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Abstract

Blowup ring profiles have been investigated by finding non-vortex blowup solutions of nonlinear
Schrédinger equations (NLSE) (cf. [5] and [6]). However, those solutions have infinite L? norm so
one may not maintain the ring profile all the way up to the singularity. To find H' non-vortex
blowup solutions with ring profiles, we study blowup solutions of two-component systems of NLSE
with nonlinear coefficients 8 and v, j = 1,2. When 8 < 0 and v; > v» > 0, the two-component
system can be transformed into a multi-scale system with fast and slow variables which may produce
H' blowup solutions with non-vortex ring profiles. We use the localized energy method with
symmetry reduction to construct these solutions rigorously. On the other hand, these solutions
may describe steady non-vortex bright ring solitons. Various types of ring profiles including m-ring
and ring-ring profiles are presented by numerical solutions.

Keywords: blowup, solitary wave, ring profile, two-component systems of NLSE

1 Introduction

Blowup solutions of nonlinear Schrédinger equations (NLSE) may describe nonlinear wave col-
lapse which is universal to many areas of physics including nonlinear optics (cf. [12]), plasma physics
(cf. [24]), and Bose-Einstein condensates (BEC) (cf. [25]). The spatial profile of a collapsing wave
may evolve into a universal, self-similar, circularly symmetric shape with a single peak known as the
Townes profile which has been observed experimentally by amplified laser beams (cf. [18]). Theo-
retically, one may find the Townes profile by investigating self-similar solutions of self-focusing cubic
NLSE as follows:

10,0 + AV + v| V20 =0,
U=VU(rt)cC, z=(r,22) R, t>0, (1.1)
U(,t) € HY(R?), t >0,

where v is a positive constant. It is well-known that the equation (1.1) has self-similar H® solutions
with the Townes profile to express finite-time blowup behavior and have the singularity at ¢t = T
(ie. [[U(-,t)|lree < oo for 0 <t < T and [|[V(-,t)||pe — o0 ast]T < oo) (cf. [26]). Hence the Townes
profile can be maintained all the way up to the singularity.

In high-power laser beams, different collapsing behaviors may develop blowup ring profiles which
break into filaments with multi-Townes profiles under the effect of noise (cf. [10]). It would be naive
to think that ring profiles can be obtained by finding blowup solutions of the equation (1.1). One may
find blowup solutions of (1.1) with ring profiles in [5] and [6]. However, those solutions have infinite
L? norm so one may not maintain the ring profile all the way up to the singularity. Recently, H'
vortex blowup solutions with ring profiles have been found (cf. [7]). However, until now, it is still an
open issue whether there exist H' non-vortex blowup solutions with ring profiles.
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In order to find H' non-vortex blowup solutions with ring profiles, we study two-component systems
of self-focusing cubic NLSE given by

i0;® + AP + 11|®?® + B|V|*® =0,

10,0 + AV + 1| U 2T 4 3|02 =0,
d=&(x,t),V=V(z,t) €C, z=(21,22) ER?, t>0,
O(-,t),¥(,t) € HY(R?), t >0,

(1.2)

under the condition vy > 1o > 0, where A = 8%1 + 8%2, v;’s are positive constants and 3 # 0 is
a coupling constant. The system (1.2) is a well-known model for photorefractive media in nonlinear
optics (cf. [1]). Besides, the system (1.2) may also describe two-component BEC in the limit of strong
transverse confinement (cf. [8]). Physically, the coefficients v;’s and 8 satisfy v; ~ —a;;, j = 1,2, and
B ~ —a12, where a;;’s are the scattering lengths. Due to Feshbach resonance, a;;’s can be tuned over
a very large range by adjusting the externally applied magnetic field (cf. [14]). Consequently, we may
let aj; < Oie. v; >0,7=1,2,and aj2 > 0 ie. 3 < 0. Recently, a small and negative scattering length
has been achieved by experiments (cf. [23]) so we may assume 0 < —age < —aj; i.e. 0 < vy L vy.

To study the system (1.2) with v; > 5 > 0 and 8 < 0, we may set v; = huy, vo = h™! g,
O(z,t) = ¢(x,t), and ¥(x,t) = Vhe(z,t), where ii’s positive constants and h ~ \/v1/va > 1 a
large parameter. Then the system (1.2) can be transformed into the following system

ie?0pp + 2 Ap + pa|d*¢ + Blv*¢ = 0,

100 + DY + ol Py + Bl*Y = 0, (13)
o= ¢(x,t), ¢ =y(x,t) € C, x:(ml,x2)€R2,t>0, '
o(, ), (1) € H(R?), t >0,

where e = h™1/2 > 0 a small parameter and 3 < 0 a coupling constant. Similar systems of NLSE with
trap potentials and different dispersion coefficients can be found in [22]. Note that due to the small
parameter ¢, the system (1.3) can be regarded as a multi-scale system having fast and slow variables.
In this paper, we want to prove that the system (1.3) may have H' blowup solutions with ring profiles.

Pseudo-conformal transformations are useful to construct explicit blowup solutions of the equa-
tion (1.1) (cf. [29]). To get blowup solutions of the system (1.3), as for [15], we consider the following
pseudo-conformal transformations

P(x,t) = Ay (x, 1) €N @D (1) = Ag(x,t) P20 (1.4)
where
Aq(x,t) = u(€) exp (—/0 a(r)dr) , Ag(x,t) =v(€) exp (—/0 a(7‘)d7‘> , (1.5)
2
Qj(x,t) = a(t)% —I—’yj(t), 1=12, (1.6)
and

A t t
vi(t) = E—Qexp <—2/ a(r)dr) . () = dgexp <—2/ a(r)dr) . (1.7)
0 0
Here u and v are real-valued functions, \;’s are positive constants, £ = (£;,&2) € R? is defined by
t
£ = zexp <—/ a(T)dT> , x=(x1,12) € R?, (1.8)
0
and a(-) is defined by an ordinary differential equation given by
d(t)+ad*(t)=0, Vt>0, (1.9)

with initial data
a(0) =ap <0. (1.10)



By (1.4)-(1.9), we may transform the system (1.3) into

2N u— Mu+ pu + frPu =0 in R?,
AV — A + v + Buv =0 in R2, (1.11)
u, v € HY(R?), wu,v>0 in R?,

where 0 < ¢ < 1 is a small parameter, \;’s and p;’s are positive constants, and 3 is a negative
2

constant. Here A is the Laplacian corresponding to £-coordinates denoted as A = Z agj. To get
j=1
non-vortex solutions, we only consider positive solutions of (1.11) i.e. u,v > 0 in R?. Moreover, (1.9)

and (1.10) imply
ao

t) =
CL() apt + 1

and then both |¢| and || blowup at the same time T'= —1/ag by (1.4) and (1.5). One may remark
that the sign of § may affect the blowup profile of |¢| and [¢|. Suppose 5 > 0. Then the system (1.11)
becomes cooperative and only provides the Towne profile for |¢| and |¢)|. Hence we must assume (3 < 0
in order to obtain blowup ring-profile from the system (1.3).

Blowup profiles for blowup solutions of (1.2) and (1.3) are governed by the system (1.11). Here we
prove that as e > 0 sufficiently small, there are two kinds of H' positive solutions (u.,v.)’s of (1.11)
having different asymptotic behaviors. One is that u. concentrates at vertices of a regular k-polygon
(for any k& > 2) and v, concentrates at the origin (see Theorem 2.1 in Section 2). The other is that
ue concentrates on a circle away from the origin and v, concentrates at the origin (see Theorem 2.2
in Section 2). Now we fix € > 0 as a small enough constant. Then the graph of u. may approach to
a single ring profile without any vortex. Hereafter, the single ring profile is defined as the graph of a
positive function f = f(r) (r = |x| is the radial variable for € R?) such that f(cc) = 0, and f is
increasing on (0, 71) but decreasing on (r1,00), where r; a positive constant. Hence by (1.4), (1.5) and
(1.12), we may obtain H! non-vortex blowup solutions (¢,)’s of (1.3) i.e. (®,¥)’s of (1.2) blowing
up at 7' = —1/ap, and the blowup profile of ® is of ring profiles. This may provide non-vortex ring
profiles which can be maintained all the way up to the singularity.

Another motivation of the system (1.11) may come from bright ring solitons which exist as station-
ary localized states observed in self-focusing Kerr media modelled by NLSE (cf. [27]). One may find
quantized vortices corresponding to bright ring solitons by solving vortex solutions of the equation (1.1)
(cf. [3]). However, until now, steady non-vortex bright ring solitary wave solutions of (1.1) have not yet
been found. To learn steady non-vortex bright ring solitons, we study steady solitary wave solutions of
the system (1.3) by setting ¢(z,t) = e ¥/ u(z) and ¢(z,t) = €2t v(z) for & = (z1,22) € R2,t > 0,
where both u and v are positive functions. Then the system (1.3) can be transformed into (1.11) with
A= 8%1 +8§2. Hence Theorem 2.2 may also provide steady solitary wave solutions of the system (1.3)
to describe non-vortex bright ring solitons.

In addition, non-vortex ring profiles can be obtained by numerical simulations on the system (1.11)
with A = 02 + 02,. Setting u = u(r),v = v(r), and r = |z| for z € R?, we may rewrite the system
(1.11) as follows:

——o0 as t1T=-1/ag, (1.12)

2 (u”+%u’)—)\lu+u1u3+ﬂv2u:0, for r >0,
1

(V" + 20) = Agv + pov® + futv =0, for r >0,

u,v >0, for r >0,

' (0) = 0'(0) =0, u(c0) = v(c0) = 0.

(1.13)

We may use a singular boundary value problem solver BVP4C in MATLAB to solve (1.13) and obtain
numerical solutions with ring profiles as described in Theorem 2.2 and Remark 3 (see also Figs 1-3
in Section 5). Our numerical scheme is reliable since it produces numerical solutions of (1.13) with
computational errors of order O(1071%) (see, e.g., Fig 1(c)). Besides, numerical solutions with m-ring



and ring-ring profiles can be shown in Fig 4 and Fig 5, respectively. Here the m-ring profile is the
graph of a positive function g = g(r) (r = |z| is the radial variable for € R?) with m bumps. The
ring-ring profile means that both » and v have ring profiles. Until now, we have no theoretical result
to support the existence of the ring-ring profile.

The rest of this paper is organized as follows: We state Theorem 2.1 and 2.2 in Section 2. In
Section 3 and 4, we give rigorous arguments to prove Theorem 2.1 and 2.2 using the localized energy
method with symmetry reduction. In Section 5, various numerical solutions of (1.13) are given.
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2 Main Results

Let w; be the unique positive solution of

Awj — Ajwj + ,LL]'W? =0 in RZ,
wj =w;(r) >0 forr=lz[>0, (2.1)
lim, oow;j(r) =0, j=1,2.

Note that the equation (2.1) is of semilinear elliptic equations. By the symmetry result of Gidas-Ni-
Nirenberg [11], each w; is radially symmetric and strictly decreasing. For the uniqueness theorem,
one may refer to [21] for the uniqueness of semilinear elliptic equations covering the case of cubic
nonlinearity but those are totally different from the equation (2.1). Hence we need the result of

Kwong [13] to assure the uniqueness of w;’s. Then it is easy to check that w; = w;(r) = ,/2—; w(\/AjT),

where w = w(r) is the unique positive solution of Aw — w +w? = 0 in R?. Our first result is stated as
follows:

THEOREM 2.1. Let k € N, k > 2. Then for € sufficiently small, problem (1.11) has a solution
(ue,ve) with the following properties

() ve(z) = wa(|z])(1 +0c(1)),

() o) =3 e (

=1

Xr — Pe,l
IS

)+ om),

where P.;’s are spike centers of u. satisfying

)

1
|P€,z’_P€,j| NEIOgga Psizos(l)v (2'2)

fori,j=1,--- k and i # j. Moreover, P.;’s are located at vertices of a regular k-polygon in R2.

In this paper, we use the notation ~ to denote A, ~ B, which means C1 B, < A, < (Cy B. as ¢ — 0,
where Cj’s are positive constant independent of €. Besides, o.(1) is a small quantity tending to zero
as € goes to zero.

REMARK 1. We can also prove the existence of solutions with more complex structures: for example,
ue may have spikes at concentric polygons. For the different case that ¢ = 1 and —(3 is a positive but
small parameter, one may refer to [15] to get multi-Townes profiles far away from the origin.

In Theorem 2.1, we rigorously prove that as e sufficiently small, there exist (u.,v:)’s solutions
of (1.11) with w. concentrating at FP.;,[ = 1,---,k vertices of a regular k-polygon near the ori-
gin and v. concentrating at the origin. Now we fix ¢ > 0 as a sufficiently small constant. By



(1.4)-(1.8) and (1 12), the associated solution (®,V) of (1.2) satisfies |®|(z,t) = 7 u. (%) ~

E_l P&l

) > and |U|(x,t) = 71 %va <%) ~ et %wg (%) Thus ||

has the k-fold Townes profile with k peaks at L= t P.;’s and |¥| has the Townes profile with a single
peak at the origin such that as ¢t 1 T, |®|(x,t) — oo forz =Lt Py, 1=1,--- kand [¥[(0,t) — 0.
Note that both |®| and |¥| blow up at the same time 7. Moreover, both . and v have finite H!
norms which may imply that the the k-fold Townes profile of |®| and the Townes profile of |¥| can be
maintained all the way up to the singularity.

Next theorem shows that there exist solutions (u,v)’s with u concentrating on a circle away from
the origin and v concentrating at the origin. To state the result, we need to introduce some functions.
Let U be the unique homoclinic solution of

U'— U+ U?=0,U(y) =U(-y), U >0,U — 0 at occ. (2.3)
Let
M(r)=r>3V(r) and V(r) =\ — fwi(r). (2.4)

Then r—2/3M'(r) = 2V (r) + V'(r). Due to 8 < 0, it is obvious that V(r) > 0 and V'(r) < 0 for
r > 0. Moreover, M'(r) > 0 for r sufficiently close to zero or infinity. Suppose

max V(O] 2
r>0 V(T’) 3

(2.5)

Then M’(rg) < 0 for some ro > 0. Hence the function M may have two critical points 7;,j = 1,2 such
that 0 < 7y <7rg < 1re < oo.

REMARK 2. To fulfill the condition (2.5), we remark that due to 5 < 0, we have
3/2

V/(r) = ~2Buwn(r)w <>—2|ﬁ|A w(v/ 3w (/A7)

and hence

V() tw(t) (1)
V(r) A+w?(t)’

r (2.6)

where t = /Aor and A = \ﬁlA Now we set f(a) = maxs~o % for @ > 0. Then it is obvious that
f is monotone decreasing in a, hma_@ f(a) = oo and lim,_,o f(a) = 0. Consequently, there exists a
unique Ap > 0 such that f(4p) = 3 i.e. max,g IrV' ()l % if A= Aj. Therefore the condition (2.5)

V(r)
can be replaced by A < Ay i.e.

A1pi2
A2Ao

Now we state another main theorem as follows:

—B> > 0. (2.7)

THEOREM 2.2. Assume (2.7) holds. Then the problem (1.11) has two solutions (uc1,vs1) and
(Ue,2,ve2) such that

uaz \/ raz U<\/ 57, |r TEZ|> i:172;
(b) v&i(r) ~ LUQ(T’), 7’ = 1727

where - ; — 1 as € — 04+, and r1 < ry are two critical points of M(r).



REMARK 3. Following the proof of [17], we can also show the existence of clustered ring solutions,

ie, ugi(r) ~ Z] 1 (\/ | ), where rii —r,j=1.,K.

In Theorem 2.2, we rigorously prove that as ¢ sufficiently small, there exist (us;,vs;)’s solutions
of (1.11) with u. ; concentrating on a circle (with a center at the origin and radius r;) away from the
origin and v, ; concentrating at the origin. Now we fix ¢ > 0 as a small enough constant. By (1.4)-

(1.8), (1.12) and Theorem 2.2, the associated solution (®,v) satisfies |®|(z,t) = # u.; (%) ~

T sV V(re) U (a/ (rei) (TT‘f‘t) —er, ) and |¥|(z,t) = ! %v (:%th) ~el Tsz (%)
Thus as ¢ T T, |®|(z,t) — oo for z € T} and |¥|(0,¢) — oo, where I'j = {z € R? : |z| = r“} is a

circle shrinking to the origin as ¢ goes to T. Note that both |®| and |¥| blow up at the same time 7.
Furthermore, both u. and v. have finite H! norms which may imply that the ring profile of |®| and
the Townes profile of |¥| can be maintained all the way up to the singularity.

3 Proof of Theorem 2.1

In this section, we use the method of localized energy with symmetry reduction to prove Theorem 2.1.
For an overview on localized energy method, we refer to Chapter 2 of [28]. Here we closely follow a
combination of localized energy method and symmetry reduction which has been used in [15].

3.1 Symmetry Class

For k£ > 2, we define a class of functions with the symmetry property as follows:
~ ~ 2 ~ ~ 2 SO
1= {u <rcos <9 + %) , T 8in <9 + %)) =u (rcos@,rsin@)} . (3.1)

LEMMA 3.1. Let p > 1 be a fized number. If ¢ € W?P(R?) N Xy and

Then we have

Lo¢ := AN — \a¢p + 3pawie = 0, (3.2)

then ¢ = 0. As a consequence,
llw2r < C1l|L2gl|Lr (3.3)

for ¢ € W2P(R?) N Xy, where Cy is a positive constant independent of ¢p. Moreover, the inverse map
Lyt LP(R?) NSy — W2P(R?) N % exists and

125 fllwzr < Cullfl|ze (34)
for f € LP(R?) N X;.

Proof. By the uniqueness result of [13], wy is unique in the radial class. By Lemma C of [20], the
kernel of Lo in W?2P(R?) consists of functions 8“’?, j = 1,2. However, for any constants ¢; and co,

%1;12 + ¢ aw? ¢ ¥1. Thus the first part of the Lemma is proved. The second part follows from

Fredholm alternatlve The proof is given in the appendix. U
As a consequence of Lemma 3.1, we have

LEMMA 3.2. There exists 6 > 0 such that if

geEe X and ||g||L2(R2) < 6, (3.5)



then the equation
Av—Xv+pugv® +gv=0 in R? (3.6)
has a unique solution v € H*(R?) Ny satisfying
[[v — wallg2®2) < Callgllr2 w2y » (3.7)

where Cy can be chosen as
Cy=C4 (1 + ||’LU2||Loo(R2)) R (3.8)

and Cy is given in (3.3).

REMARK 4. Note that we only require that ||g||2 is small. So s — g might be negative somewhere
in R2.

Proof. We use contraction mapping theorem to prove Lemma 3.2. Let v = wo + 2, where ¢ €
H?(R?) N Y. Then v satisfies (3.6) if and only if 1 satisfies

A — Aot + Bpawith + N[Y] 4 gwa + gip = 0,

which is equivalent to
¥ =Ly' [—NM —g9¥ - gw2] = Aly], (3.9)

where N[y)] = pa(3watp? 4+ %) and Ly is the inverse map given by Lemma 3.2.
Now we choose a complete metric space

B:={y € H*R*) N1 | [[¢]lg2ge) < Collgllrzwe)}

with the metric d(p, 1) = |l¢ — Y| g2®2). Here Cy is defined by (3.8). Note that by Lemma 3.1 and
the Sobolev embedding H?(R?) into LP(R?),1 < p < oo (cf. [4]),

1L Nz < Gl e + Call vl
1Ly gwolllzrz < Chllgwallze < CullwallzellgllLe ,
IL5  g¥llere < Csllgllze 1] g

where C3, Cy and Cs are positive constants independent of ¢ and g. Thus we have for ¢ € B,

AW 2 < C3C3llgl7 + CaCFllgllze + C5Callglliz + Cillwallr<llgll 2 < Callglze (3.10)
provided that
C3C3 |9l > + CaC3gll72 + C5Callgll2 < Ch. (3.11)
Similarly, we also have
1
[ A1) — Alpo]l| 2z < Collgllzellvor — dollmz < Sllvr — ¥2llm2 (3.12)

if ||g|lz2 is small enough, where Cj is a positive constant independent of ¢ and g. Setting ||g||z2 < ¢
small enough, the map A becomes a contraction mapping from B to B. By the contraction mapping
theorem, the unique solution of (3.9) in B is guaranteed. Therefore, we may complete the proof of
Lemma 3.2. ]



Given g, let us denote the solution v in Lemma 3.2 as T'[g] := v. Next we introduce a framework
to solve the first equation (i.e. w) of (1.11). Let Py = (¢1,0), P, = (E 0),i=1,...,k, where

o cos (2 (i — 1)) —5110(77T i—1))
i = ( sin (2£(i — 1)) cos (2£(i — 1)) (3.13)
and [ satisfies alog% <1< log , > 1 and v will be chosen later. Let w be the unique positive
solution of

Aw— (M — ﬁw%(Po)) w+mw? =0 in R?, (3.14)

with lim; o w(|z]) = 0. Note that w3(Py)=w3(F;) for i = 1,....k. Let wi(z) = w(‘z P‘) and
W(x) = Zle wi(x). Of course, W € ¥; so we may choose W as an ansaz to approximate the u-
component solution. Now we rescale the spatial variables by ¢ i.e. y = x/e, and consider the following
operator

Shu] = Au— Mu+ pmu® + B(T[Bu?] (e y))*u (3.15)
on H?(R?) with norms given by

1/2
H-H**,l:[/ u2<y>dy} Tt = - e,
R2

Now let us estimate the error introduced by W.

3.2 Error Estimate
Let us compute the error £ = S[W]. From Lemma 3.2, we have
TBW?(ey) =wa(ey) + O(|[W?||2)
=ws(ey) + O(e). (3.16)
Here we have used the fact that alog% <1< 'ylog% and o > 1. Hence
E=S[W] =AW — MW + iy W? + B(T[BW?(ey))* W
=AW — (A — 5w§) W+ W3+ [(T[BW2](€y))2 - w%(ey)} w
:El + E27

where By = AW — (A — fw3) W + i W? and E; = B [(T[BW?](ey))? — w3(ey)] W. It is easy to
check that

Ey =AW — (A — Bw3) W + i W?

Mw
£

3
= (ﬁw%(gy) - ﬁW%(Po W+ (Z wz> _

=1

=E11 + Ei2,

k
where Eyy = (Bw3(cy) — w3 (Py)) W and Eip = 11y (Z wz) - Z &} |-
i=1

For E45, we have
/ | Br2f? <C/ > G

k1
~ P, — P
<oy (= h .
< Zw< - > (3.17)
k1
<O&? in =
<Cw (2lsmk) ,



where C' is a positive constant independent of €. For E11, we have
B = 8 (wi(ley]) — wi(|Po])) W

Let ey = Py 4+ €z. Then we obtain

|Ei| < COW - [Jwy(|Pol)] % (|Po +ez] — [Pol) + O((|Po + £2| — | Pol)?)]
< CW - (e|Pol|z| + €%|z]?) (3.18)
and hence
1
/ Bl < C@IRP +e') < Cellog? -, (3.19)
R2

where C' is a positive constant independent of . For Fy, we may use (3.16) to get

/ Bl < 052/ W2 < Ce?. (3.20)
R2 R2

Combining the estimates in (3.17)—(3.20), we obtain the following error estimates.

LEMMA 3.3. The error E = S[W| satisfies
_ .
< — .
B[t < C (E—i-w (21 sin k)) , (3.21)
where || - [lsx1 = || - [|2(re) -

3.3 Linear Theory

We consider the following linear problem

{A¢—A1¢+3m W26 + fuwid = h+ oY, (3.22)

J‘qub%_ml/:o’ ¢€217
with the solution (¢, c), where h € L?(R?) N ¥;. Then we may derive apriori estimates as follows:

LEMMA 3.4. For e sufficiently small, given ||h||« < oo, problem (3.22) has a unique solution (¢, c)
such that

o1 + el < CllAllse1, (3.23)

where || - [ls1 = [ - | 2(r2) and || - [lae1 = | [l L2(r2) -

Proof. Firstly, we prove (3.23). We note that

W &, (ley—P|\ 1 —(ey—P)-e(Rier)
(2

ol P € ley — B
k
-3 ey =P\ —(ey - P) - (Rie1) (3.24)
: € ley — Fil ’ '
=1
where e; = (1,0) and R;’s are defined in (3.13). Multiplying (3.22) by %—Vy and integrating over R?,
we obtain
ow  ~ oW ow ow
< A = Mo + 3 W 5 — Bwi(Po)) d——| + ||l
e <| [ (857 -2 Gr 43w ST ) ol +| [ (0 - 5u3) 67|+ 0l

<o([[[xx,1) + [1allsx,1 5 (3.25)



where A\j = A\ — Bw?(Py) and o(1) is a small quantity tending to zero as £ goes to zero. Here we
have used the inequality (3.18) to deal with the second integral of (3.25). To get (3.23), it is enough
to show that ||¢[|«1 < C||h||s1. In fact, we can prove it by contradiction using a similar argument
to Lemma 4.1 of [15]. We just sketch the idea: suppose not. We then have a sequence of (¢, ¢y, hy,)
satisfying (3.22) such that [[¢n[l.1 = 1, ||hnlles1 = o(1). By (3.25), we derive that \cn| = o(1). Let
bn = bn(y + Pl) We then obtain that ¢, — ¢o where ¢ satisfies Agg — A\1¢o + 3purwigy = 0. This
and the fact that fRQ ngn o = 0 force ¢g = 0. Then we use regularity theorem to conclude that
llonllv,1 = o(1) which contradicts with our assumption ||¢y,||.1 = 1. This proves the a priori estimate

(3.23). Using (3.23), Lemma 8, Proposition 1 and Lemma 10 of [16], we may complete the proof of
Lemma 3.4. O

3.4 Nonlinear reduction

From Lemma 3.4, we deduce the following Lemma.

LEMMA 3.5. For e sufficiently small, there exist a unique solution (¢y,c;) such that

SW + &/ —Cl / P11 8[ =0, (3.26)
and

lédllos < € (e -+ (21 sin%)) . (3.27)

Proof. Let

B= {¢ € H2NS : [[¢lle1 < p (s+& (%m%))} ,

where p is a suitable positive constant. Then by (3.15), we have

SIW + ¢] =S[W]+ Ad — M + 3y W2 + Bwid + B (T[BW + ¢)]* —w3) ¢ (3.28)

N{g] + 5 (TIBW + ¢)** = TIBW*) W,

where N[¢] = 3 (3VV<152 + gzb?’). By (3.16), we may calculate

18 (TBW + ¢)*] —w3) ¢, < Cellgll

IN[O)l.uy < CllOIR

18 (TBOW + ¢)** = T[BW?*) W| | < Ce.

The rest of the proof follows from standard contraction mapping theorem. One may refer to [15] for
the details. O
3.5 Expansion of ¢

Let us now expand ¢; as follows: Multiply the first equation in (3.26) by %_V;/ and integrate over
R2. Then we may use (3.28) to get

oW\ 2 8W , L oW
cz/]R2 <W> dy = / 27 dy+/ (A =X+ 3 W ¢+5w2¢]wd

ow
+ [ 80V + 07 — ) 05 dy
ow

212 2
+ [ NI i [ BBV + 02~ TIBWIRW G dy

=0 + I+ I3+ 14 + Is,



where v = Py + ey, E = S[W], ¢ = ¢, and

ow
I = E——-d
1 RQ 8[ y?

ow
b= [ [80-No+3m W+ pude] 5y,
R

o= [ 8B+ 627 - ud) 65 dn.

ow
I, = RQN[QS]Wdyv
o= [ BIBOYV + 67~ TWRW S dy

Using (3.16) and (3.27), it is obvious that

I3 = /R2 B(TBW + ¢)*)* — w3) qﬁaa—ml/ dy = 0O (52 + @2 (21 sin %)) ,

and

= N[gb]aa—V;/ dy =0 (52 +3? (%m%)) .

To estimate I5, we set ¢ = T[B(W + ¢)?] — T[BW?]. Then ¢ satisfies
At = Natp + Bpowin) = By

where

By = 3pp(wi — (T[BW?))*)yp — WY+ O(¥?) + O (|20 W + ¢*) T[B(W + ¢)?]|)

Let us estimate each term in (3.32): By (3.16) and (3.27), it is easy to check that

126 W + ) TIBW + 6)°)l|r2ee) < Ce?,
and
1?22y < CE°.
Using (3.16), we see that
I(TBW2)? = w3l L2 g2y < Cellv|| 2 ge).
Recall that W = Zle (I)('gﬂ_—epi'). Hence
IBW?| 22y < 061/2||¢||H2(R2)-
By Lemma 3.1 and (3.33)-(3.36), we have
[l 2Ry < Cl B r2(me) < 061/2||¢||H2(R2) +Cé?

which gives

IN

1l ey < Ce2,

and hence by Sobolev embedding,

|[9]| oo (r2) < CE2.

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)



Consequently,
.[5 < 052 .

For I», we may use integration by parts to get

Iy = /[AO—W Ala—W+3u1W2aW—|—ﬁw28W]¢dy

al ol al 291
. 8W 8W 2 2 8W
= [ [657 - %57 vamw S [ odn+ [ 64 -t o,

where A = \; — Bw2(Py). By (3.24) and (3.27), it is obvious that

oW , oW
563~ 3 G o ds| <Clusra)l [ lew - rol| 57161

<Ce?, (3.39)

and

/R2 [AOW Ala—W + 311 W288W} qbdy‘ <C (s—l—w (21511(17;)) €

0l ol
<O+ Cel (21 sin %) . (3.40)
Here we have used the fact that
ow 52 ow; 8)\1 B . 9
A(‘?l )\1 +3’“Z’al 8ZW 0 in R~,

and 85‘11 = O(e) since W = Zle w; and w;’s satisfy (3.14). Consequently,

IL=0 (52 + 5 (21 sin %)) . (3.41)
Now it remains to compute I;:

ow

I :/RQ [AW — (M — Bw3) W+ g W3 —d +/ BUT[BWH)? — W3] W —- 57 -
Note that
IT[BW?] — wollg2rey < Ce, (3.42)
and then by Sobolev embedding,
IT[BW?] — wal |1 (gey < Ce. (3.43)
Hence
ST W)~ Wy
R2
[ BUTBW2R(R) — (R W dy (3.44)
oW
+ [ BUTBWAY @) — i) - (TEWAP(R) - R} W dy

~o(e) [ |x—Po|W\a—W dy
]R2 81

=0(?),



where we have used (3.43), © = Py + ey, Py = (¢1,0) and [, W%—Vy dy = 0. Finally, by (3.14), we
obtain

oW
/RQ [AW — (A = Bwd) W + iy W?] —— dy

ol
/RQ{[BC«@5w§(Po)]Wdy+u1{<Zk:@> i?’” dy

=111 + I,

where

ow
Iy = 5/ [WS—WS(PO)]WWdy,
RQ

k 3k
ow
Iy = i | =) T —dy.
. /Rz“l !(2“) 2“] ar v
By symmetry,

Iy =B | [wi(z) — wi(Ro)]W—dy

= [ o)~ B W G dy,

where

T ™
e 1 : > —_— — .
Iy {(rcos@,rsm@) r>0, - <0< k}

Thus

=9k [ 2Pl |- (o = 1) | W dy + O)

=Bk [ 2ws(0)wh(0)|Pyleyr1@ (—8—;> dy + O(£%) (3.45)

1)

=Gk (C’o /R? &? dy) wa(0)wh (0)e21 + O(£%) := C1%1 + O(e?),

where z = Py+¢ey, Py = (¢1,0,0), C1 := Bk (co [gn @?) w2(0)wy (0) > 0, and Cy is a positive constant.
To estimate I15, we observe that

In particular,

~D~ 8w1 ~ aag
RIBE < —> d :/ 02 === dy + O(£2).
/FO o (~5ot ) du= [ S5 dy+0)



Note that

o1 =5 (20) = (B =R gy,

€ €
0wy ~r Py — P y + 7<PO Pr.e1>
DY - PP
ou1 : [y + 25
~ (1B —Po|\ (< Fo— P, e1 > _<Py-Py>
:W,<| : (14 O(ely|?))e” " Tro-Pal
. b (14 0Cely)
Consequently,
30w / ~ _<Py—Pyy> > <|P—P2|><P—P2 er >
3 0wW2 3 - 0 0 ;
wy——dy = w e |Po—P2l
/R? Yoy Y ( R? (luD Y € [P — P
=Coa’ (2[ sin %) + 0(e%), (3.46)
where
B _ <Py—Pyy> Py — Py,
Oy = </ Fly)e” T Al dy> Sz ma sy (3.47)
R? [Po — P
Hence
Lo = Gl (2z sin ﬁ) O, (3.48)
where Cy is a positive constant independent of . Therefore by (3.45) and (3.48), we have
Iy + Iy = C1e2l + Coi (21 sin %) +O(e2). (3.49)
In summary, we have
= Ciel + Cold <2l sin %) +O(e2), (3.50)

where 61, 62 > (0 are positive generic constants independent of ¢.

3.6 Proof of Theorem 2.1

We prove Theorem 2.1 by a continuity argument. Note that

1
~ N T\T2 —2lsin g
&' (2l sin 2k) =—Ap (218111 Zk) e <1 +0 <l>> , (3.51)

where Ap > 0 is a constant independent of €. Let o = (1 —n)/sin 5, and v = (1 +n)/sin 5 , where
0 < n < 1is a small constant independent of €. Then by (3.50), we have

1177 e
= 012l — Cy Ay [2@ (sm %) log — } o —2asin 3i-log 2

<271 <0, (3.52)

provided [ = alog 1 and & > 0 is small enough. Here we have used the fact that o = (1 — )/ sin g5
On the other hand, if [ = ylog 2, then by (3.51) and v = (1 +5)/sin 2 , we obtain

o (91 si m _ < 2(1+n)) )
&' (2l sin 2k) O (e
Moreover, (3.50) may give
1 ~
c > 501521 >0,

as ¢ > 0 is sufficiently small. Since ¢; is continuous to [, there exists . € (alog %,vlog %) such that
c;. = 0, which implies that S[W + ¢;_] = 0. Therefore by setting u. = W + ¢;. and v. = T[Bu?], we
may complete the proof of Theorem 2.1.



4 Proof of Theorem 2.2

In this section, we prove Theorem 2.2. Let us explain the main ideas as follows: Suppose the
solution (ue,v:) of the system (1.11) formally having

Ve ~ wa(T). (4.1)
Then substituting (4.1) into the equation of u in (1.11), we find u. satisfies (formally)
EANu—-V(r)u+pmud =0 inR?, (4.2)

where V(r) = A\ — Bw?(r). For the equation (4.2), Ambrosetti, Malchiodi and Ni [2] have showed
that as long as M(r) = r2/3V(r) has a point of local strict maximum or minimum at some 7 > 0,
then there exists a positive solution concentrating on a circle. The main problem here is to control
the error induced by v..

4.1 Solving v, first

As for the proof of Theorem 2.1, we consider Y9 = {u = u(r)} the class of all radial functions and
we have

LEMMA 4.1. There exists a 6 > 0 such that if g = g(r) satisfies
|9l r w2y <9, (4.3)
where 1 < p < 2, then the equation
Av—)\gv+u2v3+gv:0 m Rz, and v € X9
has a unique solution v = v(r) = Th[g] € W2P(R?) satisfying
|[v = wallw2pwz) < Cllgll e @2
where C' is a positive constant independent of g and 6.

Proof. Replacing Y1 by o, one may follow similar arguments of Lemmas 3.1 and 3.2 to complete the
proof of Lemma 4.1. Note that p > 1 may assure the Sobolev embedding W?2?(R?) into L>*(R?). O

4.2 Approximate Solutions

For ¢ > 0, let

i) = (VY (VI ) ) e, v o,

€

where U is defined in (2.3), V(r) = A\ — fw3(r) and n(r) = 1 for r € [a,7] and n(r) = 0 for
r € [0,a/2] U [27,400). Here o and «y are positive constants such that 0 < a < ¢t < . Note that
by (2.3), U; satisfies

U - VU +m U2 =0, Vrela,n], (4.4)

and for r ¢ [a, 7], U; decays to zero exponentially as € goes to zero. For ¢ > 0, let

Zy(r) == 30U’ (x/V(t)V—;ﬂ> n(r), Vr>0.



4.3 Linear and Nonlinear Reductions

Let
_ || Jolr—tl/e ‘ E _ g\r_t\/eEH
fullz = el 1B = e —
where 0 < o < 1 is a small number independent of €. Then we have
LEMMA 4.2. There exists a unique solution (¢¢(r),d;) such that
Sa|U; =dZ
2lUt + ¢u] = di Zy, (4.5)
fRQ UtZt = 07
where
1
Solu] = €2 <u" + ;u') — Mu+ mu® + 3 (TL[B u2])2 u. (4.6)
Furthermore,
||tz < CEMVP. (4.7)
Proof. Let r =t+ey € [a,v]. Then it is easy to compute that
SolUy] = UV ()3 — MV ()V2U + 1V (1)3/20° + ﬁV(t)U’ + BV ()Y (TpUR) U
Hence by (2.3), we have
SalU] = - fe V@OU'+ 5 V()2 (To[BUZR(t + cy) —wi(t)) U. (4.8)
By Lemma 4.1,
BB UE)(t + ey) =wa(t + ey) + O(|UF || o (zz))
—wy(t + e y) + O(e'/P) (4.9)
wa(t) + (s s 7]
Thus (4.8) and (4.9) give
So[Uy] =——— VU + O(Y?U)
t+ey
=0(eU' 4 €'/PU), (4.10)
which implies that
1182 [U]||x.0 < CeMP. (4.11)
The rest of the proof is similar to [17] so we omit the details here. O

4.4 Expansion of d;

Let U(y) = V()U'(\/V(t)y) and set 7 = t + ey. Then % Ui(r) = U(y) for r =t +ey € [a,A].
Hence (4.4) implies . ) )
U' -~ VU +3umUU =0, VYr=t4ey€la,n]. (4.12)



We may multiply (4.5) by U(y)n(r) and integrate it over R? with respect to y variable. It is easy to
calculate that

dr?

~ ~ 2 ~
dt/RQ ZtUﬁZ/RQ 52[Ut]Un+/RQ<s (d +1d>¢ Mo+ 3 U ¢+ B(Ta [ U7)) ¢>U?7

+ [ N+ / B (T2B(Us + 6)2% — TBUZP) (Us + 6) Un (4.13)

R2 R2
=J1+Jo+ J3+ Jy,

where ¢ = ¢;(r) defined in Lemma 4.2, N[¢] = u1 (3U;¢% + ¢%),
J = /RQ So[U U,
NAC (;_; #30) 0Mo 43 Vo + TSR ) O,
o= | N,
o= || BRIBU+ 0P - BASUPR) U+ ) O

By (4.7), we have
Jz = 0(¥/7). (4.14)
As for the proof of (3.38), we may obtain
I T2[8(U: + 6)*) = BB Ul oo gy < O
and hence
Jy = 0(¥7). (4.15)

For J5, we may use integration by parts to get

o ~ ~ ]
n= [ [ (o + ) @ - Ml 3 U200 + oAU o

dr? = rdr
I 2 d2 1 d ind 277 2 7 2/
-/l Wﬂdr (@)~ MU+ 3 U200 + () Un| 64 OE7)  (46)

_ / ' + ' — V()T + 3 Ufﬁn} b+ O
R2 | t+ey
=0(e2/7).

Here we have used (4.9) and (4.12). Now it remains to estimate J;. We may use (4.8) to get
Ji= [ SolUh]Un
R2

:/Rz [t +E€yV(t)U/ —I—BV(t)l/Q (TQ[ﬂ Ut2]2(t+€y) —w%(t)) U:| UT]

- [ [F5vor - wesen -voroo] oy

T / BV ()Y (T[BUZ? — wd) (t + e y)UTn
RQ

=Ju + Jiz2,



where

o= [tjeyvuw’—<V<t+ey>—V<t>>v1/2<t>U in,
e = [ BV (DISUEE — ) -+ U,

For Ji2, we have
JlngRzﬂv(t)l/Q{(Tz[ﬂUf] —w3)(t+ey) — (BIBUFP —w3)(t)} Uy + O(?)

~0 (Il 7]~ allwas [ ellUT) +0(e2)
=0(?/7). (4.17)

For Jy1, we have

Jin = /]Rz [t —I-EEyV(t)U/ —(Vt+ey) — V(t))vl/Q(t)U} 077

— V(1) [1 / (U (VD)) 2y — V(BV2(1) / (VDU (VVB)ydy| + O(/7)
=/ V(1) [;V(t)/o U’(z)2dz—V’(t)/0 UU’(z)zdz} + 0(e2/P)

—e VD) [@ /0 U V) /O T () dz} + O

= co/V () 723 M'(t) + ole) (4.18)

where ¢o = 3 JoZU?(2)dz > 0 and M(t) = t2/3V (t). Here we have used the following identity:

/ T () = X / T (2)de. (4.19)
0 3 Jo
Combining (4.13)-(4.18), we may obtain
dy = ecot 2PM'(t) + o(e) (4.20)
where ¢y # 0 and o(1) is a small quantity tending to zero as ¢ goes to zero.
4.5 Proof of Theorem 2.2
Let H(t) = t=2/3M’(t) for t > 0. Then it is obvious that

lim H(t) >0 and lim H(t)> 0.
t—0+ t—00

By (2.5) (see Remark 1), there exists 79 > 0 such that H(rp) < 0. Hence there exists [, 52] C (0,70)

such that H(ag) > 0 > H(fB2). By (4.20) and the continuity of H(t), there exists 7.1 € (0,79) such

that d,., = 0. Thus

Sz[U'\/s,l + qb’Ve,l] = 0

and (U, + ¢, T2[B(Us.; + ¢4.,)?]) satisfies the properties of Theorem 2.2. Similarly, we can
find 7.2 € (ro, +00) such that dy,, = 0 and (U, + ¢+ 5, T2[3j (U , + 4. ,)%]) becomes the second
solution. Therefore we may complete the proof of Theorem 2.2.



5 Numerical Investigations

We use the solver BVP4C in MATLAB to find solutions of (1.13) with ring profiles including a
single ring profile, a double ring profile and m-ring profiles for m > 3. A single ring profile is the
graph of a positive function f = f(r) (r = |z| is the radial variable for € R?) with f(co) = 0 and
one bump which means that f is increasing on (0,7;) but decreasing on (1, c0), where 7 is a positive
constant. A double ring profile is the graph of a positive function g = g(r) with g(oco) = 0 and two
bumps which means that ¢ is increasing on (0,72) U (r3,74) but decreasing on (ra,r3) U (74, 00), for
some positive constants r;j,j = 2, 3,4 with ro < r3 < r4. Similarly, the m-ring profile is the graph of
a positive function h = h(r) with h(oco) = 0 and m bumps for m > 3.

For notation convenience, we may denote the solution of (1.13) as (u,v) = (u(r),v(r)) for r €
[0,00). Due to the limitation of numerical computations, we can only approximate solutions of (1.13)
on a bounded interval [0, R] (R > 0). To implement the solver, we firstly need to transform (1.13)
into a first-order ODE system by setting ¢ = «/ and n = v'. We want to find the positive solutions
(u,v)’s (i.e. u(r),v(r) > 0 for r > 0) with a ring profile, i.e., either u or v has a ring profile. It is
necessary to have “good” initial guesses in order to obtain solutions as desired. Otherwise, the solver
may generate either an unwanted solution (e.g., a solution (u*,v*) with u* = 0) or no solution if an
initial guess is not “good” enough. To obtain “good” initial guesses, we firstly choose the initial guess
(up,vp) so that ug = up(r) has a single ring profile away from the origin and vy = vg(r) has a single
peak at the origin (see Fig. 1(b)). If (ug,vp) is not “good” enough, then we may replace ug(r) and
vo(r) by Cy r2e_k1(7"_”m“)2u0(r) and Cy e‘k27"27)0(7°), respectively, where a, C;’s and k;’s are positive
constants, and 7,4, = arg max(ug) is the maximum point of ug. With €2 =0.02,\; =2, )\ =1, w1 =
p2 = 0.5,8 = —0.05, we may adjust a, C;’s and k;’s to get the numerical solution (uq,v1) of (1.13)
with a single ring profile of u; and the Townes profile of v; (see Fig. 1(a)). Similarly, we may set
another “good” initial guess to find the numerical solution (us,vy) with a single ring profile of us and
the Townes profile of vy (see Fig. 2(a)). Moreover, the numerical solution (us,vs) with a double ring
profile of uz and the Townes profile of v3 (see Fig. 2(c)) can be obtained such that ug ~ u; +wu9 and the
profiles of v;’s (i = 1,2, 3) are indistinguishable. Our numerical experiments may support Theorem 2.2
and Remark 3. On the other hand, the solver BVP4C also provides the first and second derivatives
of numerical solutions which can be substituted into (1.13) to check the computational errors of order
O(1071%) (see Fig. 1(c)). This may assure the reliability of our numerical scheme so we may use it to
produce further solutions beyond those of Theorem 2.2 and Remark 3.

Besides solutions (uj,v;), 7 = 1,2,3, we may find the solution (u4,v4) with a single ring profile
of us and the Townes profile of vy (see Fig. 3(a)) under the same numerical parameters as those of
(uj,v5), j = 1,2,3. We also obtain the solution (us,vs) with a double ring profile of us and the
Townes profile of vs (see Fig. 3(b)). The ring profile of us may almost fit the outer ring profile of
us, and the profiles of v4 and vs are indistinguishable (see Fig. 3(c)). Hence there exist at least two
solutions (u,v)’s of (1.13) with a double ring profile of u and the Townes profile of v. Such a result
of nonuniqueness can not be obtained from Theorem 2.2 and Remark 3. Further numerical solutions
(u,v)’s with m-ring profiles of u and Townes profiles of v are sketched in Fig 4, wherein the same
numerical parameters are used as those in Figs. 1-3 except €2 = 0.01.

Finally, a new type of numerical solution (u,v) to (1.13) with ring-ring profiles (i.e. the graphs of
both u and v are of ring profiles) on the interval [0, 20] is shown in Fig. 5 with €2 = 0.05,\; = 2, Ay =
1,41 = po = 0.5, = —1. The ring profile of u concentrates in a narrow region due to the small €.
However, the ring profile of v spreads on a much wider region than that of u. That would make it
very difficult to find solutions of (1.13) with ring-ring profiles on the interval [0, 8]. On the other hand,
until now, there is no theoretical argument to prove the existence of solutions with ring-ring profiles.
It would be a nice problem to study in the future.
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Figure 1: (a) The graph of u; and vy on [0, 8] with €2 = 0.02, A\ = 2, A2 = 1,1 = po = 0.5, 3 = —0.05.
(b) Initial guess. (¢) Computational errors for (uj,v1).
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Solution (U, v,): |u,|_ =3.1243 @3.94, |v,| _=3.1226 @0; R=8, |nodes|=18167
‘

T T T
Uy
N - ==Y
F
\
\
\
oy ]
\
\
L \ 4
\
\
\
L \ ]
\
\
\
L \ 4
\
\
\
L \ ]
N
N
\\
L L L s . I |
0 1 2 3 4 5 6 7 8

Epsilon:0.02, lambda: (2,1); mu: (0.5,0.5); Beta: -0.05

()

I'TEX(LIl) =3.105 @. 23, ITEX(Vl) =3.122 @; I'TEX(LIZ) =3.104 @.92, max(vz) =3.121 @
35 T T T T T T T

-

< < &
-

c

25

15F \

051

0 1 4 6 7
Solutions (ul, vl), (uz, vz): Epsilon:0.02, lambda: (2,1); mu: (0.5,0.5); Beta: -0.05
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Solution: |ul__=3.1243 @3.94, |v| _=3.1226 @0; R=8, |nodes|=18167
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Figure 2: (a) The graph of ug and vy on [0, 8] with the same numerical parameters as used in Fig. 1(a).
(b) Plot two solutions (u;,v;) (i = 1,2) in Fig. 1(a) and Fig. 2(a) together, where v; and vy are
indistinguishable. (c¢) The graph of ug and vs on [0, 8] with the same numerical parameters as Fig. 1(a).
(d) Plot three solutions (u;,v;) (i = 1,2,3) in Fig. 1(a) and Fig. 2(a)&(c) together, where v;’s are
indistinguishable and ug ~ w1 + us.



Solution: |u|maX:3A1351 @3.14, |v|maX:3A1225 @0; R=8, |nodes|=10249
3.5 T T T

25F

0.5F N

35 T T T

Solution: |u|max=3.1594 @3.15, |v|max=3.1316 @0; R=8, |nodes|=9374
35 T T T T

Figure 3: (a) The graph of us and v4 (b) The graph of us and vs (c) Plot (a)&(b) together, where
v;’s are indistinguishable, and the ring profile of u4 may almost fit the outer ring profile of us. Same
numerical parameters as those in Fig. 1(a).



Solution——max(|u[)=2.9287; max(|v|)=3.141, R=8; |nodes|=15597
3.5 T T

Epsilon:0.01, lambda: (2,1); mu: (0.5,0.5); Beta: -0.05

Solution--max(|u[)=2.9243; max(|v[)=3.1313, R=8; [nodes|=13834
;

35 T

== o il !

6
Epsilon:0.01, lambda: (2,1); mu: (0.5,0.5); Beta: -0.05

Solution——max(Ju])=3.1922; max(Jv[)=3.132, R=8; |nodes|=10098
T

35 T

S| L
4 5 6
Epsilon:0.01, lambda: (2,1); mu: (0.5,0.5); Beta: —0.05

~
2]

Figure 4: Sketch m-ring profiles on [0, 8] with €2 = 0.01,\; = 2, o = 1, 41 = pz = 0.5, 3 = —0.05.



Solution: |u|max=3.1787 @1.34, |v|maX=2.2133 @10.5; R=20, |[nodes|=8625
35 T
u
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Epsilon:0.05, lambda: (2,1); mu: (0.5,0.5); Beta: -1
(a)
Solution: |u|maX=3.1126 @1.57, |v|maX=2.3089 @13.3; R=20, |nodes|=12594
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(b)
Solution: |u|maX=3.2368 @1.11, |v|maX=2.2086 @10.4; R=20, |nodes|=10053
35
u
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Figure 5: Sketch ring profiles of u and v on [0, 20] with €2 = 0.05,\; =2, \p = 1,1 = po = 0.5, 3 = —1.
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Appendix

Here we give a proof of Lemma 3.1. We assume that p > 1 and let W2P(R?) be the usual Sobolev
space. Let V = W2P(R?) N ¥; be a normed linear space (in fact, a Banach space) equipped with
W2P(R?) norm. For each f € LP(R?) N ¥, there exists a unique f € V such that

Af —Xof = f in R% (5.1)

Furthermore, .
1 lwzr@z) < Cllfllze@e)- (5.2)
This follows from elliptic regularity. In fact, the solution to (5.1) is given by

fla) == [ Kl = sy (53

where K(r) is the unique radial solution of —AK + Ao K = §y. In fact, K(r) is positive and K(r) <
Crse=V22" for > 1,and for 0 < r <1, K(r) < Clog % See Appendix C of [11] and the book [19].
Now for each ¢ € V, we define the map

T(g] = (A + Xo) ' (3p2w3) . (5.4)
By (5.3), the map T can be written as

Tl0] = | Ko=) (nasde) dy. (55)

Notice that we is radially symmetric, T'[¢] € ;1 if ¢ € £1. Due to Sobolev inequality and p > 1, we
have

19l oo m2) < Cllllwzrmey, YoeV. (5.6)
Consequently,
wW36(y)| < Cllglwar@ee V¥ for yeR?, V. (5.7)

Here we have used the fact that w3(y) decays to zero exponentially as |y| goes to infinity. By (5.5)
and (5.7), it is easy to obtain

T(0](@)| < Cllélwarsy [ K(lehe V™o olds, for s R, pe V. (5.8)
R2
Similarly,
8, Tl)@)| < C llwas [ 105 K(Izlem/ ™ dz. (5.9)

for x = (z1,22) € R?, j,k = 1,2 and ¢ € V. Note that 82, K(|z])’s decay to zero exponentially as |z|
goes to infinity. Thus by (5.8), (5.9) and Arzela-Ascoli Theorem, the map 7" is a compact operator
from V to V.

By Theorem 5.3 of [9], we have the following Fredholm alternatives: either (i) the homogeneous
equation

6 —T[¢] =0 (5.10)

has a nontrivial solution ¢ € V, or (ii) for each h € V, the equation

¢ —T[g] =h (5.11)

has a uniquely determined solution ¢ € V. Furthermore, in case (ii), the operator (I—7)~! is bounded.
Now we want to claim that (i) is impossible by contradiction. Suppose (i) holds. Then there exists
a nontrivial solution to

AP — Ao+ 3ugwsp =0, ¢ WHP(R))NY,. (5.12)



Due to p > 1 and (5.6), ¢ is bounded. By Lemma C of [20], we have ¢ = 2321 cj‘g—ﬁ. Since ¢ € 31,
we conclude that ¢; = ¢g = 0 i.e. ¢ = 0. This may give a contradiction to (i). Hence by Fredholm
alternative, (ii) holds and we have

I6lwnze) < Clltllwesge). (5.13)

Set h = f. Then (5.2) and (5.13) imply

[9llw2p 2y < C”fHWZP(R?) < Ol fll e (w2)- (5.14)

Note that the equation ¢ — T'[¢] = f is equivalent to A¢ — Ao + 3uowsp = f. Therefore, we may

complete the proof of Lemma 3.1. ]
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