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Abstract. We consider the nonlinear elliptic system8><>:
−∆u + u− u3 − βv2u = 0 in B,

−∆v + v − v3 − βu2v = 0 in B,

u, v > 0 in B, u = v = 0 on ∂B,

where N ≤ 3 and B ⊂ RN is the unit ball. We show that, for every β ≤ −1
and k ∈ N, the above problem admits a radially symmetric solution (uβ , vβ) such
that uβ − vβ changes sign precisely k times in the radial variable. Furthermore, as
β → −∞, after passing to a subsequence, uβ → w+ and vβ → w− uniformly in
B, where w = w+ −w− has precisely k nodal domains and is a radially symmetric
solution of the scalar equation ∆w − w + w3 = 0 in B, w = 0 on ∂B. Within a
Hartree-Fock approximation, the result provides a theoretical indication of phase
separation into many nodal domains for Bose-Einstein double condensates with
strong repulsion.

1. Introduction

The present paper is concerned with the study of solitary wave solutions for the
coupled Gross-Pitaevskii equations

(1.1)

 −i ∂
∂tΦ1 = ∆Φ1 + µ1|Φ1|2Φ1 + β|Φ2|2Φ1 for y ∈ Ω, t > 0,

−i ∂
∂tΦ2 = ∆Φ2 + µ2|Φ2|2Φ2 + β|Φ1|2Φ2 for y ∈ Ω, t > 0,

Φ1(y, t) = Φ2(y, t) = 0 for y ∈ ∂Ω, t > 0,

where µ1, µ2 are positive constants, Ω is a domain in RN , N ≤ 3, and β is a coupling
constant. System (1.1) arises in the Hartree-Fock theory for a double condensate, i.e.,
a binary mixture of Bose-Einstein condensates in two different hyperfine states |1〉 and
|2〉, see [15]. Physically, Φ1 and Φ2 are the corresponding condensate amplitudes, µ1

and µ2 are proportional to the intraspecies scattering lengths, and β is proportional
to the interspecies scattering length. The sign of µj determines whether collisions of
particles of the single state |j〉 result in a repulsive or attractive interaction, while the
sign of β determines the interaction of particles of state |1〉 and state |2〉. If µj > 0 as
considered here, we are dealing with an attractive self-interaction of the single states
|j〉, j = 1, 2. When β < 0, the interaction of state |1〉 and |2〉 is repulsive (as discussed
in [37]). In contrast, when β > 0, the interaction of state |1〉 and |2〉 is attractive.
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When Ω = RN , system (1.1) also arises in the study of incoherent solitons in
nonlinear optics. We refer to [27, 28] for experimental results and to [3, 9, 19–21] for
a comprehensive list of references.

To obtain solitary wave solutions of the system (1.1), we set Φ1(x, t) = eiλ1 t u(x),
Φ2(x, t) = eiλ2 t v(x), and the system (1.1) is transformed to an elliptic system given
by

(1.2)


−∆u+ λ1u− µ1u

3 − βv2u = 0 in Ω,

−∆v + λ2v − µ2v
3 − βu2v = 0 in Ω,

u, v > 0 in Ω, u = v = 0 on ∂Ω.

As shown by recent results, the structure of the solution set of (1.2) depends strongly
on the value of β. For a bounded domain Ω ⊂ RN , N ≤ 3, a least energy solution
of (1.2) exists within the range β ∈ (−∞, β0], where 0 < β0 <

√
µ1, µ2 is a constant.

This is proved in [23], where also the asymptotic behavior of this solution is studied as
the domain Ω becomes large. When Ω = RN , the existence of least energy and other
finite energy solutions of (1.2) is proved in [2, 5, 25, 35] for β belonging to different
subintervals of (0,∞). It is important to note that when Ω is a ball or Ω = RN

and β > 0, then all solutions of (1.2) are radially symmetric (up to translation if
Ω = RN ), and both components are decreasing in the radial variable, see [38]. In
contrast, different classes of nonradial solutions, distinguished by their shape and
symmetries, have been constructed for Ω = RN and β < 0, |β| small in [24] and for
β ≤ −1 in [43]. In the present paper we analyze another class of solutions of (1.2)
which only exist for negative β, namely radial but not radially decreasing solutions
when Ω = B is the unit ball in RN . We focus on the symmetric case λ1 = λ2, µ1 = µ2,
assuming without loss of generality that λ1 = λ2 = µ1 = µ2 = 1. Hence we study
radial solutions of the following nonlinear elliptic system:

(1.3)


−∆u+ u− u3 − βv2u = 0 in B,
−∆v + v − v3 − βu2v = 0 in B,
u, v > 0 in B, u = v = 0 on ∂B.

Our results establish a connection between radial solutions of (1.3) and sign changing
radial solutions of the scalar problem

(1.4) −∆w + w − w3 = 0 in B, w = 0 on ∂B.

Let Hr be the Hilbert space of all radially symmetric functions in H1
0 (B) endowed

with the norm ‖u‖2 :=
∫

B(|∇u|2 + |u|2)dx. Radial solutions of (1.3) are critical points
of the energy functional E : Hr ×Hr → R given by

E(u, v) =
1
2
(‖u‖2 + ‖v‖2)− 1

4

∫
(u4 + v4) dx− β

2

∫
u2v2 dx,

Moreover, radial solutions of (1.4) are critical points of the functional

ES : Hr → R, ES(w) =
1
2
‖w‖2 − 1

4

∫
w4 dx.
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To state our main results, we recall that, for every k ∈ N, (1.4) admits a radial
solution with precisely k nodal domains, i.e., k−1 sign changes in the radial variable,
see [40,41]. In dimension N = 1 this solution is unique (see [39]), but for N > 1 this
is unknown. We put

(1.5) ck := inf
w∈Sk

ES(w), (k ∈ N),

where Sk ⊂ Hr is the set of radial solutions of (1.4) with precisely k nodal domains.
There exists a different characterization of ck via a variational principle introduced
by Nehari [30], see Proposition 2.1 below. Our first main result is the following.

Theorem 1.1. Let N ≤ 3. Then for every β ≤ −1 and every integer k ≥ 2, (1.3)
admits a solution (u, v) ∈ Hr × Hr such that E(u, v) ≤ ck and u − v changes sign
precisely k − 1 times in the radial variable.

Theorem 1.1 yields the existence of infinitely many radial solutions (u, v) of (1.3)
which are distinguished by the number of intersections of u and v. For fixed k, these
solutions satisfy an energy bound independent of the coupling parameter β. Our
second main result provides a description of the limit shape of these solutions as β
tends to minus infinity.

Theorem 1.2. Let N ≤ 3, k ≥ 2, and let βn ≤ −1, n ∈ N be a sequence of numbers
with βn → −∞ as n → ∞. Let also (un, vn) ∈ Hr × Hr be solutions of (1.3) with
β = βn such that un − vn changes sign precisely k − 1 times (in the radial variable)
and E(un, vn) ≤ ck.
Then, after passing to a subsequence, un → w+ and vn → w− in Hr and C(B), where
w is a solution of (1.4) with precisely k − 1 interior zeros and E(w) = ck.

Here and in the following, w+ = max{w, 0} and w− = −min{w, 0} denote the
positive and negative part of a function w : B → R.

In the context of Bose-Einstein condensates (where Φ1(x, t) = eit u(x), Φ2(x, t) =
eit v(x) stand for the amplitudes of the different hyperfine states |1〉 and |2〉), the limit
shape considered in Theorem 1.2 models the spatial separation of |1〉 and |2〉 in the
presence of strong repulsion. This phase separation has drawn the attention both from
experimental and theoretical physicists [17,29,37], but rigorous mathematical results
are rare. In fact, for a general bounded domain Ω and an arbitrary uniformly bounded
solution sequence (uβ, vβ) of (1.2) corresponding to β → −∞, the corresponding
limit profile (u, v), i.e., the weak limit in [H1

0 (Ω)]2 of a subsequence, is not well
understood. It is easy to see that the nodal sets Nu = {x ∈ Ω : u(x) > 0} and
Nv = {x ∈ Ω : v(x) > 0} are disjoint. Moreover, it is natural to expect that
u and v are continuous and therefore Nu and Nv are open subsets of Ω, but to our
knowledge this has not been proved yet. For a related system with different parameter
values, Chang-Lin-Lin-Lin [8] proved that u and v solve scalar limit equations in
Nu and Nv under the crucial assumption that Nu, Nv are open in Ω. Via numerical
computations, they investigate further properties of the corresponding nodal domains,
i.e., the connected components of Nu and Nv.
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In the radial case, Theorems 1.1 and 1.2 exhibit a large class of solutions which
converge uniformly as β → −∞ and give rise to continuous limit profiles with
arbitrarily many nodal domains. Moreover, these limit profiles have matching
derivatives of u and v at the common boundary of Nu and Nv.

It is worth pointing out that spatial segregation has been studied already for
different classes of competing species systems with simpler coupling terms, see e.g.
[13, 14]. Moreover, the asymptotic behaviour of least energy solutions to a related
class of superlinear elliptic systems with strong competition is studied in [12]. In
fact, although the nonlinear terms in system (1.2) do not satisfy the growth conditions
assumed in [12], it seems that many of the arguments in [12] also apply to least energy
solutions of (1.2).

We briefly describe the paper’s organisation and the methods used in the proofs.
In Section 2 we collect preliminaries on the variational framework for (1.3), and we
discuss properties of a parabolic system corresponding to (1.3). A crucial property
is the nonincrease of the number of intersections of u and v along trajectories of the
associated parabolic semiflow. This nonincrease is an easy consequence of the zero
number diminishing property for the scalar problem derived in [32]. In Section 3
we use the parabolic flow, together with a slightly modified version of the classical
Krasnoselskii genus, to prove Theorem 1.1. For scalar elliptic equations, special
solutions have already been constructed via a corresponding parabolic flow and
comparison principles, see [10, 11, 33]. The approach presented here differs from
these existing techniques but could also be applied to scalar equations with odd
nonlinearities.

Section 4 contains the proof of Theorem 1.2. Here we combine Nehari’s variational
principle with comparison arguments and ordinary differential equations techniques.
In particular, a Ljapunov function for radial solutions of (1.3) is used as a crucial tool
to control the number of intersections of u and v while passing to the limit β → −∞.

We finally remark that it is open whether an existence result similar to Theorem 1.1
also holds for the nonsymmetric system (1.2) in Ω = B. Since our method uses
the genus, it does not apply to (1.2). For a class of superlinear ODE-systems,
solutions with a prescribed number of zeroes of each component were constructed
in [36] without assuming oddness of the nonlinearity. It is tempting to rewrite system
(1.2) in x = u − v and y = u + v in order to apply a similar approach as in [36] to
the resulting system. However, even in the symmetric case one obtains a system
of the form −∆x+ x =

(
1+β

4

)
x3 +

(
3−β

4

)
y2x, −∆y + y =

(
1+β

4

)
y3 +

(
3−β

4

)
x2y,

where, for β < −1, the nonlinear terms have precisely the opposite sign as in (1.3).
Therefore this system has completely different properties than the class of systems
considered in [36]. Moreover, the condition u, v > 0 translates into the somewhat
unnatural constraint |x| < y.

Acknowledgments. The research of the first author is partially supported by
an Earmarked Grant from RGC of Hong Kong. Part of the paper was written while
the second author was visiting the Chinese University of Hong Kong, to which he is
deeply grateful for its hospitality.
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2. Preliminaries and the corresponding parabolic problem

Throughout the remainder of this paper we assume that N ≤ 3. In this section we
consider a fixed coupling constant β ≤ −1 in (1.3). Multiplying the first equation in
(1.3) with u, the second with v and integrating, we find that all nontrivial solutions
of (1.3) are contained in the set

M =

{
(u, v) ∈ H1

0 (B)×H1
0 (B),

u, v ≥ 0, u, v 6≡ 0

∣∣∣∣∣ ‖u‖
2 − β|uv|22 = |u|44,

‖v‖2 − β|uv|22 = |v|44.

}
Here and in the following, we write |u|p for the usual Lp-Norm of a function u ∈ Lp(B).
We note that

(2.1) E(u, v) =
1
4
(‖u‖2 + ‖v‖2) for (u, v) ∈M.

Similarly, all nontrivial solutions of (1.4) are contained in

MS := {w ∈ H1
0 (B), w 6= 0 : ‖w‖2 = |w|44},

and ES(w) = ‖w‖2
4 for w ∈MS .

Next, we consider the set Γk ⊂ Hr of all functions w ∈ Hr such that there exists
radii 0 = r0 < r1 < ... < rk−1 < rk = 1 with w · 1{rj≤|x|≤rj+1} ∈ MS for j =
0, ..., k− 1. The following highly useful variational principle goes back to Nehari [30]
in the one-dimensional case. Later it was generalized to radial functions in higher
space dimensions, see [6, 40,41].

Proposition 2.1. The value ck defined in (1.5) admits the variational
characterization

(2.2) ck = inf
w∈Γk

ES(w).

Moreover, if w ∈ Γk satisfies ES(w) = ck and

(−1)jw(x) ≥ 0 for rj ≤ |x| ≤ rj+1, j = 0, ..., k − 1 or

(−1)jw(x) ≤ 0 for rj ≤ |x| ≤ rj+1, j = 0, ..., k − 1,

then w is a radial solution of (1.4) with precisely k − 1 interior zeros.

Next we fix 3 < p <∞, and we consider the function spaces

Wr = {u ∈W 1,p
0 (B) : u radially symmetric},

Cr = {u ∈ C(B) : u radially symmetric, u|∂B = 0},
C1

r = {u ∈ C1(B) : u radially symmetric, u|∂B = 0}.

We have embeddings C1
r ↪→ Wr and Wr ↪→ Cr, since N ≤ 3 < p. Here the second

arrow is the usual Sobolev embedding restricted to radial functions. We also put

X = Wr ×Wr, Y = C1
r × C1

r , X+ = {(u, v) ∈ X : u, v ≥ 0}.
We remark that, if the pair (u, v) ∈ X+ is a weak solution of the coupled equations

−∆u+ (1− βv2)u = u3 ≥ 0, −∆v + (1− βu2)v = v3 ≥ 0 in B
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and u 6= 0, v 6= 0, then (u, v) is a solution of (1.3) by the strong maximum principle.
We now collect some results on the parabolic problem

(2.3)


ut −∆u+ u− u3 − βv2u = 0 in B,
vt −∆v + v − v3 − βu2v = 0 in B,
u = v = 0 on ∂B, u(0, x) = u0(x), v(0, x) = v0(x).

For the Cauchy problem (2.3) in the space X, we have the following.

Proposition 2.2. For every (u0, v0) ∈ X, the Cauchy problem (2.3) has a unique
(mild) solution (u(t), v(t)) = ϕ(t, u0, v0) ∈ C([0, T ), X) with maximal existence time
T := T (u0, v0) > 0 which is a classical solution for 0 < t < T . The set G :=
{(t, u0, v0) : 0 ≤ t < T (u0, v0)} is open in [0,∞)×X, and ϕ is a semiflow on G.
Moreover we have:
(i) For every (u0, v0) ∈ X and every 0 < t < T (u0, v0) there is a neighborhood U ⊂ X
of (u0, v0) in X such that T (u, v) > t for (u, v) ∈ U , and ϕ(t, ·, ·) : (U, ‖ · ‖X) →
(Y, ‖ · ‖Y ) is a continuous map.
(ii) If (u0, v0) ∈ X+, then ϕ(t, u0, v0) ∈ X+ for 0 ≤ t < T (u0, v0).

Proof. The proposition can be derived from abstract results of Amann concerning
local existence and regularity, see [1]. For this we note that the substitution operator
F∗ induced by the nonlinearity

(2.4) (u, v) 7→ F (u, v) = (u− u3 − βv2u, v − v3 − βu2v).

is locally Lipschitz continuous as a mapW τ,p(B)×W τ,p(B) → Lp(B)×Lp(B) whenever
τ > N

p . Hence the local existence, the semiflow properties of ϕ and (i) follow from [1,
Theorem 2.1 and Theorem 2.4].
Property (ii) is just a consequence of the parabolic maximum principle, since u and
v both satisfy equations of the form wt −∆w = f(x, t)w in B with locally bounded
f , together with homogeneous Dirichlet boundary conditions. �

In the following we will frequently write ϕt(u) instead of ϕ(t, u). For a classical
solution of (2.3), we have
d

dt
E(u, v) =

∫
B
(∇u∇ut + (u− u3 − βv2u)ut) dx+

∫
B
(∇v∇vt + (v − v3 − βu2v)vt) dx

=
∫

B
(−∆u+ u− u3 − βv2u)ut dx+

∫
B
(−∆v + v − v3 − βu2v)vt dx

= −
∫

B
[(ut)2 + (vt)2] dx,(2.5)

hence E is strictly decreasing along non-constant trajectories t 7→ ϕt(u0, v0) in X.
We need the following compactness property.

Proposition 2.3. Let (u0, v0) ∈ X and T = T (u0, v0) be such that the function
t 7→ E(ϕt(u0, v0)) is bounded from below in (0, T ). Then T = ∞, and for every δ > 0
the set {ϕt(u0, v0) : t ≥ δ} is relatively compact in Y .
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Proof. Let (u(t), v(t)) = ϕt(u0, v0), and recall that the nonlinearity F defined in (2.4)
has cubic growth. Hence, in view of Amann’s abstract criterion for global existence
and relative compactness (see [1, Theorem 5.3 and Remark 5.4]), it suffices to show
that

(2.6) sup
0≤t<T

(|u(t)|λ + |v(t)|λ) <∞ for some λ satisfying 3 < 1 +
2
N
λ.

We restrict our attention to the case N = 3, since the case N ≤ 2 is easier. We
claim that (2.6) holds with λ = 10

3 . The following argument is similar to the method
in [7], see in particular estimates (2.12) and (2.15) below. To shorten notation, we
put Einf = inf

0<t<T
E(u(t), v(t)),

.
E =

d

dt
E(u, v) = −(|ut|22 + |vt|22) and h = |u|22 + |v|22.

Then

(2.7)
dh

dt
= 2

∫
B
(uut + vvt) dx ≤ 2 (|u|2|ut|2 + |v|2|vt|2) ≤ h−

.
E,

and, by multiplying (2.3) with u resp. v and integrating,∫
B
(uut + vvt) dx = −(‖u‖2 + ‖v‖2) + |u|44 + |v|44 + 2β|uv|22

= −4E(u, v) + ‖u‖2 + ‖v‖2.(2.8)

Consequently,

‖u‖2 + ‖v‖2 ≤ 4E(u0, v0) +
∫

B
(uut + vvt) dx ≤ C1 + |u|2|ut|2 + |v|2|vt|2

≤ C1 +
√
h(|ut|2 + |vt|2).(2.9)

Here and in the following, C1, C2, . . . are positive constants independent of t.
We first consider the case where T <∞. From (2.7) we derive

d

dt
(e−th(t)) = e−t

(dh
dt

(t)− h(t)
)
≤ −e−t

.
E(t) ≤ −

.
E(t),

so that

h(t) ≤ et
(
h(0)−

∫ t

0

.
E(s) ds

)
≤ eT [h(0) + E(u0, v0)− Einf ] ≤ C2

for t ∈ [0, T ). Hence (2.9) implies

‖u(t)‖2 + ‖v(t)‖2 ≤ C3(1 + |ut(t)|2 + |vt(t)|2)
and therefore

(2.10) ‖u(t)‖4 +‖v(t)‖4 ≤ C4(1+ |ut(t)|22 + |vt(t)|22) = C4(1−
.
E(t)) for t ∈ [0, T ).

Thus we obtain for 0 ≤ t < T

(2.11)
∫ t

0
(‖u‖4 + ‖v‖4) ds ≤ C4[T + E(u0, v0)− Einf ] =: C5,
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which implies, for λ = 10
3 ,

1
λ

(
|u(t)|λλ + |v(t)|λλ −

(
|u(0)|λλ + |v(0)|λλ

))
=

∫ t

0

(
|u|λ−2uut + |v|λ−2vvt

)
ds

≤
∫ t

0

(
|u|

1
3
2 |u|

2
6|ut|2 + |v|

1
3
2 |v|

2
6|vt|2

)
ds ≤

∫ t

0
h

1
6

(
|u|26|ut|2 + |v|26|vt|2

)
ds

≤ C6

∫ t

0

(
|u|46 + |ut|22 + |v|46 + |vt|22

)
ds ≤ C7

∫ t

0

(
‖u‖4 + ‖v‖4 −

.
E

)
ds

≤ C7[C5 + E(u0, v0)− Einf ] =: C8.(2.12)

Here we used the Sobolev embedding Hr ↪→ L6(B). This concludes the proof of (2.6)
if T <∞.
Next we consider the case T = ∞. Then there exists a sequence (tn)n with n ≤ tn ≤
n+ 1 and

−
(
|ut(tn)|22 + |vt(tn)|22

)
=
.
E(tn) → 0 as n→∞.

Combining this with (2.9), we get

‖u(tn)‖2+‖v(tn)‖2 ≤ C1+
√
h(tn)(|ut(tn)|2+|vt(tn)|2) ≤ C1+o(1)

√
‖u(tn)‖2 + ‖v(tn)‖2

which implies that

(2.13) ‖u(tn)‖+ ‖v(tn)‖ ≤ C9 for all n.

Moreover, for tn ≤ t ≤ tn+1, we derive from (2.7)

∂

∂t
(e−(t−tn)h(t)) = e−(t−tn)

(∂h
∂t

(t)− h(t)
)
≤ −e−(t−tn)

.
E(t) ≤ −

.
E(t),

so that, by (2.13),

h(t) ≤ et−tn
(
h(tn)−

∫ t

tn

.
E(s) ds

)
≤ e2(C2

9 + E(u0, v0)− Einf) ≤ C10.

Hence (2.9) implies

‖u(t)‖2 + ‖v(t)‖2 ≤ C11(1 + |ut(t)|2 + |vt(t)|2)

and therefore

‖u(t)‖4 + ‖v(t)‖4 ≤ C12(1−
.
E(t))

for all t ≥ 0. Thus we obtain, for tn ≤ t ≤ tn+1, as in (2.11),

(2.14)
∫ t

tn

(‖u‖4 + ‖v‖4) ds ≤ C13,
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and thus, similarly as before,

1
λ

(|u(t)|λλ + |v(t)|λλ) =
1
λ

(|u(tn)|λλ + |v(tn)|λλ) +
∫ t

tn

(
|u|λ−2uut + |v|λ−2vvt

)
ds

≤ 1
λ

(|u(tn)|λλ + |v(tn)|λλ) + C14

∫ t

tn

(
‖u‖4 + ‖v‖4 −

.
E

)
ds

≤ 1
λ

(|u(tn)|λλ + |v(tn)|λλ) + C15 ≤ C16,(2.15)

where we used (2.13) and the Sobolev embedding Hr ↪→ Lλ(B) in the last step. The
proof of (2.6) finished, and hence the claim follows. �

The following Corollary is a consequence of (2.5) and Proposition 2.3.

Corollary 2.4. If, for some (u0, v0) ∈ X+ and T = T (u0, v0), the function t 7→
E(ϕt(u0, v0)) is bounded from below on (0, T ), then T = ∞ and the ω-limit set

ω(u0, v0) =
⋂
t>0

closY

(
{ϕs(u0, v0) : s ≥ t}

)
is a nonempty compact subset of Y consisting of radial solutions of (1.3). Here closY

stands for the closure with respect to the Y -topology.

We also need a variant of Sturm’s lap number theorem similar to the one available
for scalar parabolic equations, see [4, 18,26,31] for the one-dimensional case and [32]
for the radial case in higher dimensions. Given (u, v) ∈ X, we define the number of
(strict) intersections i(u, v) of u and v as the maximal k ∈ N∪{0,∞} such that there
exist points x1, . . . , xk+1 ∈ B with 0 ≤ |x1| < · · · < |xk+1| < 1 and

[u(xi)− v(xi)][u(xi+1)− v(xi+1)] < 0 for i = 1, . . . , k.

Lemma 2.5. Let (u0, v0) ∈ X and T := T (u0, v0). Then t 7→ i(ϕt(u0, v0)) is
nonincreasing in t ∈ [0, T ).

This Lemma can easily be derived from [32, Theorem 2.1]. In fact, the general
result in [32] for scalar equations implies a stronger monotonicity property than the
one stated in Lemma 2.5. Since we only need the weak version stated above, we give
a short proof following an argument of Sattinger (cf. [34, Theorem 4]).

Proof. We write (u(t), v(t)) = ϕt(u0, v0), so that (u, v) is a solution of (2.3). In view
of the semiflow properties, it suffices to show the inequality i(u(τ), v(τ)) ≤ i(u0, v0)
for fixed 0 < τ < T . We consider the function w̃ = u − v which is continuous on
B × [0, τ ] and satisfies the equation w̃t − ∆w̃ + f(x, t)w̃ = 0 in B × (0, τ ], where
f(·, t) = 1− [u2(t) + v2(t)] + (β − 1)u(t)v(t) is bounded in B× [0, τ ]. Fix λ > 0 such
that g(x, t) := f(x, t) + λ is positive on B× [0, τ ], and consider w(x, t) = e−λtw̃(x, t).
Then w is continuous on B× [0, τ ] and satisfies the equation

(2.16) wt −∆w + g(x, t)w = 0 in B× (0, τ ].

Let

U+ = {(x, t) ∈ B× [0, τ ] : w(x, t) > 0}, U− = {(x, t) ∈ B× [0, τ ] : w(x, t) < 0}.
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We show that every connected component of U+ intersects S0 := B × {0}. Indeed,
suppose by contradiction that there is a component U such that U ∩ S0 = ∅. Since
w ≡ 0 on the relative boundary of U in B × [0, τ ], there exists (x0, t0) ∈ U with
w(x0, t0) = maxU w > 0. Hence ∆w(x0, t0) ≤ 0. Moreover, since t0 > 0, we have
wt(x0, t0) = 0 if t0 < τ and wt(x0, t0) ≥ 0 if t0 = τ . This however contradicts (2.16),
since g > 0 on B× [0, τ ]. Similarly, we show that every connected component of U−

intersects S0.
Now let k = i(u(τ), v(τ)), and choose x1, . . . , xk+1 with 0 ≤ |x1| < · · · < |xk+1| < 1
and

w(xi, τ)w(xi+1, τ) < 0 for i = 1, . . . , k.

We may assume that w(x1, τ) > 0 and that k + 1 = 2j is even, the other cases are
treated similarly. Then there are corresponding components U+

1 , . . . , U
+
j of U+ and

U−1 , . . . , U
−
j of U− such that (x2i−1, τ) ∈ U+

i and (x2i, τ) ∈ U−i for i = 1, . . . , j. Since
U±i ∩ S0 6= ∅ for every i, we may pick (y2i−1, 0) ∈ U+

i ∩ S0 and (y2i, 0) ∈ U−i ∩ S0.
From the fact that w(·, t) is a radial function for all 0 ≤ t ≤ τ , we deduce that
0 ≤ |y1| < |y2| < · · · < |yk+1|, while w(yi, 0)w(yi+1, 0) < 0 for i = 1, . . . , k. Hence
i(u0, v0) ≥ k, as claimed. �

By Proposition 2.2 and the principle of linearized stability, the constant solution
(u, v) ≡ (0, 0) is stable in X, so that the set

(2.17) A∗ := {(u, v) ∈ X+ : T (u, v) = ∞ and ϕt(u, v) → (0, 0) in X as t→∞}

is a relatively open neighborhood of (0, 0) in X+.

Lemma 2.6. {(u, u) : u ∈Wr, u ≥ 0} ⊂ A∗.

Proof. Let u0 ∈ Wr, u0 ≥ 0. By uniqueness of the solution of the Cauchy problem
(1.3), we have ϕt(u0, u0) = (u(x, t), u(x, t)), where u(x, t) is the unique solution of
the Cauchy problem

(2.18) ut −∆u = (1 + β)u3 − u in B, u = 0 on ∂B, u(0) = u0.

A comparison with the solution y = y(t) of the ordinary differential equation ẏ =
(1 + β)y3 − y satisfying y(0) = |u0|∞ yields 0 ≤ u(x, t) ≤ y(t) for all x ∈ B, t ≥ 0,
whereas y(t) → 0 as t → ∞ since β ≤ −1. This shows that |u(·, t)|∞ is uniformly
bounded in t ∈ [0, T (u0, u0)), so that E(ϕt(u0, u0)) remains bounded from below.
Hence T (u0, u0) = ∞ by Proposition 2.3, and for δ > 0 the set {ϕt(u0, u0) : t ≥ δ}
is relatively compact in Y . Since |u(·, t)|∞ ≤ y(t) → 0 as t → ∞, we conclude
that ϕt(u0, u0) → 0 in the Y -topology and therefore also in the X-topology. Hence
(u0, u0) ∈ A∗, as claimed. �

3. Existence of solutions with a given number of intersections

We keep using the notation of Section 2. Let ∂A∗ denote the relative boundary
of the set A∗ (see (2.17)) in X+ with respect to the X-topology. The continuity of
the semiflow ϕ and Proposition 2.2(ii) imply that ∂A∗ is positively invariant under
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ϕ. Moreover, E(u, v) ≥ 0 and T (u, v) = ∞ for every (u, v) ∈ ∂A∗ by Proposition 2.3.
We now define

Yk := {(u, v) ∈ Y : i(u, v) ≤ k − 1} and Ak := {(u, v) ∈ ∂A∗ : i(u, v) ≤ k − 1}
By definition, Ak is a closed subset of X, and by Lemma 2.5 it is a positively invariant
set for the flow ϕ. Our aim is to find solutions of (1.3) in Ak \ Ak−1 for every k ≥ 2.

We remark the following.

Lemma 3.1. If (u, v) ∈ Ak is a radial solution of (1.3), then (u, v) ∈ intY (Yk), where
intY (Yk) denotes the interior of Yk with respect to the Y -topology.

Proof. If (u, v) is a radial solution of (1.3), then (u, v) ∈ Y by standard elliptic
regularity. Moreover, as a function of the radial variable, w = u − v is a solution of
the one-dimensional boundary value problem

−wrr −
N − 1
r

wr + f(r)w = 0, r ∈ (0, 1), wr(0) = 0, w(1) = 0,

where f(r) = 1 − [u2(r) + v2(r)] + (β − 1)u(r)v(r). Hence w(0) 6= 0, and r 7→ w(r)
has only simple zeros in (0, 1]. In fact, w has l ≤ k − 1 zeros since (u, v) ∈ Ak. But
then there is a neighborhood of w in the C1-topology containing only functions with
precisely l simple zeros. Hence (u, v) ∈ intY (Yk), as claimed. �

Next we note that the set ∂A∗ and the sets Ak, k ≥ 1 are symmetric with respect
to the involution (u, v) 7→ σ(u, v) = (v, u), and the semiflow ϕt is σ-equivariant. We
also note that σ has no fixed points in ∂A∗ by Lemma 2.6. For a closed σ-symmetric
subset A ⊂ ∂A∗ we define the genus γ(A) corresponding to σ as the least k ∈ N∪{0}
such that there is a continuous map h : A → Rk \ {0} with h(v, u) = −h(u, v). As
usual, we define γ(A) = ∞ if no such k exists. The genus has many useful properties.
In the following we only list the properties we need.

Lemma 3.2. Let A,B ⊂ ∂A∗ be closed and σ-symmetric.
(i) If A ⊂ B, then γ(A) ≤ γ(B).
(ii) γ(A ∪B) ≤ γ(A) + γ(B).
(iii) If h : A→ ∂A∗ is continuous and σ-equivariant, then γ(A) ≤ γ(h(A)).
(iv) If γ(A) <∞, then there exists a relatively open σ-symmetric neighborhood N

of A in ∂A∗ such that γ(A) = γ(N).
(v) If S is the boundary of a bounded symmetric neighborhood of the origin in a

k-dimensional normed vector space und ψ : S → ∂A∗ is a continuous map
satisfying ψ(−u) = σ(ψ(u)), then γ(ψ(S)) ≥ k.

Note that in (v) the set ψ(S) is closed since S is compact.

Proof. Properties (i) and (iii) follow immediately from the definition of γ. Moreover,
(ii) and (iv) can be proved using the Tietze extension theorem similarly as in [42, p.
96]. Property (v) is proved by contradiction, assuming that there exists a continuous
map h : ψ(S) → Rk−1 \ {0} with h(v, u) = −h(u, v). Then h ◦ ψ : S → Rk−1 \ {0}
is an odd and continuous map, which contradicts the Borsuk-Ulam Theorem (see
e.g. [44, Theorem D.17.]). �
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Lemma 3.3. γ(Ak) ≤ k.

Proof. We proceed by induction, starting with k = 1. By definition, A1 is precisely
the set of vectors (u, v) ∈ ∂A∗ such that u− v does not change sign. By Lemma 2.6,
{(u, u) : u ∈ Wr, u ≥ 0} ∩ A1 = ∅, which implies that A1 = B+ ∪ B− with disjoint
subsets B± defined by

B+ = {(u, v) ∈ A∗ : u ≥ v, u− v 6≡ 0}, B− = {(u, v) ∈ A∗ : u ≤ v, u− v 6≡ 0}.

Since the sets B± are relatively open in A1, the map

h : A1 → R \ {0}, h(u, v) =

{
1 (u, v) ∈ B+,

−1 (u, v) ∈ B−

is continuous, and it is also σ-symmetric. We conclude that γ(A1) ≤ 1, as claimed.
Next we consider k > 1 and assume that γ(Ak−1) ≤ k − 1. We use the fact that
Ak = Ã ∪ Ak−1, where Ã = {(u, v) ∈ A∗ : i(u, v) = k − 1}. Let B̃± be the set of all
(u, v) ∈ Ã such that, for some x1 ∈ B,

±(u(x1)− v(x1)) > 0 and ± (u(x)− v(x)) ≥ 0 for 0 ≤ x ≤ |x1|.

Then Ã = B̃+ ∪ B̃−. We claim that the sets B̃± are relatively open in Ã. Indeed, if
(u, v) ∈ B̃+, then there are points x1, . . . , xk with 0 ≤ |x1| < · · · < |xk| < 1 such that

u(x)− v(x) ≥ 0, u(x1)− v(x1) > 0, and [u(xi)− v(xi)][u(xi+1)− v(xi+1)] < 0

for 0 ≤ |x| ≤ |x1| and i = 1, . . . , k−1. Hence there is a neighborhood U ⊂ X+ of (u, v)
such that [ũ(xi)− ṽ(xi)][ũ(xi+1)− ṽ(xi+1)] < 0 for every (ũ, ṽ) ∈ U , i = 1, . . . , k − 1.
This implies that ũ(x)− ṽ(x) ≥ 0 for 0 ≤ |x| ≤ |x1| and every (ũ, ṽ) ∈ U ∩ B̃+, since
i(ũ, ṽ) = k− 1. Hence B̃+ is relatively open in Ã. A similar argument shows that B̃−
is relatively open in Ã. Consequently, the map

h̃ : Ã→ R \ {0}, h̃(u, v) =

{
1 (u, v) ∈ B̃+,

−1 (u, v) ∈ B̃−

is continuous and σ-symmetric. To conclude the proof, we let N ⊂ ∂A∗ be a relatively
open σ-symmetric neighborhood of Ak−1 such that

γ(N) = γ(Ak−1) ≤ k − 1,

as provided by Lemma 3.2(iv). Since Ak \N is a closed σ-symmetric subset of Ã and
therefore γ(Ak \N) ≤ 1 via the map h̃ defined above, we conclude that

γ(Ak) ≤ γ(N) + γ(Ak \N) ≤ k.

�

Proposition 3.4. For every k ≥ 2, there exists a solution (u, v) ∈ Ak \Ak−1 of (1.3)
with E(u, v) ≤ ck.
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Proof. It is known (see [40,41]) that there is a radial solution w̄ of the equation

(3.1) ∆w − w + w3 = 0 in B, w = 0 on ∂B
with ES(w̄) = ck and such that w̄, viewed as a function of the radial variable, has
precisely k − 1 interior zeros 0 < r1 < · · · < rk−1 < 1. Put r0 = 0 and rk = 1, and
consider wj = w̄ · 1{rj≤|x|≤rj+1} ∈ Wr for j = 0, . . . , k − 1. Multiplying (3.1) by wj

and integrating over {rj ≤ |x| ≤ rj+1}, we find that ‖wj‖2 = |wj |44 and therefore
ES(wj) = 1

4‖wj‖2. Hence we have

(3.2) ES(swj) =
1
2
(s2 − s4

2
)‖wj‖2 ≤ 1

4
‖wj‖2 = ES(wj) for every s ∈ R

and

(3.3) ES(swj) → −∞ as |s| → ∞.

We consider the k−dimensional subspace W ⊂Wr spanned by the functions wj , j =
0, . . . , k − 1, and the map

ψ : W → X+, ψ(w) = (w+, w−),

where w+ = max{w, 0}, w− = −min{w, 0}. Clearly ψ is continuous, and ψ(−w) =
σ(ψ(w)) for all w ∈W . Using (3.2), we find that

(3.4) E(ψ(
k∑

j=1

sjwj)) =
k∑

j=1

ES(sjwj) ≤
k∑

j=1

ES(wj) = ES(w̄) = ck

for all (s1, . . . , sk) ∈ Rk, while

lim
‖w‖→∞

E(ψ(w)) = −∞

by (3.3). Hence O := {w ∈ W : ψ(w) ∈ A∗} is a symmetric bounded open
neighborhood of 0 in W , and ψ(∂O) ⊂ Ak. Lemma 3.2(v) implies that γ(ψ(∂O)) ≥ k.
On the other hand, defining the closed subsets

Ct
k−1 := {(u, v) ∈ ∂A∗ : ϕt(u, v) ∈ Ak−1} ⊂ ∂A∗ for t > 0,

we infer γ(Ct
k−1) ≤ k − 1 by Lemma 3.2(iii) and Lemma 3.3 for every t > 0. In

particular, for every positive integer n there exists (un, vn) ∈ ψ(∂O) \ Cn
k−1, so that

ϕn(un, vn) 6∈ Ak−1. Since ψ(∂O) is compact, we may pass to a subsequence such that
(un, vn) → (ū, v̄) as n→∞. We claim that

(3.5) ϕt(ū, v̄) 6∈ intY (Yk−1) for every t > 0.

Indeed, assuming by contradiction that ϕt0(ū, v̄) ∈ intY (Yk−1) for some t0 > 0, the
continuity of ϕt as stated in Proposition 2.2(i) implies that

ϕt0(un, vn) ∈ intY (Yk−1) ∩ ∂A∗ ⊂ Ak−1 for n large enough,

hence ϕn(un, vn) ∈ Ak−1 for n large by the positive invariance of Ak−1. This
contradicts the choice of (un, vn). Hence (3.5) is true.
Now (3.5) implies that the ω-limit set ω(ū, v̄) does not intersect intY (Yk−1). Since
ω(ū, v̄) consists of radial solutions of (1.3), we conclude by Lemma 3.1 that ω(ū, v̄) ⊂
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Ak \ Ak−1. Moreover, E(u, v) ≤ E(ū, v̄) ≤ ck for every (u, v) ∈ ω(ū, v̄) by (3.4). So
every (u, v) ∈ ω(ū, v̄) has the asserted properties. �

Theorem 1.1 follows directly from Proposition 3.4.

4. Asymptotic behaviour as β →∞

This section is devoted to the proof of Theorem 1.2. For fixed k ≥ 2, let βn ≤ −1,
n ∈ N be such that βn → −∞ as n→∞, and let (un, vn) ∈ Hr ×Hr be solutions of
(1.3) with β = βn such that un − vn changes sign precisely k − 1 times in the radial
variable and E(un, vn) ≤ ck. In the following, C0, C1, . . . always stand for positive
constants independent of n. By (2.1), the energy bound yields a uniform H1-bound
for the sequence (un, vn)n. Passing to a subsequence, we may therefore assume that

un ⇀ u, vn ⇀ v weakly in Hr.

Since βn is negative and un, vn are bounded in H1(B), we deduce from standard
elliptic subsolution estimates (e.g. Theorem 8.17 of [16]) that

(4.1) |un|∞, |vn|∞ ≤ C0.

We consider the radial functions

Hn : B → R, Hn := |u′n|2 + |v′n|2 − (u2
n + v2

n) +
1
2
(u4

n + v4
n) + βnu

2
nv

2
n,

where the prime stands for the radial derivative d
dr .The following monotonocity

property in r = |x| is crucial:

H ′
n(r) = 2u′n(r)[u′′n(r)− un(r) + u3

n(r) + βnv
2
n(r)un(r)]

+ 2v′n(r)[v′′n(r)− vn(r) + v3
n(r) + βnu

2
n(r)vn(r)]

= −2(N − 1)
r

([u′n(r)]2 + [v′n(r)]2) ≤ 0 for r > 0.(4.2)

The second equality follows from (1.3). Since βn < 0 and u′n(0) = v′n(0) = 0, we have

(4.3) Hn(0) ≤ 1
2
(u4

n(0) + v4
n(0)) ≤ C1

and therefore

(4.4) 0 < |u′n(1)|2 + |v′n(1)|2 = Hn(1) ≤ Hn(0) ≤ C1

We thus conclude that the functions Hn are positive, nonincreasing and uniformly
bounded in [0, 1]. Integrating, we also get

C1 ≥ Hn(0)−Hn(1) = 2(N − 1)
∫ 1

0

[u′n(r)]2 + [v′n(r)]2

r
dr.

Viewing un, vn as functions of r ∈ [0, 1], we deduce

(4.5) ‖un‖H1([0,1]), ‖vn‖H1([0,1]) ≤ C2

for N ≥ 2, while for N = 1 this is already known. We therefore conclude that

(4.6) un → u, vn → v uniformly in B.
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In particular, u and v are continuous. In the next three lemmas, we collect further
properties of the sequence (un, vn)n and its limit (u, v).

Lemma 4.1. Let P (u) = {x ∈ B : u(x) > 0}, P (v) = {x ∈ B : v(x) > 0}.
(i) For any τ > 0,

|βn|τvn → 0 uniformly on compact subsets of P (u),

|βn|τun → 0 uniformly on compact subsets of P (v).

(ii) On P (u) resp. P (v), u resp. v solve the equations

−∆u+ u = u3, −∆v + v = v3,

respectively, in classical sense.

The following proof does not use the radial symmetry of un and vn. It only relies
on (4.6).

Proof. (i) We only prove the first statement. Let K ⊂ P (u) be compact, and let
ε > 0 be such that

Kε := {x ∈ RN : dist(x,K) ≤ ε} ⊂ {x ∈ P (u) : u(x) > ε}.
In Kε, we have

∆vn ≥ (1− v2
n −

βnε
2

2
)vn ≥

( |βn|ε2

2
− C3

)
vn ≥

|βn|ε2

4
vn for n sufficiently large.

Now fix x0 ∈ K. Since Bε(x0) ⊂ Kε, we have
∆vn ≥Mnvn in Bε(x0),

vn ≥ 0 in Bε(x0),

vn ≤ C0 on ∂Bε(x0),

where Mn := |βn|ε2

4 . Applying [13, Lemma 4.4] with α = 1
2 , we conclude that

vn(x0) ≤ C4e
− ε

2

√
Mn = C4e

− ε2

4

√
|βn|.

For n large enough such that
√
|βn| ≥ 8τ

ε2 log |βn|, we conclude

vn(x0) ≤ C4|βn|−2τ ,

where the constant C4 does not depend on x0. Hence supK |βn|τv → 0 as n→∞, as
claimed.
(ii) For ϕ ∈ C∞0 (P (u)) we have∫

P (u)
u∆ϕ dx = lim

n→∞

∫
P (u)

un∆ϕ dx = lim
n→∞

∫
P (u)

∆unϕ dx

= lim
n→∞

∫
P (u)

(un − u3
n − βnv

2
nun)ϕ dx =

∫
P (u)

(u− u3)ϕ dx

as a consequence of (i) and (4.6). Hence u is a distributional solution of −∆u+u = u3

in P (u). Since we already know that u is continuous, classical elliptic regularity shows
that u is in fact a classical solution. The statement for v is proved in the same way. �
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Corollary 4.2.
(i) If 0 < r1 < r2 ≤ 1 are such that u is positive in A := {x ∈ B : r1 < |x| < r2}

and u|∂A = 0, then

(4.7)
∫
A

(|∇u|2 + u2 − u4) dx = 0

(ii) If 0 < r ≤ 1 is such that u is positive in B := {x ∈ B : |x| < r} and u|∂B = 0,
then

(4.8)
∫
B
(|∇u|2 + u2 − u4) dx = 0

Remark 4.3. The same statements are true for v in place of u.

Proof. (i) Since u is differentiable in A ⊂ P(u) by Lemma 4.1(ii), we may pick
r1 < sn < tn < r2 such that sn → r1, tn → r2 as n → ∞ and u′(sn) ≥ 0, u′(tn) ≤ 0
for all n. Then εn := max{u(sn), u(tn)} → 0 as n→∞. Now Lemma 4.1(ii) implies
that ∣∣∣∫

sn<|x|<tn

(|∇u|2 + u2 − u4) dx
∣∣∣ =

∣∣∣∫
|x|=tn

u
∂u

∂r
dσ −

∫
|x|=sn

u
∂u

∂r
dσ

∣∣∣
≤ εn

∣∣∣∫
|x|=tn

∂u

∂r
dσ −

∫
|x|=sn

∂u

∂r
dσ

∣∣∣ = εn

∣∣∣∫
sn<|x|<tn

∆u dx
∣∣∣

≤ εn

∫
A
|u− u3| dx→ 0 as n→∞.

Hence (4.7) follows. The proof of (ii) is similar. �

Lemma 4.4.
(i) unvn → uv = 0 uniformly in B.
(ii) βn

∫
B u

2
nv

2
n dx→ 0 as n→∞.

(iii) max{u(0), v(0)} ≥
√

2.

Proof. (i) follows immediately from (4.6) and Lemma 4.1(i).
(ii) Since

0 ≤ −
∫

∂B

∂un

∂r
dσ = −

∫
B

∆un dx =
∫

B
(u3

n − un + βnv
2
nun) dx ≤ C5− |βn|

∫
B
v2
nun dx,

we have |βn|
∫

B v
2
nundx ≤ C5 and similarly |βn|

∫
B u

2
nvndx ≤ C5. From (i) we therefore

deduce

|βn|
∫

B
u2

nv
2
ndx ≤ |βn|

√
|unvn|∞

∫
B
unvn(un+vn)dx ≤ 2C5

√
|unvn|∞ → 0 as n→∞.

(iii) Since u′n(0) = v′n(0) = 0 and βn < 0,

0 < Hn(0) ≤ u2
n(0)[

u2
n(0)
2

− 1] + v2
n(0)[

v2
n(0)
2

− 1],

and hence max{un(0), vn(0)} >
√

2 for all n. Since un(0) → u(0) and vn(0) → v(0)
by (4.6), we conclude that max{u(0), v(0)} ≥

√
2. �
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Lemma 4.5. Let 0 < r1 < r2 < 1.
(i) If u ≡ 0 on [r1, r2], then u′n → 0 uniformly on every closed interval contained in
(r1, r2).
(ii) If v ≡ 0 on [r1, r2], then v′n → 0 uniformly on every closed interval contained in
(r1, r2).

Proof. (i) By assumption and uniform convergence, un < 1 on [r1, r2] for n large,
hence

(rN−1u′n)′ = rN−1(un − u3
n − βnv

2
nun) > 0 on [r1, r2].

For r ∈ [r1, r2] we therefore have

un(r2) > un(r2)− un(r) =
∫ r2

r
u′n(s) ds ≥

∫ r2

r
sN−1u′n(s) ds ≥ (r2 − r)rN−1

1 u′n(r)

and

−un(r1) < un(r)−un(r1) =
∫ r

r1

u′n(s)ds ≤ r1−N
1

∫ r

r1

sN−1u′n(s)ds ≤
(r2
r1

)N−1
(r−r1)u′n(r).

Now consider points r1 < s1 < s2 < r2. Then, for every r ∈ [s1, s2],

− rN−1
1 un(r1)

rN−1
2 (s1 − r1)

≤ − rN−1
1 un(r1)

rN−1
2 (r − r1)

≤ u′n(r) ≤ un(r2)
(r2 − r)rN−1

1

≤ un(r2)
(r2 − s2)rN−1

1

.

Consequently,

max
[s1,s2]

|u′n| ≤ C6 max{un(r1), un(r2)} → 0 as n→∞.

Thus (i) is true. The proof of (ii) is similar. �

Next we introduce the bounded nonnegative nonincreasing function

h∞ : [0, 1] → R, h∞(r) := lim inf
n→∞

Hn(r) for 0 ≤ r ≤ 1.

Lemma 4.6. (i) If N = 1, then h∞ equals a positive constant in [0, 1].
(ii) If N ≥ 2 and max{u(r), v(r)} > 0 for some r < 1, then h∞(r) > 0.

Proof. (i) If N = 1, then the functions Hn are constant by (4.2), hence h∞ is also
constant. By integration and Lemma 4.4(ii), we get

h∞(r) = lim inf
n→∞

∫ 1

0
Hn(s) ds

= lim inf
n→∞

∫ 1

0

(
|u′n|2 + |v′n|2 − (u2

n + v2
n) +

1
2
(u4

n + v4
n)

)
ds

≥
∫ 1

0

(
|u′|2 + |v′|2 − (u2 + v2) +

1
2
(u4 + v4)

)
ds =

∫ 1

0
(Hu +Hv) ds,

where Hu = |u′|2 − u2 + u4

2 and Hv = |v′|2 − v2 + v4

2 . Let I ⊂ P (u) be a maximal
open subinterval. Since H ′

u = 2u′(u′′ − u+ u3) = 0 in P (u) by Lemma 4.1(ii), Hu is
constant in I. An elementary phase plane analysis shows that if Hu ≤ 0 in I, then u is
bounded away from zero in I (since I is bounded), which contradicts the maximality
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of I. Hence Hu > 0 in I, and therefore Hu > 0 in P (u). In the same way we deduce
that Hv > 0 in P (v). Since Hu = 0 a.e. on the zero set of u and Hv = 0 a.e. on the
zero set of v, we conclude that

h∞(r) ≥
∫ 1

0
(Hu(s) +Hw(s)) ds > 0,

as claimed.
(ii) We may assume that u(r) > 0. Since Hn(1) = (u′n(1))2 + (v′n(1))2 > 0, (4.2)
implies

Hn(r) ≥ −
∫ 1

r
H ′

n(s) ds =
∫ 1

r

N − 1
s

[|u′n|2 + |v′n|2] ds ≥
∫ 1

r
|u′n|2 ds,

so that by weak convergence un ⇀ u in H1(B),

h∞(r) ≥
∫ 1

r
|u′|2 ds ≥ 1

1− r

(∫ 1

r
u′ ds

)2
=
u2(r)
1− r

> 0.

�

We now have all the tools to study the intersection properties of un and vn resp.
u and v.

Lemma 4.7. Suppose that 0 < r0 < 1 are such that u(r0) > 0, u(r) ≥ 0 and v(r) = 0
for r0 ≤ r ≤ 1. Then un ≥ vn on [r0, 1] for n sufficiently large.

Remark 4.8. The analoguous statement is true with the roles of u and v (resp. of
un and vn) exchanged.

Proof. By uniform convergence we have vn < min{1, u(r0)} on [r0, 1] for n large, so
that ∆vn > 0 on [r0, 1] and therefore

vn(r) ≤ max{vn(r0), vn(1)} = vn(r0) = o(|βn|−1) for r0 ≤ r ≤ 1

by Lemma 4.1(i). Hence a short calculation shows that wn = un − vn satisfies

(4.9) w3
n = −∆wn + [1 + (βn − 3)unvn]wn = −∆wn + [1 + o(1)]wn in (r0, 1).

Suppose by contradiction that, for a subsequence, there are points r0 < rn
1 < rn

2 ≤ 1
such that wn(rn

1 ) = 0 = wn(rn
2 ) and wn(r) < 0 for rn

1 < r < rn
2 . Then, multiplying

(4.9) with wn and integrating by parts, we obtain∫ rn
2

rn
1

rN−1w4
n dx =

∫ rn
2

rn
1

rN−1(|w′n|2 + [1 + o(1)]w2
n) dr ≥

∫ rn
2

rn
1

rN−1|w′n|2 dr

≥ C7

(∫ rn
2

rn
1

rN−1w4
n dr

) 1
2

for n large, so that
∫ 1
r0
rN−1|w−n |4dr ≥

∫ rn
2

rn
1
rN−1w4

ndr ≥ C2
7 . This however contradicts

the fact that w−n → 0 uniformly on [r0, 1] by assumption. �

Lemma 4.9. Suppose that 0 < r1 < r2 < r3 < 1 are such that u(r1) > 0, u(r2) = 0,
and u(r3) > 0. Then there exists r ∈ (r1, r3) with v(r) > 0.
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Remark 4.10. Again, the analoguous statement is true with the roles of u and v
exchanged.

Proof. By uniform convergence un → u, the asumptions on u imply that there exists
ε0 > 0 and, for large n, τn ∈ [r1 + ε0, r3 − ε0] with u′n(τn) = 0 and un(τn) → 0. Now
suppose by contradiction that v ≡ 0 on [r1, r3]. Then vn → 0 and v′n → 0 uniformly
on [r1 + ε0, r3 − ε0] by Lemma 4.5, and therefore

Hn(r3) ≤ Hn(τn) ≤ |u′n(τn)|2 + |v′n(τn)|2 +
1
2
(u4

n(τn) + v4
n(τn)) = o(1).

This contradicts Lemma 4.6. Hence there exists r ∈ (r1, r3) with v(r) > 0. �

Lemma 4.11. Suppose that 0 < r1 < r2 < r3 < 1 are such that u(r1) > 0, v(r3) > 0,
v ≡ 0 in [r1, r2] and u ≡ 0 in [r2, r3]. Then, for n sufficiently large, un − vn has
precisely one zero in (r1, r3).

Remark 4.12. Again, the analoguous statement is true with the roles of u and v
(resp. of un and vn) exchanged.

Proof. Since h∞(r3) > 0 by Lemma 4.6, we may choose 0 < ε < min{1, u(r1), v(r3)}
such that

(4.10) ε4 + 2ε2 < h∞(r3).

Let s1 ∈ (r1, r2], s2 ∈ [r2, r3) be such that

u(s1) = ε, u(r) < ε for s1 < r ≤ r3 and v(s2) = ε, v(r) < ε for r1 ≤ r < s2.

By assumption and Lemma 4.9 we have u > 0 on [r1, s1] and v > 0 on [s2, r3]. Thus
s1 < s2 and

(4.11) vn < un on [r1, s1], un < vn on [s2, r3] for n large.

Since, by Lemma 4.4(i), v ≡ 0 in a neighborhood of r1 and u ≡ 0 in a neighborhood
of r3, Lemma 4.5 implies that

(4.12) u′n(r3) <
(s1
r3

)N−1
ε and v′n(r1) > −ε for n large.

For n large we also have un < 1 on [s1, r3], therefore

(rN−1u′n)′ = rN−1∆un > 0,

so that rN−1u′n is increasing in [s1, r3]. Similarly, rN−1v′n is increasing in [r1, s2]. So
(4.12) implies that

(4.13) u′n < ε on [s1, r3] and v′n > −ε on [r1, s2] for n large.

Now suppose by contradiction that, for a subsequence, the functions un − vn have at
least two zeros in (r1, r3). By (4.11) these points must lie in (s1, s2) for large n. Hence
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there is a point τn ∈ (s1, s2) with u′n(τn) = v′n(τn), so that |u′n(τn)| = |v′n(τn)| < ε by
(4.13). Hence

Hn(τn) ≤ |u′n(τn)|2 + |vn(τn)′|2 +
1
2
(u4

n(τn) + v4
n(τn))

≤ 2ε2 + ε4 + o(1).(4.14)

We conclude that

h∞(r3) = lim inf
n→∞

Hn(r3) ≤ lim inf
n→∞

Hn(τn) ≤ 2ε2 + ε4,

which contradicts (4.10). The proof is finished. �

Corollary 4.13. The function w = u−v is a radial solution of (1.4) with ES(w) = ck
which has precisely k − 1 interior zeros. Moreover, un → u and vn → v in H1(B).

Proof. Since wn := un − vn changes sign precisely k − 1 times in (0, 1) for every n
and wn → w uniformly in [0, 1], the function w changes sign at most k− 1 times. On
the other hand, since u · v = 0 in [0, 1], Lemma 4.11 implies that in every subinterval
where w changes sign precisely once, wn also changes sign precisely once for large n.
Together with Lemmas 4.4(iii), 4.7 and 4.9 this implies that w changes sign precisely
k − 1 times in [0, 1]. Moreover, by weak convergence and Lemma 4.4(ii),

ES(w) = ES(u) + ES(v) ≤ lim inf
n→∞

(ES(un) + ES(vn))

= lim inf
n→∞

(
E(un, vn) +

β

2

∫
B
u2

nv
2
n

)
= lim inf

n→∞
E(un, vn) ≤ ck.(4.15)

Corollary 4.2 implies that w is contained in the set Γk defined in Section 2, so that
w is a minimizer of the minimization problem (2.2). Thus ES(w) = ck, and w is a
radial solution of (1.4) having precisely k − 1 interior zeros by Proposition 2.1. A
posteriori we conclude that equality holds in all steps in (4.15), and therefore∫

B
|∇un|2 dx→

∫
B
|∇u|2 dx,

∫
B
|∇vn|2 dx→

∫
B
|∇v|2 dx as n→∞.

Hence un → u and vn → v in H1(B), as claimed. �

Theorem 1.2 is a direct consequence of (4.6), Lemma 4.4(i) and Corollary 4.13.
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COUPLED SCHRÖDINGER EQUATIONS 21

[7] T. Cazenave and P.-L. Lions. Solutions globales d’équations de la chaleur semi linéaires. Comm.
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