uε,i, vε,i)’s solutions
of (1.11) with uε,i concentrating on a circle (with a center at the origin and radius ri) away from the
origin and vε,i concentrating at the origin. Now we fix ε > 0 as a small enough constant. By (1.4)-

(1.8), (1.12) and Theorem 2.2, the associated solution (Φ, ψ) satisfies |Φ|(x, t) = T
T−t uε,i

(
T x
T−t

)
∼

T
T−t

√
V (rε,i)U

(√
V (rε,i)

∣∣∣ T |x|
ε(T−t) − ε−1rε,i

∣∣∣
)

and |Ψ|(x, t) = ε−1 T
T−t vε,i

(
T x
T−t

)
∼ ε−1 T

T−t w2

(
T |x|
T−t

)
.

Thus as t ↑ T , |Φ|(x, t) → ∞ for x ∈ Γi
t and |Ψ|(0, t) → ∞, where Γi

t =
{
x ∈ R

2 : |x| = T−t
T rε,i

}
is a

circle shrinking to the origin as t goes to T . Note that both |Φ| and |Ψ| blow up at the same time T .
Furthermore, both uε and vε have finite H1 norms which may imply that the ring profile of |Φ| and
the Townes profile of |Ψ| can be maintained all the way up to the singularity.

3 Proof of Theorem 2.1

In this section, we use the method of localized energy with symmetry reduction to prove Theorem 2.1.
For an overview on localized energy method, we refer to Chapter 2 of [28]. Here we closely follow a
combination of localized energy method and symmetry reduction which has been used in [15].

3.1 Symmetry Class

For k ≥ 2, we define a class of functions with the symmetry property as follows:

Σ1 =

{
u

(
r̃ cos

(
θ̃ +

2π

k

)
, r̃ sin

(
θ̃ +

2π

k

))
= u

(
r̃ cos θ̃, r̃ sin θ̃

)}
. (3.1)

Then we have

LEMMA 3.1. Let p > 1 be a fixed number. If φ ∈W 2,p(R2) ∩ Σ1 and

L2φ := 4φ− λ2φ+ 3µ2ω
2
2φ = 0, (3.2)

then φ ≡ 0. As a consequence,
||φ||W 2,p ≤ C1||L2φ||Lp , (3.3)

for φ ∈ W 2,p(R2) ∩ Σ1, where C1 is a positive constant independent of φ. Moreover, the inverse map
L−1

2 : Lp(R2) ∩ Σ1 →W 2,p(R2) ∩ Σ1 exists and

||L−1
2 f ||W 2,p ≤ C1||f ||Lp , (3.4)

for f ∈ Lp(R2) ∩ Σ1.

Proof. By the uniqueness result of [13], w2 is unique in the radial class. By Lemma C of [20], the
kernel of L2 in W 2,p(R2) consists of functions ∂w2

∂yj
, j = 1, 2. However, for any constants c1 and c2,

c1
∂w2

∂y1
+ c2

∂w2

∂y2
6∈ Σ1. Thus the first part of the Lemma is proved. The second part follows from

Fredholm alternative. The proof is given in the appendix.

As a consequence of Lemma 3.1, we have

LEMMA 3.2. There exists δ > 0 such that if

g ∈ Σ1 and ||g||L2(R2) < δ, (3.5)



then the equation

4 v − λ2v + µ2 v
3 + gv = 0 in R

2 (3.6)

has a unique solution v ∈ H2(R2) ∩ Σ1 satisfying

||v − ω2||H2(R2) ≤ C2‖g‖L2(R2) , (3.7)

where C2 can be chosen as
C2 = C1

(
1 + ‖w2‖L∞(R2)

)
, (3.8)

and C1 is given in (3.3).

REMARK 4. Note that we only require that ‖g‖L2 is small. So λ2 − g might be negative somewhere
in R

2.

Proof. We use contraction mapping theorem to prove Lemma 3.2. Let v = ω2 + ψ, where ψ ∈
H2(R2) ∩ Σ1. Then v satisfies (3.6) if and only if ψ satisfies

4ψ − λ2ψ + 3µ2ω
2
2ψ +N [ψ] + gω2 + gψ = 0,

which is equivalent to

ψ = L−1
2

[
−N [ψ] − gψ − gω2

]
≡ A[ψ] , (3.9)

where N [ψ] = µ2(3ω2ψ
2 + ψ3) and L−1

2 is the inverse map given by Lemma 3.2.
Now we choose a complete metric space

B := {ψ ∈ H2(R2) ∩ Σ1 | ‖ψ‖H2(R2) ≤ C2‖g‖L2(R2)}

with the metric d(ϕ,ψ) = ‖ϕ − ψ‖H2(R2). Here C2 is defined by (3.8). Note that by Lemma 3.1 and
the Sobolev embedding H2(R2) into Lp(R2) , 1 < p ≤ ∞ (cf. [4]),

‖L−1
2 [N [ψ]]‖H2 ≤ C3‖ψ‖2

H2 +C4‖ψ‖3
H2 ,

||L−1
2 [gω2]||H2 ≤ C1||gω2||L2 ≤ C1‖w2‖L∞‖g‖L2 ,

‖L−1
2 [gψ]‖H2 ≤ C5‖g‖L2‖ψ‖H2 ,

where C3, C4 and C5 are positive constants independent of ψ and g. Thus we have for ψ ∈ B,

‖A[ψ]‖H2 ≤ C3C
2
2‖g‖2

L2 + C4C
3
2‖g‖3

L2 + C5C2‖g‖2
L2 + C1‖w2‖L∞‖g‖L2 ≤ C2‖g‖L2 , (3.10)

provided that
C3C

2
2‖g‖L2 + C4C

3
2‖g‖2

L2 + C5C2‖g‖L2 ≤ C1. (3.11)

Similarly, we also have

‖A[ψ1] −A[ψ2]‖H2 ≤ C6‖g‖L2‖ψ1 − ψ2‖H2 ≤ 1

2
‖ψ1 − ψ2‖H2 , (3.12)

if ‖g‖L2 is small enough, where C6 is a positive constant independent of ψ and g. Setting ‖g‖L2 < δ
small enough, the map A becomes a contraction mapping from B to B. By the contraction mapping
theorem, the unique solution of (3.9) in B is guaranteed. Therefore, we may complete the proof of
Lemma 3.2.



Given g, let us denote the solution v in Lemma 3.2 as T [g] := v. Next we introduce a framework
to solve the first equation (i.e. u) of (1.11). Let P0 = (ε l, 0), Pi = Ri(ε l, 0), i = 1, ..., k, where

Ri =

(
cos
(

2π
k (i− 1)

)
− sin

(
2π
k (i− 1)

)

sin
(

2π
k (i− 1)

)
cos
(

2π
k (i− 1)

)
)

(3.13)

and l satisfies α log 1
ε ≤ l ≤ γ log 1

ε , α > 1 and γ will be chosen later. Let ω̃ be the unique positive
solution of

4ω −
(
λ1 − βω2

2(P0)
)
ω + µ1ω

3 = 0 in R
2 , (3.14)

with lim|x|→∞ ω(|x|) = 0. Note that ω2
2(P0)=ω

2
2(Pi) for i = 1, ..., k. Let ω̃i(x) = ω̃( |x−Pi|

ε ) and

W (x) =
∑k

i=1 ω̃i(x). Of course, W ∈ Σ1 so we may choose W as an ansaz to approximate the u-
component solution. Now we rescale the spatial variables by ε i.e. y = x/ε, and consider the following
operator

S[u] = 4u− λ1u+ µ1u
3 + β(T [βu2](ε y))2u (3.15)

on H2(R2) with norms given by

|| · ||∗∗,1 =

[∫

R2

u2(y)dy

]1/2

, || · ||∗,1 = || · ||H2(R2).

Now let us estimate the error introduced by W .

3.2 Error Estimate

Let us compute the error E = S[W ]. From Lemma 3.2, we have

T [βW 2](ε y) =ω2(ε y) +O(||W 2||L2)

=ω2(ε y) +O(ε). (3.16)

Here we have used the fact that α log 1
ε ≤ l ≤ γ log 1

ε and α > 1. Hence

E = S[W ] =4W − λ1W + µ1W
3 + β(T [βW 2](εy))2W

=4W −
(
λ1 − βω2

2

)
W + µ1W

3 + β
[
(T [βW 2](εy))2 − ω2

2(εy)
]
W

=E1 +E2,

where E1 = 4W −
(
λ1 − βω2

2

)
W + µ1W

3 and E2 = β
[
(T [βW 2](εy))2 − ω2

2(εy)
]
W . It is easy to

check that

E1 =4W −
(
λ1 − βω2

2

)
W + µ1W

3

=
(
βω2

2(εy) − βω2
2(P0)

)
W + µ1



(

k∑

i=1

ω̃i

)3

−
k∑

i=1

ω̃3
i




=E11 + E12 ,

where E11 =
(
βω2

2(εy) − βω2
2(P0)

)
W and E12 = µ1



(

k∑

i=1

ω̃i

)3

−
k∑

i=1

ω̃3
i


.

For E12, we have
∫

R2

|E12|2 ≤C
∫

Rn

∑

k 6= l

ω̃4
kω̃

2
l

≤C
∑

k 6= l

ω̃2

( |Pk − Pl|
ε

)
(3.17)

≤Cω̃2
(
2l sin

π

k

)
,



where C is a positive constant independent of ε. For E11, we have

E11 = β
(
ω2

2(|εy|) − ω2
2(|P0|)

)
W.

Let εy = P0 + εz. Then we obtain

|E11| ≤ CW ·
[
|ω′

2(|P0|)| × (|P0 + εz| − |P0|) +O((|P0 + εz| − |P0|)2)
]

≤ CW ·
(
ε|P0||z| + ε2|z|2

)
, (3.18)

and hence
∫

R2

|E11|2 ≤ C(ε2|P0|2 + ε4) ≤ Cε4 log2 1

ε
, (3.19)

where C is a positive constant independent of ε. For E2, we may use (3.16) to get

∫

R2

|E2|2 ≤ Cε2
∫

R2

|W |2 ≤ Cε2 . (3.20)

Combining the estimates in (3.17)−(3.20), we obtain the following error estimates.

LEMMA 3.3. The error E = S[W ] satisfies

||E||∗∗,1 ≤ C
(
ε+ w̃

(
2l sin

π

k

))
, (3.21)

where ‖ · ‖∗∗,1 = ‖ · ‖L2(R2) .

3.3 Linear Theory

We consider the following linear problem

{
4φ− λ1φ+ 3µ1W

2φ+ βω2
2φ = h+ c∂W

∂ l ,∫
R2 φ

∂W
∂ l = 0 , φ ∈ Σ1 ,

(3.22)

with the solution (φ, c), where h ∈ L2(R2) ∩ Σ1. Then we may derive apriori estimates as follows:

LEMMA 3.4. For ε sufficiently small, given ||h||∗∗ <∞, problem (3.22) has a unique solution (φ, c)
such that

||φ||∗,1 + |c| ≤ C||h||∗∗,1 , (3.23)

where ‖ · ‖∗,1 = ‖ · ‖H2(R2) and ‖ · ‖∗∗,1 = ‖ · ‖L2(R2) .

Proof. Firstly, we prove (3.23). We note that

∂W

∂ l
=

k∑

i=1

ω̃′
( |ε y − Pi|

ε

)
· 1

ε
· −(ε y − Pi) · ε (Ri e1)

|ε y − Pi|

=

k∑

i=1

ω̃′
( |ε y − Pi|

ε

) −(ε y − Pi) · (Ri e1)

|ε y − Pi|
, (3.24)

where e1 = (1, 0) and Ri’s are defined in (3.13). Multiplying (3.22) by ∂W
∂ l and integrating over R

2,
we obtain

|c| ≤
∣∣∣∣
∫

R2

(
4∂W

∂ l
− λ̃1

∂W

∂ l
+ 3µ1W

2∂W

∂ l

)
φ

∣∣∣∣+
∣∣∣∣
∫

R2

(
βω2

2 − βω2
2(P0)

)
φ
∂W

∂ l

∣∣∣∣+ ‖h‖∗∗,1

≤o(||φ||∗∗,1) + ‖h‖∗∗,1 , (3.25)



where λ̃1 = λ1 − βω2
2(P0) and o(1) is a small quantity tending to zero as ε goes to zero. Here we

have used the inequality (3.18) to deal with the second integral of (3.25). To get (3.23), it is enough
to show that ||φ||∗,1 ≤ C||h||∗∗,1. In fact, we can prove it by contradiction using a similar argument
to Lemma 4.1 of [15]. We just sketch the idea: suppose not. We then have a sequence of (φn, cn, hn)
satisfying (3.22) such that ‖φn‖∗,1 = 1, ‖hn‖∗∗,1 = o(1). By (3.25), we derive that |cn| = o(1). Let
φ̃n = φn(y + P1

ε ). We then obtain that φ̃n → φ0 where φ0 satisfies ∆φ0 − λ1φ0 + 3µ1ω
2
1φ0 = 0. This

and the fact that
∫

R2 φ̃n
∂W
∂l = 0 force φ0 ≡ 0. Then we use regularity theorem to conclude that

‖φn‖∗,1 = o(1) which contradicts with our assumption ‖φn‖∗,1 = 1. This proves the a priori estimate
(3.23). Using (3.23), Lemma 8, Proposition 1 and Lemma 10 of [16], we may complete the proof of
Lemma 3.4.

3.4 Nonlinear reduction

From Lemma 3.4, we deduce the following Lemma.

LEMMA 3.5. For ε sufficiently small, there exist a unique solution (φl, cl) such that

S[W + φl] = cl
∂W

∂ l
,

∫

R2

φl
∂W

∂ l
= 0 , (3.26)

and

||φl||∗,1 ≤ C
(
ε+ ω̃

(
2l sin

π

k

))
. (3.27)

Proof. Let

B =
{
φ ∈ H2 ∩ Σ1 : ||φ||∗,1 ≤ ρ

(
ε+ ω̃

(
2l sin

π

k

))}
,

where ρ is a suitable positive constant. Then by (3.15), we have

S[W + φ] =S[W ] + 4φ− λ1φ+ 3µ1W
2φ+ βω2

2φ+ β
(
T [β(W + φ)2]2 − ω2

2

)
φ (3.28)

+N [φ] + β
(
T [β(W + φ)2]2 − T [βW 2]2

)
W,

where N [φ] = µ1

(
3Wφ2 + φ3

)
. By (3.16), we may calculate

∥∥β
(
T [β(W + φ)2]2 − ω2

2

)
φ
∥∥
∗∗,1 ≤ Cε||φ||∗,1 ,

‖N [φ]‖∗∗,1 ≤ C||φ||2∗,1 ,∥∥β
(
T [β(W + φ)2]2 − T [βW 2]2

)
W
∥∥
∗∗,1 ≤ Cε .

The rest of the proof follows from standard contraction mapping theorem. One may refer to [15] for
the details.

3.5 Expansion of cl

Let us now expand cl as follows: Multiply the first equation in (3.26) by ∂W
∂ l and integrate over

R
2. Then we may use (3.28) to get

cl

∫

R2

(
∂W

∂ l

)2

dy =

∫

R2

E
∂W

∂ l
dy +

∫

R2

[
4φ− λ1φ+ 3µ1W

2φ+ βω2
2φ
] ∂W
∂ l

dy

+

∫

R2

β
(
T [β(W + φ)2]2 − ω2

2

)
φ
∂W

∂ l
dy

+

∫

R2

N [φ]
∂W

∂ l
dy +

∫

R2

β(T [β(W + φ)2]2 − T [βW 2]2)W
∂W

∂ l
dy

=I1 + I2 + I3 + I4 + I5,



where x = P0 + ε y, E = S[W ], φ = φl, and

I1 =

∫

R2

E
∂W

∂ l
dy ,

I2 =

∫

R2

[
4φ− λ1φ+ 3µ1W

2φ+ βω2
2φ
] ∂W
∂ l

dy ,

I3 =

∫

R2

β
(
T [β(W + φ)2]2 − ω2

2

)
φ
∂W

∂ l
dy ,

I4 =

∫

R2

N [φ]
∂W

∂ l
dy ,

I5 =

∫

R2

β(T [β(W + φ)2]2 − T [βW 2]2)W
∂W

∂ l
dy

Using (3.16) and (3.27), it is obvious that

I3 =

∫

R2

β
(
T [β(W + φ)2]2 − ω2

2

)
φ
∂W

∂ l
dy = O

(
ε2 + ω̃2

(
2l sin

π

k

))
, (3.29)

and

I4 =

∫

R2

N [φ]
∂W

∂ l
dy = O

(
ε2 + ω̃2

(
2l sin

π

k

))
. (3.30)

To estimate I5, we set ψ = T [β(W + φ)2] − T [βW 2] . Then ψ satisfies

4ψ − λ2ψ + 3µ2ω
2
2ψ = Ẽ2 (3.31)

where

Ẽ2 = 3µ2(ω
2
2 − (T [βW 2])2)ψ − βW 2ψ +O(ψ2) +O

(
|(2φW + φ2)T [β(W + φ)2]|

)
(3.32)

Let us estimate each term in (3.32): By (3.16) and (3.27), it is easy to check that

||(2φW + φ2)T [β(W + φ)2]||L2(R2) ≤ Cε2 , (3.33)

and

||ψ2||L2(R2) ≤ Cε2 . (3.34)

Using (3.16), we see that

‖((T [βW 2])2 − ω2
2)ψ‖L2(R2) ≤ Cε‖ψ‖H2(R2). (3.35)

Recall that W =
∑k

i=1 ω̃( |x−Pi|
ε ). Hence

‖βW 2ψ‖L2(R2) ≤ Cε1/2‖ψ‖H2(R2). (3.36)

By Lemma 3.1 and (3.33)-(3.36), we have

‖ψ‖H2(R2) ≤ C‖Ẽ2‖L2(R2) ≤ Cε1/2‖ψ‖H2(R2) + Cε2 (3.37)

which gives

||ψ||H2(R2) ≤ Cε2 , (3.38)

and hence by Sobolev embedding,

||ψ||L∞(R2) ≤ Cε2 .



Consequently,

I5 ≤ Cε2 .

For I2, we may use integration by parts to get

I2 =

∫

R2

[
4∂W

∂ l
− λ1

∂W

∂ l
+ 3µ1W

2∂W

∂ l
+ βω2

2

∂W

∂ l

]
φdy

=

∫

R2

[
4∂W

∂ l
− λ̃1

∂W

∂ l
+ 3µ1W

2∂W

∂ l

]
φdy +

∫

R2

β(ω2
2 − ω2

2(P0))
∂W

∂ l
φ dy ,

where λ̃1 = λ1 − βω2
2(P0). By (3.24) and (3.27), it is obvious that

∣∣∣∣
∫

R2

β(ω2
2 − ω2

2(P0))
∂W

∂ l
φ dy

∣∣∣∣ ≤C|ω′
2(P0)|

∫

R2

|ε y − P0|
∣∣∣∣
∂W

∂ l

∣∣∣∣ |φ| dy

≤Cε2, (3.39)

and
∣∣∣∣
∫

R2

[
4∂W

∂ l
− λ̃1

∂W

∂ l
+ 3µ1W

2∂W

∂ l

]
φdy

∣∣∣∣ ≤C
(
ε+ ω̃

(
2l sin

π

k

))
ε

≤Cε2 + Cεω̃
(
2l sin

π

k

)
. (3.40)

Here we have used the fact that

4∂W

∂ l
− λ̃1

∂W

∂ l
+ 3µ1

k∑

i=1

ω̃2
i
∂ω̃i

∂l
− ∂λ̃1

∂l
W = 0 in R

2 ,

and ∂eλ1

∂l = O(ε) since W =
∑k

i=1 ω̃i and ω̃i’s satisfy (3.14). Consequently,

I2 = O
(
ε2 + ω̃2

(
2l sin

π

k

))
. (3.41)

Now it remains to compute I1:

I1 =

∫

R2

[
4W −

(
λ1 − βω2

2

)
W + µ1W

3
] ∂W
∂ l

dy +

∫

R2

β[(T [βW 2])2 − ω2
2]W

∂W

∂ l
dy.

Note that

||T [βW 2] − ω2||H2(R2) ≤ Cε , (3.42)

and then by Sobolev embedding,

||T [βW 2] − ω2||C1(R2) ≤ Cε . (3.43)

Hence
∫

R2

β[(T [βW 2])2 − ω2
2 ]W

∂W

∂ l
dy

=

∫

R2

β[(T [βW 2])2(P0) − ω2
2(P0)]W

∂W

∂ l
dy (3.44)

+

∫

R2

β
{
[(T [βW 2])2(x) − ω2

2(x)] − [(T [βW 2])2(P0) − ω2
2(P0)]

}
W
∂W

∂ l
dy

=O(ε)

∫

R2

|x− P0|W
∣∣∣∣
∂W

∂ l

∣∣∣∣ dy

=O(ε2),



where we have used (3.43), x = P0 + ε y, P0 = (ε l, 0) and
∫

R2 W
∂W
∂ l dy = 0. Finally, by (3.14), we

obtain
∫

R2

[
4W − (λ1 − βω2

2)W + µ1W
3
] ∂W
∂ l

dy

=

∫

R2




[
βω2

2 − βω2
2(P0)

]
W dy + µ1



(

k∑

i=1

ω̃i

)3

−
k∑

i=1

ω̃3
i







∂W

∂ l
dy

=I11 + I22,

where

I11 = β

∫

R2

[ω2
2 − ω2

2(P0)]W
∂W

∂ l
dy ,

I12 =

∫

R2

µ1



(

k∑

i=1

ω̃i

)3

−
k∑

i=1

ω̃3
i


 ∂W
∂ l

dy .

By symmetry,

I11 =β

∫

R2

[ω2
2(x) − ω2

2(P0)]W
∂W

∂ l
dy

=βk

∫

Γ0

[ω2
2(x) − ω2

2(P0)]W
∂W

∂ l
dy ,

I12 =µ1k

∫

Γ0



(

k∑

i=1

ω̃i

)3

−
k∑

i=1

ω̃3
i


 ∂W
∂ l

dy ,

where

Γ0 =
{

(r cos θ, r sin θ) : r ≥ 0 ,−π
k
< θ <

π

k

}
.

Thus

I11 =β k

∫

Γ0

2ω2(P0)ω
′
2(P0)

[
P0

|P0|
· (x− P0)

]
W
∂W

∂ l
dy +O(ε2)

=β k

∫

Γ0

2ω2(0)ω
′′
2 (0)|P0|ε y1ω̃

(
− ∂ω̃

∂ y1

)
dy +O(ε2) (3.45)

=β k

(
C0

∫

R2

ω̃2 dy

)
ω2(0)ω

′′
2 (0)ε2l +O(ε2) := C1ε

2l +O(ε2),

where x = P0 +ε y, P0 = (ε l, 0, 0), C1 := β k
(
c0
∫

Rn ω̃
2
)
ω2(0)ω

′′
2 (0) > 0, and C0 is a positive constant.

To estimate I12, we observe that

I12 =µ1k

∫

Γ0

3ω̃2
1

k∑

i=2

ω̃i

(
−∂ω̃1

∂ y1

)
+O(ε2)

=µ1k

∫

Γ0

3ω̃2
1(ω̃2 + ω̃k)

(
−∂ω̃1

∂ y1

)
+O(ε2).

In particular,

∫

Γ0

3ω̃2
1ω̃2

(
−∂ω̃1

∂ y1

)
dy =

∫

R2

ω̃3
1

∂ω̃2

∂ y1
dy +O(ε2).



Note that

ω̃1 =ω̃

( |x− P1|
ε

)
= ω̃

( |ε y + P0 − P1|
ε

)
= ω̃(|y|),

∂ω̃2

∂ y1
=ω̃′

(∣∣∣∣y +
P0 − P2

ε

∣∣∣∣
)
· y1 + <P0−P2,e1>

ε∣∣y + P0−P2

ε

∣∣

=ω̃′
( |P0 − P2|

ε

)(
< P0 − P2, e1 >

|P0 − P2|

)
· (1 +O(ε|y|2))e−

<P0−P2,y>

|P0−P2| .

Consequently,
∫

R2

ω̃3
1

∂ω̃2

∂ y1
dy =

(∫

R2

ω̃3(|y|)e−
<P0−P2,y>

|P0−P2| dy

)
· ω̃′
( |P0 − P2|

ε

)
< P0 − P2, e1 >

|P0 − P2|
=C2ω̃

′
(
2l sin

π

2k

)
+O(ε2), (3.46)

where

C2 =

(∫

R2

ω̃3(|y|)e−
<P0−P2,y>

|P0−P2| dy

)
· < P0 − P2, e1 >

|P0 − P2|
> 0. (3.47)

Hence

I12 = Ĉ2ω̃
′
(
2l sin

π

2k

)
+O(ε2) , (3.48)

where Ĉ2 is a positive constant independent of ε. Therefore by (3.45) and (3.48), we have

I11 + I12 = C1ε
2l + Ĉ2ω̃

′
(
2l sin

π

2k

)
+O(ε2). (3.49)

In summary, we have

cl = C̃1ε
2l + C̃2ω̃

′
(
2l sin

π

2k

)
+O(ε2), (3.50)

where C̃1, C̃2 > 0 are positive generic constants independent of ε.

3.6 Proof of Theorem 2.1

We prove Theorem 2.1 by a continuity argument. Note that

ω̃′(2l sin
π

2k
) = −A0

(
2l sin

π

2k

)− 1

2

e−2l sin π
2k

(
1 +O

(
1

l

))
, (3.51)

where A0 > 0 is a constant independent of ε. Let α = (1 − η)/ sin π
2k , and γ = (1 + η)/ sin π

2k , where
0 < η � 1 is a small constant independent of ε. Then by (3.50), we have

cl = C̃1ε
2l − C̃2A0

[
2α
(
sin

π

2k

)
· log 1

ε

]− 1

2

e−2α sin π
2k

·log 1

ε

≤ −ε2−η < 0 , (3.52)

provided l = α log 1
ε and ε > 0 is small enough. Here we have used the fact that α = (1 − η)/ sin π

2k .
On the other hand, if l = γ log 1

ε , then by (3.51) and γ = (1 + η)/ sin π
2k , we obtain

ω̃′(2l sin
π

2k
) = O

(
ε2(1+η)

)
.

Moreover, (3.50) may give

cl ≥
1

2
C̃1 ε

2 l > 0 ,

as ε > 0 is sufficiently small. Since cl is continuous to l, there exists lε ∈ (α log 1
ε , γ log 1

ε ) such that
clε = 0, which implies that S[W + φlε ] = 0. Therefore by setting uε = W + φlε and vε = T [βu2

ε], we
may complete the proof of Theorem 2.1.



4 Proof of Theorem 2.2

In this section, we prove Theorem 2.2. Let us explain the main ideas as follows: Suppose the
solution (uε, vε) of the system (1.11) formally having

vε ∼ ω2(r) . (4.1)

Then substituting (4.1) into the equation of u in (1.11), we find uε satisfies (formally)

ε24u− V (r)u+ µ1 u
3 = 0 in R

2 , (4.2)

where V (r) = λ1 − βω2
2(r). For the equation (4.2), Ambrosetti, Malchiodi and Ni [2] have showed

that as long as M(r) = r2/3V (r) has a point of local strict maximum or minimum at some r̄ > 0,
then there exists a positive solution concentrating on a circle. The main problem here is to control
the error induced by vε.

4.1 Solving vε first

As for the proof of Theorem 2.1, we consider Σ2 = {u = u(r)} the class of all radial functions and
we have

LEMMA 4.1. There exists a δ > 0 such that if g = g(r) satisfies

||g||Lp(R2) < δ, (4.3)

where 1 < p < 2, then the equation

4 v − λ2v + µ2v
3 + gv = 0 in R

2 , and v ∈ Σ2

has a unique solution v = v(r) ≡ T2[g] ∈W 2,p(R2) satisfying

||v − ω2||W 2,p(R2) ≤ C||g||Lp(R2)

where C is a positive constant independent of g and δ.

Proof. Replacing Σ1 by Σ2, one may follow similar arguments of Lemmas 3.1 and 3.2 to complete the
proof of Lemma 4.1. Note that p > 1 may assure the Sobolev embedding W 2,p(R2) into L∞(R2).

4.2 Approximate Solutions

For t > 0, let

Ut(r) =

(√
V (t)U

(√
V (t)

|r − t|
ε

))
η(r), ∀ r > 0 ,

where U is defined in (2.3), V (r) = λ1 − βω2
2(r) and η(r) = 1 for r ∈ [α, γ] and η(r) = 0 for

r ∈ [0, α/2] ∪ [2γ,+∞). Here α and γ are positive constants such that 0 < α < t < γ. Note that
by (2.3), Ut satisfies

ε2 U ′′
t − V (t)Ut + µ1 U

3
t = 0 , ∀ r ∈ [α, γ] , (4.4)

and for r 6∈ [α, γ], Ut decays to zero exponentially as ε goes to zero. For t > 0, let

Zt(r) := 3U2 U ′
(√

V (t)
|r − t|
ε

)
η(r) , ∀ r > 0 .



4.3 Linear and Nonlinear Reductions

Let

||u||∗,2 =
∥∥∥eσ|r−t|/εu

∥∥∥
L∞(R2)

, ||E||∗∗,2 =
∥∥∥eσ|r−t|/εE

∥∥∥
L∞(R2)

,

where 0 < σ < 1 is a small number independent of ε. Then we have

LEMMA 4.2. There exists a unique solution (φt(r), dt) such that

{
S2[Ut + φt] = dtZt,∫

R2 UtZt = 0,
(4.5)

where

S2[u] = ε2
(
u′′ +

1

r
u′
)
− λ1u+ µ1u

3 + β
(
T2[β u

2]
)2
u. (4.6)

Furthermore,

||φt||∗,2 ≤ Cε1/p. (4.7)

Proof. Let r = t+ ε y ∈ [α, γ]. Then it is easy to compute that

S2[Ut] = U ′′V (t)3/2 − λ1V (t)1/2U + µ1V (t)3/2U3 +
ε

t+ ε y
V (t)U ′ + β V (t)1/2

(
T2[β U

2
t ]
)2
U .

Hence by (2.3), we have

S2[Ut] =
ε

t+ ε y
V (t)U ′ + β V (t)1/2

(
T2[β U

2
t ]2(t+ ε y) − ω2

2(t)
)
U . (4.8)

By Lemma 4.1,

T2[β U
2
t ](t+ ε y) =ω2(t+ ε y) +O(||U2

t ||Lp(R2))

=ω2(t+ ε y) +O(ε1/p) (4.9)

=ω2(t) +O

(
ε1/p +

|ε y|
1 + |ε y|

)
.

Thus (4.8) and (4.9) give

S2[Ut] =
ε

t+ ε y
V (t)U ′ +O(ε1/pU)

=O(εU ′ + ε1/pU), (4.10)

which implies that

||S2[Ut]||∗∗,2 ≤ Cε1/p. (4.11)

The rest of the proof is similar to [17] so we omit the details here.

4.4 Expansion of dt

Let Ũ(y) = V (t)U ′(
√
V (t) y) and set r = t + ε y. Then d

dy Ut(r) = Ũ(y) for r = t + ε y ∈ [α, γ].
Hence (4.4) implies

Ũ ′′ − V (t)Ũ + 3µ1U
2
t Ũ = 0 , ∀ r = t+ ε y ∈ [α, γ] . (4.12)



We may multiply (4.5) by Ũ(y)η(r) and integrate it over R
2 with respect to y variable. It is easy to

calculate that

dt

∫

R2

ZtŨη =

∫

R2

S2[Ut]Ũη +

∫

R2

(
ε2
(
d2

dr2
+

1

r

d

dr

)
φ− λ1φ+ 3µ1 U

2
t φ+ β(T2[β U

2
t ])2φ

)
Ũη

+

∫

R2

N [φ]Ũη +

∫

R2

β
(
T2[β(Ut + φ)2]2 − T2[β U

2
t ]2
)
(Ut + φ) Ũη (4.13)

:=J1 + J2 + J3 + J4 ,

where φ = φt(r) defined in Lemma 4.2, N [φ] = µ1

(
3Utφ

2 + φ3
)
,

J1 =

∫

R2

S2[Ut]Ũη ,

J2 =

∫

R2

(
ε2
(
d2

dr2
+

1

r

d

dr

)
φ− λ1φ+ 3µ1 U

2
t φ+ β(T2[β U

2
t ])2φ

)
Ũη ,

J3 =

∫

R2

N [φ]Ũη ,

J4 =

∫

R2

β
(
T2[β(Ut + φ)2]2 − T2[β U

2
t ]2
)
(Ut + φ) Ũη .

By (4.7), we have

J3 = O(ε2/p) . (4.14)

As for the proof of (3.38), we may obtain

∥∥T2[β(Ut + φ)2] − T2[β U
2
t ]
∥∥

L∞([α,γ])
≤ Cε2/p ,

and hence

J4 = O(ε2/p) . (4.15)

For J2, we may use integration by parts to get

J2 =

∫

R2

[
ε2
(
d2

dr2
+

1

r

d

dr

)
(Ũη) − λ1Ũη + 3µ1 U

2
t Ũη + β(T2[β U

2
t ])2Ũη

]
φ

=

∫

R2

[
ε2
(
d2

dr2
+

1

r

d

dr

)
(Ũη) − λ1Ũη + 3µ1 U

2
t Ũη + βω2

2(t) Ũη

]
φ+O(ε2/p) (4.16)

=

∫

R2

[
Ũ ′′η +

ε

t+ ε y
Ũ ′η − V (t)Ũη + 3µ1 U

2
t Ũη

]
φ+O(ε2/p)

=O(ε2/p).

Here we have used (4.9) and (4.12). Now it remains to estimate J1. We may use (4.8) to get

J1 =

∫

R2

S2[Ut]Ũη

=

∫

R2

[
ε

t+ ε y
V (t)U ′ + β V (t)1/2

(
T2[β U

2
t ]2(t+ ε y) − ω2

2(t)
)
U

]
Ũη

=

∫

R2

[
ε

t+ ε y
V (t)U ′ − (V (t+ ε y) − V (t))V 1/2(t)U

]
Ũη

+

∫

R2

β V (t)1/2
(
T2[βU

2
t ]2 − ω2

2

)
(t+ ε y)UŨη

:=J11 + J12 ,



where

J11 =

∫

R2

[
ε

t+ ε y
V (t)U ′ − (V (t+ ε y) − V (t))V 1/2(t)U

]
Ũη ,

J12 =

∫

R2

β V (t)1/2
(
T2[βU

2
t ]2 − ω2

2

)
(t+ ε y)UŨη .

For J12, we have

J12 =

∫

R2

β V (t)1/2
{
(T2[β U

2
t ]2 − ω2

2)(t+ ε y) − (T2[β U
2
t ]2 − ω2

2)(t)
}
UŨη +O(ε2)

=O

(
||T2[β U

2
t ] − ω2||W 2,p(R2)

∫

R2

ε|y||UŨη|
)

+O(ε2)

=O(ε2/p). (4.17)

For J11, we have

J11 =

∫

R2

[
ε

t+ ε y
V (t)U ′ − (V (t+ ε y) − V (t))V 1/2(t)U

]
Ũη

=ε V (t)

[
1

t
V (t)

∫

R2

(U ′(
√
V (t)y))2dy − V ′(t)V 1/2(t)

∫

R2

U(
√
V (t)y)U

′
(
√
V (t)y)ydy

]
+O(ε2/p)

=ε
√
V (t)

[
1

t
V (t)

∫ ∞

0
U ′(z)2 dz − V ′(t)

∫ ∞

0
UU ′(z)z dz

]
+O(ε2/p)

=ε
√
V (t)

[
V (t)

t

∫ ∞

0
U ′(z)2dz +

1

2
V ′(t)

∫ ∞

0
U2(z) dz

]
+O(ε2/p)

=ε c0
√
V (t) t−2/3M ′(t) + o(ε) , (4.18)

where c0 = 1
2

∫∞
0 U2(z) dz > 0 and M(t) = t2/3 V (t). Here we have used the following identity:

∫ ∞

0
(U

′
(z))2dz =

1

3

∫ ∞

0
U2(z)dz. (4.19)

Combining (4.13)-(4.18), we may obtain

dt = εc̃0 t
−2/3M ′(t) + o(ε) , (4.20)

where c̃0 6= 0 and o(1) is a small quantity tending to zero as ε goes to zero.

4.5 Proof of Theorem 2.2

Let H(t) = t−2/3M ′(t) for t > 0. Then it is obvious that

lim
t→0+

H(t) > 0 and lim
t→∞

H(t) > 0 .

By (2.5) (see Remark 1), there exists r0 > 0 such that H(r0) < 0. Hence there exists [α2, β2] ⊂ (0, r0)
such that H(α2) > 0 > H(β2). By (4.20) and the continuity of H(t), there exists γε,1 ∈ (0, r0) such
that dγε,1

= 0. Thus

S2[Uγε,1
+ φγε,1

] = 0

and (Uγε,1
+ φγε,1

, T2[β(Uγε,1
+ φγε,1

)2]) satisfies the properties of Theorem 2.2. Similarly, we can
find γε,2 ∈ (r0,+∞) such that dγε,2

= 0 and (Uγε,2
+ φγε,2

, T2[βj(Uγε,2
+ φγε,2

)2]) becomes the second
solution. Therefore we may complete the proof of Theorem 2.2.



5 Numerical Investigations

We use the solver BVP4C in MATLAB to find solutions of (1.13) with ring profiles including a
single ring profile, a double ring profile and m-ring profiles for m ≥ 3. A single ring profile is the
graph of a positive function f = f(r) (r = |x| is the radial variable for x ∈ R

2) with f(∞) = 0 and
one bump which means that f is increasing on (0, r1) but decreasing on (r1,∞), where r1 is a positive
constant. A double ring profile is the graph of a positive function g = g(r) with g(∞) = 0 and two
bumps which means that g is increasing on (0, r2) ∪ (r3, r4) but decreasing on (r2, r3) ∪ (r4,∞), for
some positive constants rj, j = 2, 3, 4 with r2 < r3 < r4. Similarly, the m-ring profile is the graph of
a positive function h = h(r) with h(∞) = 0 and m bumps for m ≥ 3.

For notation convenience, we may denote the solution of (1.13) as (u, v) = (u(r), v(r)) for r ∈
[0,∞). Due to the limitation of numerical computations, we can only approximate solutions of (1.13)
on a bounded interval [0, R] (R > 0). To implement the solver, we firstly need to transform (1.13)
into a first-order ODE system by setting ζ = u′ and η = v′. We want to find the positive solutions
(u, v)’s (i.e. u(r), v(r) > 0 for r ≥ 0) with a ring profile, i.e., either u or v has a ring profile. It is
necessary to have “good” initial guesses in order to obtain solutions as desired. Otherwise, the solver
may generate either an unwanted solution (e.g., a solution (u∗, v∗) with u∗ ≡ 0) or no solution if an
initial guess is not “good” enough. To obtain “good” initial guesses, we firstly choose the initial guess
(u0, v0) so that u0 = u0(r) has a single ring profile away from the origin and v0 = v0(r) has a single
peak at the origin (see Fig. 1(b)). If (u0, v0) is not “good” enough, then we may replace u0(r) and
v0(r) by C1 r

2e−k1(r−a rmax)2u0(r) and C2 e
−k2r2

v0(r), respectively, where a, Ci’s and kj ’s are positive
constants, and rmax = arg max(u0) is the maximum point of u0. With ε2 = 0.02, λ1 = 2, λ2 = 1, µ1 =
µ2 = 0.5, β = −0.05, we may adjust a, Ci’s and kj ’s to get the numerical solution (u1, v1) of (1.13)
with a single ring profile of u1 and the Townes profile of v1 (see Fig. 1(a)). Similarly, we may set
another “good” initial guess to find the numerical solution (u2, v2) with a single ring profile of u2 and
the Townes profile of v2 (see Fig. 2(a)). Moreover, the numerical solution (u3, v3) with a double ring
profile of u3 and the Townes profile of v3 (see Fig. 2(c)) can be obtained such that u3 ≈ u1+u2 and the
profiles of vi’s (i = 1, 2, 3) are indistinguishable. Our numerical experiments may support Theorem 2.2
and Remark 3. On the other hand, the solver BVP4C also provides the first and second derivatives
of numerical solutions which can be substituted into (1.13) to check the computational errors of order
O(10−15) (see Fig. 1(c)). This may assure the reliability of our numerical scheme so we may use it to
produce further solutions beyond those of Theorem 2.2 and Remark 3.

Besides solutions (uj , vj), j = 1, 2, 3, we may find the solution (u4, v4) with a single ring profile
of u4 and the Townes profile of v4 (see Fig. 3(a)) under the same numerical parameters as those of
(uj , vj), j = 1, 2, 3. We also obtain the solution (u5, v5) with a double ring profile of u5 and the
Townes profile of v5 (see Fig. 3(b)). The ring profile of u4 may almost fit the outer ring profile of
u5, and the profiles of v4 and v5 are indistinguishable (see Fig. 3(c)). Hence there exist at least two
solutions (u, v)’s of (1.13) with a double ring profile of u and the Townes profile of v. Such a result
of nonuniqueness can not be obtained from Theorem 2.2 and Remark 3. Further numerical solutions
(u, v)’s with m-ring profiles of u and Townes profiles of v are sketched in Fig 4, wherein the same
numerical parameters are used as those in Figs. 1-3 except ε2 = 0.01.

Finally, a new type of numerical solution (u, v) to (1.13) with ring-ring profiles (i.e. the graphs of
both u and v are of ring profiles) on the interval [0, 20] is shown in Fig. 5 with ε2 = 0.05, λ1 = 2, λ2 =
1, µ1 = µ2 = 0.5, β = −1. The ring profile of u concentrates in a narrow region due to the small ε.
However, the ring profile of v spreads on a much wider region than that of u. That would make it
very difficult to find solutions of (1.13) with ring-ring profiles on the interval [0, 8]. On the other hand,
until now, there is no theoretical argument to prove the existence of solutions with ring-ring profiles.
It would be a nice problem to study in the future.
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Figure 1: (a) The graph of u1 and v1 on [0, 8] with ε2 = 0.02, λ1 = 2, λ2 = 1, µ1 = µ2 = 0.5, β = −0.05.
(b) Initial guess. (c) Computational errors for (u1, v1).
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Figure 2: (a) The graph of u2 and v2 on [0, 8] with the same numerical parameters as used in Fig. 1(a).
(b) Plot two solutions (ui, vi) (i = 1, 2) in Fig. 1(a) and Fig. 2(a) together, where v1 and v2 are
indistinguishable. (c) The graph of u3 and v3 on [0, 8] with the same numerical parameters as Fig. 1(a).
(d) Plot three solutions (ui, vi) (i = 1, 2, 3) in Fig. 1(a) and Fig. 2(a)&(c) together, where vi’s are
indistinguishable and u3 ≈ u1 + u2.
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Figure 3: (a) The graph of u4 and v4 (b) The graph of u5 and v5 (c) Plot (a)&(b) together, where
vi’s are indistinguishable, and the ring profile of u4 may almost fit the outer ring profile of u5. Same
numerical parameters as those in Fig. 1(a).
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Figure 5: Sketch ring profiles of u and v on [0, 20] with ε2 = 0.05, λ1 = 2, λ2 = 1, µ1 = µ2 = 0.5, β = −1.



Appendix

Here we give a proof of Lemma 3.1. We assume that p > 1 and let W 2,p(R2) be the usual Sobolev
space. Let V = W 2,p(R2) ∩ Σ1 be a normed linear space (in fact, a Banach space) equipped with
W 2,p(R2) norm. For each f ∈ Lp(R2) ∩ Σ1, there exists a unique f̂ ∈ V such that

∆f̂ − λ2f̂ = f in R
2. (5.1)

Furthermore,
‖f̂‖W 2,p(R2) ≤ C‖f‖Lp(R2). (5.2)

This follows from elliptic regularity. In fact, the solution to (5.1) is given by

f̂(x) = −
∫

R2

K(|x− y|)f(y)dy (5.3)

where K(r) is the unique radial solution of −∆K + λ2K = δ0. In fact, K(r) is positive and K(r) ≤
Cr−

1

2 e−
√

λ2r for r > 1, and for 0 < r ≤ 1, K(r) ≤ C log 2
r . See Appendix C of [11] and the book [19].

Now for each φ ∈ V, we define the map

T [φ] = (−∆ + λ2)
−1(3µ2ω

2
2φ) . (5.4)

By (5.3), the map T can be written as

T [φ] =

∫

R2

K(|x− y|)
(
3µ2ω

2
2φ
)
dy . (5.5)

Notice that ω2 is radially symmetric, T [φ] ∈ Σ1 if φ ∈ Σ1. Due to Sobolev inequality and p > 1, we
have

‖φ‖L∞(R2) ≤ C‖φ‖W 2,p(R2) , ∀φ ∈ V . (5.6)

Consequently,

|ω2
2φ(y)| ≤ C‖φ‖W 2,p(R2)e

−
√

λ2|y| for y ∈ R
2 , φ ∈ V . (5.7)

Here we have used the fact that ω2
2(y) decays to zero exponentially as |y| goes to infinity. By (5.5)

and (5.7), it is easy to obtain

|T [φ](x)| ≤ C ‖φ‖W 2,p(R2)

∫

R2

K(|z|)e−
√

λ2|x−z| dz , for x ∈ R
2 , φ ∈ V . (5.8)

Similarly,

|∂k
xj
T [φ](x)| ≤ C ‖φ‖W 2,p(R2)

∫

R2

|∂k
zj
K(|z|)| e−

√
λ2|x−z| dz , (5.9)

for x = (x1, x2) ∈ R
2, j, k = 1, 2 and φ ∈ V . Note that ∂k

zj
K(|z|)’s decay to zero exponentially as |z|

goes to infinity. Thus by (5.8), (5.9) and Arzela-Ascoli Theorem, the map T is a compact operator
from V to V.

By Theorem 5.3 of [9], we have the following Fredholm alternatives: either (i) the homogeneous
equation

φ− T [φ] = 0 (5.10)

has a nontrivial solution φ ∈ V, or (ii) for each h ∈ V, the equation

φ− T [φ] = h (5.11)

has a uniquely determined solution φ ∈ V. Furthermore, in case (ii), the operator (I−T )−1 is bounded.
Now we want to claim that (i) is impossible by contradiction. Suppose (i) holds. Then there exists

a nontrivial solution to

∆φ− λ2φ+ 3µ2ω
2
2φ = 0 , φ ∈W 2,p(R2) ∩ Σ1 . (5.12)



Due to p > 1 and (5.6), φ is bounded. By Lemma C of [20], we have φ =
∑2

j=1 cj
∂ω2

∂yj
. Since φ ∈ Σ1,

we conclude that c1 = c2 = 0 i.e. φ ≡ 0. This may give a contradiction to (i). Hence by Fredholm
alternative, (ii) holds and we have

‖φ‖W 2,p(R2) ≤ C‖h‖W 2,p(R2). (5.13)

Set h = f̂ . Then (5.2) and (5.13) imply

‖φ‖W 2,p(R2) ≤ C‖f̂‖W 2,p(R2) ≤ C‖f‖Lp(R2). (5.14)

Note that the equation φ − T [φ] = f̂ is equivalent to ∆φ − λ2φ + 3µ2ω
2
2φ = f . Therefore, we may

complete the proof of Lemma 3.1.
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