0362-546X(9E0052-I

ASYMPTOTIC BEHAVIOR OF ENERGY SOLUTIONS TO A TWO-DIMENSIONAL SEMILINEAR PROBLEM WITH MIXED BOUNDARY CONDITION

XIAOFENG REN ${ }^{\dagger}$ and JUNCHENG WEI ${ }^{\ddagger}$
School of Mathematics, University of Minnesota, Minneapolis MN 55455, U.S.A.

(Received 3 May 1993; received for publication 21 March 1994)
Key words and phrases: Mixed boundary value problem, energy solution, asymptotic behavior.

1. INTRODUCTION

This work is concerned with the asymptotic behavior of the energy solutions of the mixed boundary value problem

$$
\begin{cases}\Delta u+u^{p}=0 & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \Gamma_{0} \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \Gamma_{1},\end{cases}
$$

where:

- Ω is a $C^{0,1}$ and bounded domain in R^{2};
- $\partial \Omega$ consists of two pieces Γ_{0} and Γ_{1}, where the one-dimensional Hausdorff measure of Γ_{0} is greater than 0 ;
- Γ_{0} is smooth and Γ_{1} is piecewise smooth;
- Γ_{0} and Γ_{1} are relatively closed in $\partial \Omega$;
- v is the unit outer normal of Ω;
- p is a large parameter.

In this work, we shall only consider the least energy solutions, although the method can be used to study other solutions with the same decay rate of energies. Let

$$
Q_{p}=\left\{v \in W^{1,2}(\Omega): v=0 \text { on } \Gamma_{0},\|v\|_{L}^{p+1}(\Omega)=1\right\}
$$

be the admissible set. Define the energy

$$
J_{p}(v):=\int_{\Omega}|\nabla v|^{2} \mathrm{~d} x
$$

on the admissible set Q_{p}. Standard argument shows that for any $p>1 J_{p}$ is bounded from below and the infimum is obtained by a function u_{p}^{\prime} in Q_{p}. By the inhomogeneity of (1.1) we know that a positive multiple of u_{p}^{\prime} solves (1.1). Throughout the rest of this paper we denote such least energy solutions by u_{p}.

Our goal here is to understand the asymptotic behavior of u_{p} as p, serving as a parameter, approaches ∞. It is known in [1] that for the pure Dirichlet problem, i.e. $\Gamma_{1}=\varnothing$, the solutions

[^0]u_{p} develop single or double bounded peaks in the interior of Ω as $p \rightarrow \infty$. In the current mixed problem, we shall see peaks on the Neumann boundary Γ_{1} and show that u_{p} can develop no more than either one interior peak or two boundary peaks on Γ_{1}. We start to investigate c_{p} where
\[

$$
\begin{equation*}
c_{p}:=\inf \left\{\left[\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right]^{1 / 2}: u \in \mathbb{Q}_{p}\right\} . \tag{1.2}
\end{equation*}
$$

\]

According to the construction of the least energy solution u_{p},

$$
\begin{equation*}
c_{p}^{2}=\frac{\int_{\Omega}\left|\nabla u_{p}\right|^{2} \mathrm{~d} x}{\left[\int_{\Omega} u_{p}^{p+1} \mathrm{~d} x\right]^{2 /(p+1)}}, \tag{1.3}
\end{equation*}
$$

and c_{p}^{-1} is the optimal constant of the Sobolev embedding

$$
V\left(\Gamma_{1}, \Omega\right) \backsim L^{p+1}(\Omega)
$$

where $V\left(\Gamma_{1}, \Omega\right)=\left\{v \in W^{1,2}(\Omega): v=0\right.$ on $\left.\Gamma_{0}\right\}$ is a Hilbert space equipped with the inner product

$$
\langle u, v\rangle=\int_{\Omega}\langle\nabla u, \nabla v\rangle \mathrm{d} x .
$$

We shall see that c_{p} possesses nice decay property as $p \rightarrow \infty$. Next we extend some L^{1} estimates of Brezis and Merle [2] for Δ with Dirichlet boundary condition in R^{2} to mixed boundary condition. After these preparations we shall prove the following theorem.

Theorem 1.1. There exist C_{1}, C_{2}, independent of p, such that

$$
0<C_{1}<\left\|u_{p}\right\|_{L^{\infty}}<C_{2}<\infty
$$

for large p. Indeed

$$
1 \leq \liminf _{p \rightarrow \infty}\left\|u_{p}\right\|_{L^{\infty}(\Omega)} \leq \limsup _{p \rightarrow \infty}\left\|u_{p}\right\|_{L^{\infty}(\Omega)} \leq \exp \frac{1+\alpha_{0}}{2}
$$

where α_{0}, defined later in (4.4), is a constant dependent only on the pair $\left(\Gamma_{1}, \Omega\right)$.
To state our second result, we need a few definitions. Let

$$
\begin{equation*}
v_{p}=\frac{u_{p}}{\int_{\Omega} u_{p}^{p}} . \tag{1.4}
\end{equation*}
$$

For a sequence $\left\{u_{p_{n}}\right\}$ of $\left\{u_{p}\right\}$ with $p_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we define the blow-up set S to be the subset of $\bar{\Omega}$ such that $x \in S$ if there exist a subsequence, still denoted by $\left\{p_{n}\right\}$, and a sequence x_{n} in Ω with

$$
\begin{equation*}
v_{p_{n}}\left(x_{n}\right) \rightarrow \infty \quad \text { and } \quad x_{n} \rightarrow x . \tag{1.5}
\end{equation*}
$$

Define

$$
\begin{align*}
S_{I} & =S \cap \Omega \\
S_{C} & =S \cap\left(\Gamma_{0} \cap \Gamma_{1}\right), \\
S_{D} & =S \cap\left(\Gamma_{0} \backslash\left(\Gamma_{0} \cap \Gamma_{1}\right)\right), \tag{1.6}\\
S_{N} & =S \cap\left(\Gamma_{1} \backslash\left(\Gamma_{0} \cap \Gamma_{1}\right)\right) .
\end{align*}
$$

So every blow-up point must fall in one and only one of the above four classes. We shall see later that S contains the set of peaks of the sequence $\left\{u_{p_{n}}\right\}$. By a peak $P \in \bar{\Omega}$ we mean that $\left\{u_{p_{n}}\right\}$ does not vanish in the L^{∞} norm in any small neighborhood of P. Theorem 1.1 in particular implies that the set of peaks of $\left\{u_{p}\right\}$ is not empty. In this paper we are mainly concerned with S_{I} and S_{N}. We will use \# S_{I} (\# S_{N}) to denote the cardinality of $S_{I}\left(S_{I}\right.$, respectively). Our second result is the following theorem.

Theorem 1.2. For a domain Ω with the properties stated in the beginning of this paper, we have

$$
\begin{gather*}
S_{D}=\varnothing, \quad \#\left(S_{I} \cup S_{C} \cup S_{N}\right) \geq 1 ; \tag{1}\\
\# S_{I}+\frac{1}{2} \# S_{N} \leq 1 \tag{2}
\end{gather*}
$$

if Γ_{1} is smooth;

$$
\begin{equation*}
S_{I}=\varnothing, \quad \text { and } \quad \# S_{N}=1 \tag{3}
\end{equation*}
$$

if Γ_{1} has convex corners; furthermore in this case if x_{0} is the point in S_{N}, x_{0} must be a corner point with the least angle among all the corners on Γ_{1}.

Here by a convex corner, we mean a corner having angle less than π.
We shall also see that under the extra condition of Ω, Γ_{0} and Γ_{1}, u_{p} can develop only one peak on the Neumann boundary Γ_{1}. We would like to point out that as in [3], most of our results can be extended to higher dimensions with Δ replaced by Δ_{N}, the N-Laplacian operator ($\Delta_{N} u=\operatorname{div}\left(|\nabla u|^{N-2} \nabla u\right)$), in (1.1) if Ω is a domain in R^{N}. However, we do not know anything about S_{C} if $\Gamma_{0} \cap \Gamma_{1}$ is nonempty.

Our paper is organized as follows. In Section 2, we give some background materials for the mixed boundary value problem. Then in Section 3, we prove the decay rate of c_{p}. We prove theorem 1.1 in Section 4. In Section 5, we present some L^{1} estimates. Section 6 is devoted to the proof of theorem 1.2. Finally we consider some special domains and some examples in Section 7.

2. PRELIMINARIES

Let Ω be a domain in R^{2} with conditions stated in the beginning of this article. Let Γ_{0} and Γ_{1} be two parts of the boundary of Ω with Γ_{0} having positive one dimensional Hausdorff measure. We recall that the isoperimetric constant of Ω relative to $\Gamma_{1}, Q\left(\Gamma_{1}, \Omega\right)$, is defined to be

$$
\begin{equation*}
Q\left(\Gamma_{1}, \Omega\right)=\sup \frac{|E|^{1 / 2}}{P_{\Omega}(E)} \tag{2.1}
\end{equation*}
$$

where the supremum is taken over all measurable sets of Ω such that $\partial E \cap \Gamma_{0}$ has one dimensional Hausdorff measure 0 , and $P_{\mathbf{\Omega}}(E)$ denotes the De Giorgi perimeter of E relative to Ω, i.e.

$$
\begin{equation*}
P_{\Omega}(E)=\sup \left\{\left|\int_{E} \operatorname{div} \psi \mathrm{~d} x\right|: \psi \in\left[C_{0}^{\infty}(\Omega)\right]^{2},|\psi| \leq 1\right\} . \tag{2.2}
\end{equation*}
$$

Some properties of $P_{\Omega}(E)$ are stated in [4, 5]. We also refer to [6] and [7] for more information about the De Giorgi perimeter and isoperimetric inequalities. In particular we notice that

$$
Q\left(\Gamma_{1}, \Omega\right) \geq\left(2 \pi^{1 / 2}\right)^{-1}
$$

where the second is the absolute isoperimetric constant; and if $H^{1}\left(\Gamma_{1}\right)>0$,

$$
Q\left(\Gamma_{1}, \Omega\right) \geq(2 \pi / 2)^{-1 / 2}
$$

From here we deduce that if $H^{1}\left(\Gamma_{1}\right)>0$ and $Q\left(\Gamma_{1}, \Omega\right)<\infty$, there exists $\alpha \in[0, \pi]$ such that $Q\left(\Gamma_{1}, \Omega\right)=(\sqrt{2 \alpha})^{-1}$ where α is the angle of the unitary sector

$$
\Sigma(\alpha, 1)=\left\{x=(r, \theta) \in R^{2}: 0 \leq r \leq 1, \theta \in[0, \alpha]\right\} .
$$

We denote by ε_{α} the class of all pairs $\left(\Gamma_{1}, \Omega\right)$ of the type considered above such that

$$
\begin{equation*}
Q\left(\Gamma_{1}, \Omega\right)=(\sqrt{2 \alpha})^{-1} \tag{2.3}
\end{equation*}
$$

By virtue of an isoperimetric inequality described in [5], any pair of a convex sector and its noncircular boundary ($\Gamma_{1}, \Sigma(\alpha, 1)$) belongs to \mathcal{E}_{α} once we denote by Γ_{0} the circular part of $\Sigma(\alpha, 1)$. Therefore,

$$
Q\left(\Gamma_{1}, \Sigma(\alpha, 1)\right)=(\sqrt{2 \alpha})^{-1}
$$

if $\Sigma(\alpha, 1)$ is a convex sector. By the way, if $\left(\Gamma_{1}, \Omega\right) \in \mathcal{E}_{\alpha}$ and β is the smallest angle among all convex corners on Γ_{1},

$$
\begin{equation*}
\beta \geq \alpha . \tag{2.4}
\end{equation*}
$$

Recall $V\left(\Gamma_{1}, \Omega\right)$ the Hilbert space defined in Section 1. Assuming ($\left.\Gamma_{1}, \Omega\right) \in \mathcal{E}_{0}$ for some $\alpha \in[0, \pi]$, we have the following two dimensional Moser type embedding while the proof of this result in any dimension can be found in [5]. See also [8].

Proposition 2.1. There exists a universal constant C such that

$$
\int_{\Omega} \exp \left[\frac{(2 \alpha)|u|^{2}}{\|\nabla u\|_{L^{2}(\Omega)}^{2}}\right] \leq C|\Omega|
$$

for any $u \in V\left(\Gamma_{1}, \Omega\right)$ with $\left(\Gamma_{1}, \Omega\right) \in \varepsilon_{\alpha}$.
We also need some results concerning the relative isoperimetric constants near the boundary Γ_{1}. Let us fix our notation first. For each smooth point $x \in \Gamma_{1}$, we can associate a smooth flattening map Φ_{x} in a neighborhood of x that maps the neighborhood of x to a neighborhood of $(0,0)$ in

$$
\left\{y \in R^{2}: y=\left(y_{1}, y_{2}\right), y_{2}>0\right\}
$$

and maps Γ near x to

$$
\left\{y \in R^{2}: y=\left(y_{1}, y_{2}\right), y_{2}=0\right\}
$$

near (0,0). For a corner point x on Γ_{1} we associate a similar map Φ_{x} in a neighborhood of x that maps the neighborhood of x to a neighborhood of $(0,0)$ in

$$
\left\{y \in R^{2}: y=(\rho \cos \theta, \rho \sin \theta), 0 \leq \theta \leq \beta\right\}
$$

where β is the angle of the corner at x and that maps the boundary near x to the boundary near $(0,0)$. We further require that $D \Phi_{x}=I$ at x, and Φ_{x} varies smoothly with respect to x. From now on throughout the rest of this paper, for any x on Γ_{1}, by a ball $B_{r}\left(x_{0}\right)$, we mean $\Phi_{x}^{-1}\left(B_{r}(0,0)\right)$. Clearly it is well-defined if r is small. We can now state the following result concerning the asymptotic behavior of the relative isoperimetric constants and the quantities α defined in (2.3) of ($\Gamma_{1} \cap B_{r}\left(x_{0}\right), \Omega \cap B_{r}\left(x_{0}\right)$).

Proposition 2.2. (1) Let $x_{0} \in \Gamma_{2}$ such that Γ_{2} is smooth near x_{0}. Then as $r \rightarrow 0$,

$$
Q\left(\Gamma_{1} \cap B_{r}\left(x_{0}\right), \Omega \cap B_{r}\left(x_{0}\right)\right) \rightarrow \frac{1}{\sqrt{2 \pi}}
$$

i.e.

$$
\alpha\left(\Gamma_{1} \cap B_{r}\left(x_{0}\right), \Omega \cap B_{r}\left(x_{0}\right)\right) \rightarrow \pi,
$$

where $\alpha\left(\Gamma_{1} \cap B_{r}\left(x_{0}\right), \Omega \cap B_{r}\left(x_{0}\right)\right)$ is the angle of the unit sector whose relative isoperimetric constant is the same as the one of ($\Gamma_{1} \cap B_{r}\left(x_{0}\right), \Omega \cap B_{r}\left(x_{0}\right)$).
(2) Let $x_{0} \in \Gamma_{2}$ such that x_{0} is the vertex of a convex corner with angle β_{0} in Γ_{2}. Then as $r \rightarrow 0$,

$$
Q\left(\Gamma_{1} \cap B_{r}\left(x_{0}\right), \Omega \cap B_{r}\left(x_{0}\right)\right) \rightarrow \frac{1}{\sqrt{2 \beta_{0}}}
$$

i.e.

$$
\alpha\left(\Gamma_{1} \cap B_{r}\left(x_{0}\right), \Omega \cap B_{r}\left(x_{0}\right)\right) \rightarrow \beta_{0} .
$$

To prove this proposition, one just invokes the variable change formula in standard integration theory to compare the relative isoperimetric constants above with the relative isoperimetric constants of the sectors computed in [5]. We leave the details of this argument to the reader.

3. SOME ESTIMATES FOR c_{p}

Recall c_{p} defined in (1.2). We have the following refined Sobolev embedding.

Lemma 3.1. For every $t \geq 2$ there is D_{t} such that

$$
\|u\|_{L^{1}} \leq D_{t} t^{1 / 2}\|\nabla u\|_{L^{2}}
$$

for all $u \in V\left(\Gamma_{1}, \Omega\right)$ with $\left(\Gamma_{1}, \Omega\right) \in \mathcal{E}_{\alpha}$; furthermore,

$$
\lim _{t \rightarrow \infty} D_{t}=(4 \alpha e)^{-1 / 2}
$$

Proof. Let $u \in V\left(\Gamma_{1}, \Omega\right)$. We know

$$
\frac{1}{\Gamma(s+1)} x^{s} \leq e^{x}
$$

for all $x \geq 0, s \geq 0$ where Γ is the Γ function. Using proposition 2.1 , we have

$$
\int_{\Omega} \exp \left[2 \alpha\left(\frac{u}{\|\nabla u\|_{L^{2}}}\right)^{2} \mathrm{~d} x \leq C|\Omega|\right.
$$

where C does not depend on anything and $|\Omega|$ is the Lebesgue measure of Ω. Therefore,

$$
\begin{aligned}
\frac{1}{\Gamma(t / 2+1)} \int_{\Omega} u^{t} \mathrm{~d} x & =\frac{1}{\Gamma(t / 2+1)} \int_{\Omega}\left[2 \alpha\left(\frac{u}{\|\nabla u\|_{L^{2}}}\right)^{2}\right]^{t / 2} \mathrm{~d} x(2 \alpha)^{-t / 2}\|\nabla u\|_{L^{2}}^{t} \\
& \leq \int_{\Omega} \exp \left[2 \alpha\left(\frac{u}{\|\nabla u\|_{L^{2}}}\right)^{2}\right] \mathrm{d} x(2 \alpha)^{-t / 2}\|\nabla u\|_{L^{2}}^{t} \\
& \leq C|\Omega|(2 \alpha)^{-t / 2}\|\nabla u\|_{L^{2}}^{t} .
\end{aligned}
$$

Hence

$$
\left(\int_{\Omega} u^{t} \mathrm{~d} x\right)^{1 / t} \leq\left(\Gamma\left(\frac{t}{2}+1\right)\right)^{1 / t} C^{1 / t}(2 \alpha)^{-1 / 2}|\Omega|^{1 / t}\|\nabla u\|_{L^{2}(\Omega)} .
$$

Notice that, according to Stirling's formula,

$$
\left(\Gamma\left(\frac{t}{2}+1\right)\right)^{1 / t} \sim\left(\left(\frac{t / 2}{e}\right)^{t / 2} \sqrt{t e} e^{\theta_{t}}\right)^{1 / t} \sim\left(\frac{1}{2 e}\right)^{1 / 2} t^{1 / 2}
$$

where $0<\theta_{t}<\frac{1}{12}$. Choosing D_{t} to be

$$
\left(\Gamma\left(\frac{t}{2}+1\right)\right)^{1 / t} C^{1 / t}(2 \alpha)^{-1 / 2}|\Omega|^{1 / t} t^{-1 / 2}
$$

we get the desired result.
An immediate consequence is the following corollary.

Corollary 3.2.

$$
\liminf _{p \rightarrow \infty} p^{1 / 2} c_{p} \geq(4 \alpha e)^{1 / 2}
$$

Next we prove an upper bound for $p^{1 / 2} c_{p}$.
Lemma 3.3. For domains Ω with smooth Γ_{1}

$$
\underset{p \rightarrow \infty}{\lim \sup } p^{1 / 2} c_{p} \leq(4 \pi e)^{1 / 2} ;
$$

if the domain Ω has convex corners on Γ_{1},

$$
\underset{p \rightarrow \infty}{\limsup } p^{1 / 2} c_{p} \leq(4 \beta e)^{1 / 2}
$$

where β is the smallest angle among all convex corners on Γ_{1}.

Proof. Let us first assume that Ω contains $\left\{\left(x_{1}, x_{2}\right): x_{2}>0, x_{1}^{2}+x_{2}^{2} \leq L\right\}$ with $\left\{\left(x_{1}, x_{2}\right): x_{2}=0, x_{1}^{2}+x_{2}^{2} \leq L\right\}$ being part of the Neumann boundary. We construct a Moser type test function near $(0,0)$. Letting

$$
m_{l}(x)=\frac{1}{\sqrt{\pi}} \begin{cases}(\log L-\log l)^{1 / 2}, & 0 \leq|x| \leq l \tag{3.1}\\ \frac{\log l-\log |x|}{[\log L-\log l]^{1 / 2}}, & l \leq|x| \leq L \\ 0, & |x| \geq L\end{cases}
$$

we have $m_{l} \in V\left(\Gamma_{1}, \Omega\right),\left\|\nabla m_{l}\right\|_{L^{2}(\Omega)}=1$ and

$$
\begin{aligned}
\int_{\Omega} m_{l}^{p+1}(x) \mathrm{d} x & =\left[\frac{1}{\sqrt{\pi}}\left(\log \frac{L}{l}\right)^{1 / 2}\right]^{p+1}\left|B_{l}\right|+\left[\frac{1}{\sqrt{2 \pi}}\left(\log \frac{L}{l}\right)^{-1 / 2}\right]^{p+1} \int_{l<|x|<L}\left(\log \frac{L}{|x|}\right)^{p+1} \mathrm{~d} x \\
& :=I_{1}+I_{2}
\end{aligned}
$$

where

$$
\begin{gathered}
I_{1}=\left[\frac{1}{\sqrt{\pi}}\left(\log \frac{L}{l}\right)^{1 / 2}\right]^{p+1} \pi l^{2} \\
I_{2}=\left[\frac{1}{\sqrt{\pi}}\left(\log \frac{L}{l}\right)^{-1 / 2}\right]^{p+1} \int_{l<|x|<L}\left(\log \frac{L}{|x|}\right)^{p+1} \mathrm{~d} x
\end{gathered}
$$

Choosing $l=L e^{-(p+1) / 4}$, we have

$$
\left\|m_{l}\right\|_{L^{p+1}} \geq I_{1}^{1 /(p+1)} \geq\left[\frac{1}{4 \pi e}\right]^{1 / 2}(p+1)^{1 / 2}\left(\pi L^{2}\right)^{1 /(p+1)}
$$

Hence

$$
c_{p} \leq[4 \pi e]^{1 / 2}(p+1)^{-1 / 2}\left(\pi L^{2}\right)^{-1 /(p+1)}
$$

i.e.

$$
\underset{p \rightarrow \infty}{\limsup } p^{1 / 2} c_{p} \leq(4 \pi e)^{1 / 2}
$$

For a domain Ω with smooth Γ_{1}, we can first flatten the boundary and construct the same test function with small L. Sending L to 0 , we still get the desired result.

If the domain Ω has a corner on Γ_{1}, we can first transform it into a sector by a smooth map. Then we construct a similar test function on that sector. Finally, we let L tend to 0 .

Corollary 3.4. (1) For domains Ω with smooth Γ_{1},

$$
\limsup _{p \rightarrow \infty} p \int_{\Omega} u_{p}^{p+1} \leq(4 \pi e) \quad \text { and } \quad \underset{p \rightarrow \infty}{\limsup p} \int_{\Omega}\left|\nabla u_{p}\right|^{2} \leq 4 \pi e .
$$

(2) For domains Ω having convex corners on Γ_{1},

$$
\underset{p \rightarrow \infty}{\lim \sup } p \int_{\Omega} u_{p}^{p+1} \leq 4 \beta e \quad \text { and } \quad \underset{p \rightarrow \infty}{\lim \sup } p \int_{\Omega}\left|\nabla u_{p}\right|^{2} \leq 4 \beta e
$$

where β is the smallest angle among all convex corners on Γ_{1}.

Proof. From (1.3), we know that

$$
c_{p}=\frac{\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}}{\left\|u_{p}\right\|_{L^{p+1}(\Omega)}}
$$

If we multiply (1.1) by u_{p} and integrate by parts, we have

$$
\int_{\Omega}\left|\nabla u_{p}\right|^{2}=\int_{\Omega} u_{p}^{p+1}
$$

Therefore,

$$
\int_{\Omega} u_{p}^{p+1}=c_{p}^{(2(p+1)) /(p-1)} \quad \text { and } \quad \int_{\Omega}\left|\nabla u_{p}\right|^{2}=c_{p}^{(2(p+1)) /(p-1)}
$$

The results follow immediately from lemma 3.3.

As another consequence of lemma 3.3, we prove a crucial estimate for the quantity

$$
\begin{equation*}
L_{0}=\limsup _{p \rightarrow \infty} \frac{p \int_{\Omega} u_{p}^{p}}{e} \tag{3.2}
\end{equation*}
$$

The proof follows easily from lemma 3.3 and Holder's inequality.

Corollary 3.5. (1) For the domains Ω with smooth Γ_{1},

$$
L_{0} \leq 4 \pi
$$

(2) for domains Ω having convex corners on Γ_{1},

$$
L_{0} \leq 4 \beta,
$$

where β is the smallest angle among all convex corners on Γ_{1}.

4. PROOF OF THEOREM 1.1

A uniform lower bound indeed exists for any positive solutions to (1.1). Let λ_{1} be the first eigenvalue of $-\Delta$ with the same boundary condition as the one in (1.1) and φ be a corresponding positive eigenfunction. Then for any solution u

$$
\begin{equation*}
\int_{\Omega}[u \Delta \varphi-\varphi \Delta u]=\int_{\partial \Omega}\left[u \frac{\partial \varphi}{\partial v}-\varphi \frac{\partial u}{\partial v}\right]=0 \tag{4.1}
\end{equation*}
$$

Therefore,

$$
\int_{\Omega}\left(u^{p}-\lambda_{1} u\right) \varphi=0
$$

Hence

$$
\begin{equation*}
\|u\|_{L^{\infty}(\Omega)} \geq \lambda_{1}^{1 /(p-1)} \rightarrow 1 \tag{4.2}
\end{equation*}
$$

as $p \rightarrow \infty$ which yields a uniform lower bound in p for $\|u\|_{L^{\infty}(\Omega)}$ when $p>1+\varepsilon, \varepsilon>0$.

To get an upper bound for $\left\{u_{p}\right\}$, we use an iteration argument. Define

$$
\begin{equation*}
\gamma_{0}=\beta / a, \tag{4.3}
\end{equation*}
$$

where β is the smallest angle among all convex corners on Γ_{1} and $\left(\Gamma_{1}, \Omega\right)$ is in class ε_{α}. Then $\gamma_{0} \geq 1$ by (2.4). Let α_{0} be such that

$$
\begin{equation*}
\exp \alpha_{0}=\gamma_{0}\left(1+\alpha_{0}\right) \tag{4.4}
\end{equation*}
$$

Fix t and ε that will be chosen later. Letting $v=(1+t)(p+1)$, from lemma 3.1, we have

$$
\left[\int_{\Omega} u_{p}^{p}\right]^{1 / v} \leq(4 \alpha e)^{-1 / 2} E_{(1+t)(p+1)} v^{1 / 2}\left\|\nabla u_{p}\right\|_{L^{2}(\Omega)}
$$

where

$$
\lim _{p \rightarrow \infty} E_{(1+t)(p+1)}=1
$$

However, from corollary 3.4 we know that

$$
\limsup _{p \rightarrow \infty} p \int_{\Omega}\left|\nabla u_{p}\right|^{2} \leq 4 \beta e
$$

Hence, there exists P_{0} such that for all $p>P_{0}$,

$$
\begin{equation*}
\int_{\Omega} u_{p}^{\nu} \leq\left[\gamma_{0}(1+t+\varepsilon)\right]^{p / 2} \tag{4.5}
\end{equation*}
$$

Multiplying both sides of (1.1) by $u_{p}^{2 s-1}$, we get, after integrating by parts,

$$
\begin{equation*}
\frac{2 s-1}{s^{2}} \int_{\Omega}\left|\nabla u_{p}^{s}\right|^{2}=\int_{\Omega} u_{p}^{p-1+2 s} \tag{4.6}
\end{equation*}
$$

Using lemma 3.1 again, we have

$$
\begin{gathered}
{\left[\int_{\Omega} u_{p}^{\nu s}\right]^{1 / \nu} \leq D_{v s} v^{1 / 2}\left\|\nabla u_{p}^{s}\right\|_{L^{2}(\Omega)}} \\
{\left[\int_{\Omega} u_{p}^{\nu s}\right]^{2 / \nu} \leq C_{0} v \frac{s^{2}}{2 s-1} \int_{\Omega} u_{p}^{p-1+2 s} \leq C_{1} v s \int_{\Omega} u_{p}^{p-1+2 s}}
\end{gathered}
$$

where $D_{\nu s}$ is defined in lemma 3.1 and C_{0} and C_{1} are constants independent of $p>P_{0}$. Hence, we have

$$
\begin{equation*}
\left[\int_{\Omega} u_{p}^{\nu s}\right]^{2 / \nu} \leq C_{1} v s \int_{\Omega} u_{p}^{p-1+2 s} \tag{4.7}
\end{equation*}
$$

We now define two sequences $\left\{s_{j}\right\}$ and $\left\{M_{j}\right\}$ by

$$
\left\{\begin{array}{l}
p-1+2 s_{0}=v \tag{4.8}\\
p-1+2 s_{j+1}=v s_{j} \\
M_{0}=\left[\gamma_{0}(1+t+\varepsilon)\right]^{1 / 2} \\
M_{j+1}=\left[C_{1} v s_{j} M_{j}\right]^{/ 2}
\end{array}\right.
$$

where C_{1} is the constant in (4.7). From (4.5) and (4.7), we have, by induction, that

$$
\begin{equation*}
\int_{\Omega} u_{p}^{\nu s_{j-1}} \leq M_{j} . \tag{4.9}
\end{equation*}
$$

Next we claim that

$$
\begin{equation*}
M_{j} \leq \exp \left[m\left(\gamma_{0}, t, p, \varepsilon\right) v s_{j-1}\right], \tag{4.10}
\end{equation*}
$$

where $m\left(\gamma_{0}, t, p, \varepsilon\right)$ is a constant depending on $\gamma_{0}, t, p, \varepsilon$ and

$$
\lim _{p \rightarrow \infty} m\left(\gamma_{0}, t, p, \varepsilon\right)=\frac{1+t}{2 t} \log \left[\gamma_{0}(1+t+\varepsilon)\right] .
$$

In fact, we can write down $\left\{s_{j}\right\}$ explicitly

$$
\begin{equation*}
s_{j}=\frac{1}{v-2}\left\{\left(\frac{v}{2}\right)^{j+1}(v-1-p-1)+p-1\right\} \tag{4.11}
\end{equation*}
$$

Put

$$
\sigma_{j}=\frac{v}{2} \log \left(C_{1} v s_{j}\right), \quad \mu_{j}=\log M_{j}
$$

Hence,

$$
\mu_{j+1}=\frac{v \mu_{j}}{2}+\sigma_{j}
$$

Therefore, it is easy to see that

$$
\sigma_{j}=\frac{v}{2}\left(\log \left[\frac{C_{1} v}{v-2}\right]+\log \left[\left(\frac{v}{2}\right)^{j+1}(v-p-1)+p-1\right]\right) \leq\left[v \log \sqrt{2 C_{1}} v\right](j+1)
$$

Now we define $\left\{\tau_{j}\right\}$ by

$$
\begin{equation*}
\tau_{0}=\mu_{0} \quad \tau_{j+1}=\frac{1}{2} v \tau_{j}+\left(v \log \sqrt{2 C_{1}} v\right)(j+1) \tag{4.12}
\end{equation*}
$$

Clearly, $\mu_{j} \leq \tau_{j}$. Moreover, we have

$$
\begin{aligned}
\tau_{j} & =\left(\frac{v}{2}\right)^{j}\left[\mu_{0}+2 v \log \left(\sqrt{2 C_{1}} v\right) \frac{v}{(v-2)^{2}}\right]-\frac{2}{v-2}\left(v \log \left(\sqrt{2 C_{1}} v\right)\left(j+\frac{v}{v-2}\right)\right) \\
& \leq \frac{\mu_{0}+2 v \log \left(\sqrt{2 C_{1}} v\right) v /(v-2)^{2}}{(v-2)^{-1}(v-p-1)} s_{j-1} \\
& \leq \frac{\mu_{0}+2 v \log \left(\sqrt{2 C_{1}} v\right) v /(v-1)^{2}}{v-p-1} \frac{v-2}{v} v s_{j-1} \\
& :=m\left(\gamma_{0}, t, p, \varepsilon\right) v s_{j-1}
\end{aligned}
$$

where

$$
\lim _{p \rightarrow \infty} m\left(\gamma_{0}, t, p, \varepsilon\right)=\frac{1+t}{2 t} \log \left[\gamma_{0}(1+t+\varepsilon)\right] .
$$

Therefore, we get

$$
\left\|u_{p}\right\|_{L^{\prime s j-1}(\Omega)} \leq \exp \left[m\left(\gamma_{0}, t, p, \varepsilon\right)\right] .
$$

Sending $j \rightarrow \infty$, we see

$$
\left\|u_{p}\right\|_{L^{\infty}(\Omega)} \leq \exp \left[m\left(\gamma_{0}, t, p, \varepsilon\right)\right] .
$$

Sending $p \rightarrow \infty$, we have

$$
\underset{p \rightarrow \infty}{\limsup }\left\|u_{p}\right\|_{L^{\infty}} \leq\left[\gamma_{0}(1+t+\varepsilon)\right]^{(1+t) / 2 t}
$$

Sending $\varepsilon \rightarrow 0$, we deduce

$$
\underset{p \rightarrow \infty}{\lim \sup }\left\|u_{p}\right\|_{L^{\infty}} \leq\left[\gamma_{0}(1+t)\right]^{(1+t) / 2 t} .
$$

If we let $f(t)=\left[\gamma_{0}(1+t)\right]^{(1+t) / 2 t}$, the standard calculus argument shows that $\log f(t)$ achieves its minimum at α_{0}, where

$$
\alpha_{0}=\log \left[\gamma_{0}\left(1+\alpha_{0}\right)\right]
$$

defined in (4.4). So we obtain

$$
\underset{p \rightarrow \infty}{\limsup }\left\|u_{p}\right\|_{L^{\infty}} \leq \exp \frac{1+\alpha_{0}}{2}
$$

We include a consequence of theorem 1.1 here which will be used later.

Corollary 4.1. There exist C_{1} and C_{2} such that

$$
\frac{C_{1}}{p} \leq \int_{\Omega} u_{p}^{p} \leq \frac{C_{2}}{p}
$$

Proof. The first inequality follows from theorem 1.1 and the first limit of corollary 2.3; the second inequality follows from the first limit of corollary 2.3 through an interpolation argument.

5. SOME A PRIORI ESTIMATES

In this section we collect some less well-known estimates for Δ on two dimensional domains.
We first state a boundary estimate lemma. The proof of the lemma is standard. One combines the moving plane method in [9] with a Kelvin transform. We refer to [9, 10] for details. This lemma actually excludes the possibility that u_{p} develop a peak on Γ_{0}. See remark 6.5.

Lemma 5.1. Let u be a positive solution of

$$
\left\{\begin{array}{l}
\Delta u+f(u)=0 \quad \text { in } \Omega \subset R^{2} \\
\left.u\right|_{\Gamma_{0}}=0,
\end{array}\right.
$$

where Γ_{0} is a smooth piece of $\partial \Omega$ and f is a smooth function. Then for every $\Gamma \subset \subset \operatorname{int}\left(\Gamma_{0}\right)$ with respect to the relative topology of $\partial \Omega$ there exist a neighborhood ω of Γ and a constant C both depending on the geometry of Ω and Γ only such that

$$
\|u\|_{L^{\infty}(\omega)} \leq C\|u\|_{L^{1}(\Omega)} .
$$

Next we state an L^{1} estimate of Brezis and Merle, theorem 1 [2].
Lemma 5.2. Let u be a solution of

$$
\left\{\begin{array}{l}
-\Delta u=f \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where Ω is a smooth bounded domain in R^{2}. We have for $0<\varepsilon<4 \pi$

$$
\int_{\Omega} \exp \left[\frac{(4 \pi-\varepsilon)|u(x)|}{\|f\|_{L^{1}}}\right] \mathrm{d} x \leq \frac{4 \pi \operatorname{Area}(\Omega)}{\varepsilon} .
$$

Remark 5.3. In their paper, Brezis and Merle used (Diameter(Ω) $)^{2}$ instead of $\operatorname{Area}(\Omega)$ in lemma 5.2. It turns out from the following symmetrization approach that $\operatorname{Area}(\Omega)$ is more appropriate.

We need a similar L^{1} estimate as above to take care of the mixed boundary condition.
Lemma 5.4. Let u be a solution of

$$
\left\{\begin{array}{l}
-\Delta u=f \quad \text { in } \Omega \\
\left.u\right|_{\Gamma_{0}}=0 \\
\left.\frac{\partial u}{\partial v}\right|_{\Gamma_{1}}=0
\end{array}\right.
$$

where the boundary condition is the same as the one in (1.1) and ($\left.\Gamma_{1}, \Omega\right) \in \mathcal{E}_{\alpha}$. Then for every $0<\varepsilon<2 \alpha$,

$$
\int_{\Omega} \exp \left[\frac{(2 \alpha-\varepsilon)|u(x)|}{\|f\|_{L^{1}}}\right] \mathrm{d} x \leq \frac{2 \alpha \operatorname{Area}(\Omega)}{\varepsilon}
$$

Proof. Owing to the maximum principle, we may assume $f \geq 0$. Otherwise, we just replace f by $|f|$. We use the symmetrization approach here. Let $\Sigma(\alpha, R)$ be the sector having the same areas as Ω and the same relative isoperimetric constant as Ω. Define as in [4] the α-symmetrization to be the transformation that associates $u(x)$ with

$$
u_{\alpha}:=u_{*}\left(\frac{\alpha}{2}|x|^{2}\right)
$$

for $x \in \Sigma(\alpha, R)$, where u_{*} is the standard decreasing rearrangement. Namely

$$
u_{*}:=\inf \{t \geq 0: \mu(s)<t\}
$$

and

$$
\mu(t)=\operatorname{meas}\{x \in \Omega:|u(x)|>t] .
$$

u_{α} has similar properties to those of the standard Schwartz symmetrization. In particular

$$
\begin{equation*}
\int_{\Omega} F(u(x)) \mathrm{d} x=\int_{\Sigma(\alpha, R)} F\left(u_{\alpha}(x)\right) \mathrm{d} x \tag{5.1}
\end{equation*}
$$

for real Borel function F. Moreover, let u be a solution to the equation in lemma 5.4, and v be the solution of

$$
\left\{\begin{array}{l}
-\Delta v=f_{\alpha} \quad \text { in } \Sigma(\alpha, R) \\
\left.v\right|_{\tilde{\Gamma}_{0}}=0 \\
\left.\frac{\partial v}{\partial v}\right|_{\tilde{\Gamma}_{0}}=0
\end{array}\right.
$$

where

$$
\begin{aligned}
& \tilde{\Gamma}_{0}=\{x \in \partial \Sigma(\alpha, R):|x|=R\}, \\
& \tilde{\Gamma}_{1}=\{x \in \partial \Sigma(\alpha, R):|x| \leq R\}
\end{aligned}
$$

and f_{α} is the α-symmetrization of f. Standard argument shows that v is radially symmetric. From [4], we assert that

$$
\begin{equation*}
u_{\alpha}(x) \leq v(x) \tag{5.2}
\end{equation*}
$$

where u_{α} is the α-symmetrization of the solution u in lemma 5.4. However, since it is radially symmetric, v satisfies

$$
\left\{\begin{array}{l}
v^{\prime \prime}(t)+\frac{1}{t} v^{\prime}(t)+f_{\alpha}(t)=0 \\
v^{\prime}(0)=0 \\
v(R)=0
\end{array}\right.
$$

Therefore, solving the O.D.E., we have

$$
\begin{gathered}
v(r) \leq \log \left(\frac{R}{r}\right) \int_{0}^{R} s f_{\alpha}(s) \mathrm{d} s \\
\int_{\Sigma(\alpha, R)} \exp \left[\frac{(2 \alpha-\varepsilon) v}{\left\|f_{\alpha}\right\|_{L^{1}(\Omega)}}\right] \leq \frac{2 \alpha \operatorname{Area}(\Sigma(\alpha, R))}{\varepsilon}=\frac{2 \alpha \operatorname{Area}(\Omega)}{\varepsilon} .
\end{gathered}
$$

Combining this with (5.1) and (5.2), we have the desired result.

6. PROOF OF THEOREM 1.2

Lemma 5.4 implies that $\left\{v_{p}\right\}$ is uniformly bounded in $L^{1}(\Omega)$. Therefore, lemma 5.1 implies that $\left\{v_{p}\right\}$ is uniformly bounded in $L^{\infty}(\omega)$ where ω is a neighborhood of any compact subset of $\operatorname{int}\left(\Gamma_{0}\right)$. Since

$$
\max _{x \in \bar{\Omega}} v_{n}(x) \geq \frac{C}{v_{p_{n}}} \rightarrow \infty,
$$

from theorem 1.1 and corollary 4.1, we deduce $S \neq \varnothing$. However, since $S_{D}=\varnothing$, we conclude that $\#\left(S_{I} \cup S_{C} \cup S_{N}\right) \geq 1$. This proves part 1 . To prove the rest of the theorem, define

$$
\begin{equation*}
L_{0}=\varlimsup_{p \rightarrow \infty} \frac{p v_{p}}{e} \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{p}=\int_{\Omega} u_{p}^{p} \tag{6.2}
\end{equation*}
$$

We denote any sequence $u_{p_{n}}$ of u_{p} with $p_{n} \rightarrow \infty$ by u_{n}. Let

$$
\begin{gather*}
v_{n}:=v_{p_{n}}:=\frac{u_{n}}{v_{p_{n}}} ; \tag{6.3}\\
f_{n}:=f_{p_{n}}:=\frac{u_{n}^{p_{n}}}{\int_{\Omega} u_{n}^{p_{n}}}=v_{p_{n}}^{p_{n}-1} v_{n} . \tag{6.4}
\end{gather*}
$$

Since

$$
\int_{\Omega \cup \Gamma_{1}} f_{n}=1
$$

we can subtract a subsequence of f_{n}, still denoted by f_{n}, so that there is a positive bounded measure μ in $M\left(\Omega \cup \Gamma_{1}\right)$, the set of all real bounded Borel measures on $\Omega \cup \Gamma_{1}$, such that

$$
\begin{equation*}
\int_{\Omega \cup \Gamma_{1}} f_{n} \varphi \rightarrow \int_{\Omega \cup \Gamma_{1}} \varphi \mathrm{~d} \mu \tag{6.5}
\end{equation*}
$$

for all

$$
\varphi \in C_{0}^{\infty}\left(\Omega \cup \Gamma_{1}\right)
$$

Recall S_{I} and S_{N} defined in (1.6). For any $\delta>0$ we call $x_{0} \in \Omega \cup\left(\Gamma_{1} \backslash\left(\Gamma_{1} \cap \Gamma_{0}\right)\right)$ a δ-regular point if:

- $x_{0} \in \Omega$ and there is $\varphi \in C_{0}(\Omega), 0 \leq \varphi \leq 1, \varphi=1$ in a neighborhood of x_{0}, such that

$$
\begin{equation*}
\int_{\Omega \cup \Gamma_{1}} \varphi \mathrm{~d} \mu \leq \frac{4 \pi}{L_{0}+2 \delta}, \tag{6.6}
\end{equation*}
$$

where L_{0} is the quantity defined in (3.2); or

- $x_{0} \in \Gamma_{1} \backslash\left(\Gamma_{1} \cap \Gamma_{0}\right)$ and there is $\varphi \in C_{0}\left(\Omega \cup \Gamma_{1}\right), 0 \leq \varphi \leq 1, \varphi=1$ in a neighborhood of x_{0}, such that

$$
\begin{equation*}
\int_{\Omega \cup \Gamma_{1}} \varphi \mathrm{~d} \mu \leq \frac{2 \alpha\left(x_{0}\right)}{L_{0}+2 \delta} \tag{6.7}
\end{equation*}
$$

where $\alpha\left(x_{0}\right):=\lim _{\tau \rightarrow 0} \alpha\left(\Gamma_{1} \cap B_{r}\left(x_{0}\right), \Omega \cap B_{r}\left(x_{0}\right)\right.$ considered in proposition 2.2.
We let $\alpha\left(x_{0}\right)=2 \pi$ if $x_{0} \in \Omega$. We say that $x_{0} \in \Omega \cup \Gamma_{1} \backslash\left(\Gamma_{0} \cap \Gamma_{1}\right)$ is δ-irregular if x_{0} is not δ-regular.

Lemma 6.1. If x_{0} is a δ-regular point for $\delta>0$, then $\left\{v_{n}\right\}$ is uniformly bounded in $L^{\infty}\left(B_{R_{0}}\left(x_{0}\right) \cup \bar{\Omega}\right)$ for some $R_{0}>0$.

Proof. We first consider the case where $x_{0} \in \Gamma_{1} \backslash\left(\Gamma_{0} \cap \Gamma_{1}\right)$. Let x_{0} be a δ-regular point on $\Gamma_{1} \backslash\left(\Gamma_{0} \cap \Gamma_{1}\right)$. Then there exists R_{0} such that

$$
\int_{B_{R_{0}\left(x_{0}\right) \cup \bar{\Omega}}} f_{n} \leq \frac{2 \alpha\left(x_{0}\right)}{L_{0}+\delta}
$$

for n large enough.
Split v_{n} into two parts, $v_{n}=v_{1 n}+v_{2 n}$ where $v_{1 n}$ solves

$$
\begin{cases}\Delta v_{1 n}+f_{n}=0 & \text { in } B_{R_{0}}\left(x_{0}\right) \cap \Omega \tag{6.8}\\ v_{1 n}=0 & \text { on } \partial B_{R_{0}}\left(x_{0}\right) \cap \Omega \\ \frac{\partial v_{1 n}}{\partial \nu}=0 & \text { on } B_{R_{0}}\left(x_{0}\right) \cap \Gamma_{1}\end{cases}
$$

and $v_{2 n}$ solves

$$
\begin{cases}\Delta v_{2 n}=0 & \text { in } B_{R_{0}}\left(x_{0}\right) \cap \Omega \tag{6.9}\\ v_{2_{n}}=v_{n} & \text { on } \partial B_{R_{0}}\left(x_{0}\right) \cap \Omega \\ \frac{\partial v_{2 n}}{\partial v}=0 & \text { on } B_{R_{0}}\left(x_{0}\right) \cap \Gamma_{1}\end{cases}
$$

Then $v_{1 n} \leq v_{n}$ and $v_{2 n} \leq v_{n}$ by the maximum principle. Now from the standard elliptic boundary estimate for harmonic functions with Neumann data, we have

$$
\left\|v_{2 n}\right\|_{L^{\infty}\left(B_{R_{0} / 2}\left(x_{0}\right) \cap \bar{\Omega}\right)} \leq C\left\|v_{2 n}\right\|_{L^{1}\left(B_{R_{0}} \cap \bar{\Omega}\right)} \leq C^{\prime},
$$

where C^{\prime} is a constant independent of n and the last inequality follows from lemma 5.4. So we only need to estimate $v_{1 n}$.

We first claim that when n is large enough

$$
\begin{equation*}
f_{n}(x) \leq \exp \left(L_{0}+\delta / 2\right) v_{n}(x) \tag{6.10}
\end{equation*}
$$

for all $x \in \Omega$.
Now observe that

$$
\begin{equation*}
\log x \leq \frac{x}{e} \tag{6.11}
\end{equation*}
$$

for $x>0$. We have

$$
p_{n} \log \frac{u_{n}}{v_{n}^{1 / p_{n}}} \leq \frac{p_{n}}{e} \frac{u_{n}}{v_{n}^{1 / p_{n}}} \leq \frac{L_{0}+\delta / 3}{v_{n}} \frac{u_{n}}{v_{n}^{1 / p_{n}}} \leq \frac{t^{\prime}-\delta / 6}{v_{n}^{1 / p_{n}}} \frac{u_{n}}{v_{n}} \leq t^{\prime} \frac{u_{n}}{v_{n}}
$$

for n large enough because

$$
\lim _{n \rightarrow \infty} v_{n}^{1 / p_{n}}=1
$$

which follows from corollary 4.1. Hence,

$$
f_{n} \leq \exp \left[\left(L_{0}+\delta / 2\right) v_{n}\right] .
$$

Next we claim that $\left\{f_{n}\right\}$ is uniformly bounded in $L^{1+\delta_{0}}\left(B_{R_{1} / 2}\right)$ for δ_{0} sufficiently small. Since $\left\{v_{2 n}\right\}$ is uniformly bounded in $B_{R_{1 / 2}}\left(x_{0}\right)$, we see from the previous claim that

$$
\begin{aligned}
\int_{B_{R_{1} / 2}} f_{n}^{1+\delta_{0}} & \leq \int_{B_{R_{1} / 2}} \exp \left[\left(1+\delta_{0}\right)\left(L_{0}+0.5 \delta\right) v_{n}\right] \\
& \leq C \int_{B_{R_{1} / 2}} \exp \left[\left(1+\delta_{0}\right)\left(L_{0}+0.5 \delta\right) v_{1 n}\right] \\
& \leq C \int_{B_{R_{1} / 2}} \exp \frac{4 \pi\left(1+\delta_{0}\right)\left(L_{0}+0.5 \delta\right) /\left(L_{0}+\delta\right) v_{1 n}}{\int_{B_{R_{1} / 2}\left(x_{0}\right)} f_{n}} \leq C^{\prime}
\end{aligned}
$$

with the aid of lemma 5.4 if we choose δ_{0} sufficiently small. So we have proved lemma 6.1.

Now take $B_{R_{1} / 4}\left(x_{0}\right)$. We conclude from the weak Hanack inequality [11, theorem 8.17]

$$
\left\|v_{n}\right\|_{L^{\infty}\left(B_{R_{1} / 4}\left(x_{0}\right)\right)} \leq C\left[\left\|v_{n}\right\|_{L^{2}\left(B_{R_{1} / 2}\left(x_{0}\right)\right)}+\left\|f_{n}\right\|_{L^{1+\delta_{0}\left(B_{R_{1} / 2}\left(x_{0}\right)\right)}}\right] \leq C
$$

Here the boundedness of $\left\{v_{n}\right\}$ in $L^{2}\left(B_{R_{1} / 2}\left(x_{0}\right)\right)$ follows from lemma 5.4.
The case where $x_{0} \in \Omega$ is similar. We just use lemma 5.2 in place of lemma 5.4.

Lemma 6.2. For any $\delta>0, x_{0} \in S_{I} \cup S_{N}$ if and only if x_{0} is δ-irregular.

Proof. Let x_{0} be a δ-irregular point. Then by lemma 6.1, $\left\{v_{n}\right\}$ is bounded in $L^{\infty}\left(B_{R_{1}} \cap \Omega\right)$ for some R_{1}. Hence, $x_{0} \oplus S_{I} \cup S_{N}$. Conversely, suppose x_{0} is a δ-irregular point. Then we have for every $R>0$

$$
\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{L^{\infty}\left(B_{R}\left(x_{0}\right) \cap \Omega\right)}=\infty .
$$

Otherwise, there would be some $R_{0}>0$ and a subsequence, still denoted by $\left\{v_{n}\right\}$, such that

$$
\left\|v_{1 n}\right\|_{L^{\infty}\left(B_{R}\left(x_{0}\right) \cap \bar{\Omega}\right)} \leq C
$$

for some C independent of n. Then

$$
f_{n}=v_{n}^{p_{n}-1} v_{n}^{p_{n}} \leq\left(\frac{M}{p_{n}}\right)^{p_{n}-1} C^{p_{n}} \rightarrow 0
$$

uniformly as $n \rightarrow \infty$ on $B_{R_{0}}\left(x_{0}\right) \cap \bar{\Omega}$. Here M is a uniform upper bound of u_{p} obtained in theorem 1.1. Then

$$
\int_{\mathcal{B}_{R_{0}\left(x_{0}\right) \cap \bar{\Omega}}} f_{n} \leq \varepsilon_{0} \leq \frac{2 \alpha\left(x_{0}\right)}{L_{0}+2 \delta}
$$

which implies that x_{0} is a δ-regular point. A contradiction.

Back to the measure μ defined earlier in this section. Clearly, we have

$$
1 \geq \mu\left(\Gamma_{1} \cup \Omega\right) \geq \sum_{x_{0} \in S_{I} \cup S_{N}} \frac{2 \alpha\left(x_{0}\right)}{L_{0}+2 \delta}
$$

which in turn, if we let $\delta \rightarrow 0$, implies the following proposition.
Proposition 6.3.

$$
\sum_{x_{0} \in S_{I} \cup S_{N}} \alpha\left(x_{0}\right) \leq \frac{1}{2} L_{0} .
$$

From this proposition, with the aid of proposition 2.2 and corollary 3.5 , we obtain part 2 and part 3 of theorem 1.2.

Remark 6.4. We see that every peak P in Ω is a blow-up point of $v_{p}=u_{p} / v_{p}$ because by corollary $4.1 v_{p} \rightarrow 0$ as $p \rightarrow \infty$.

7. FURTHER RESULTS AND EXAMPLES

In this section we shall focus on some special domains Ω where the corresponding quantities L_{0} are indeed smaller than what we get in corollary 3.5. In these special cases, we can actually prove that the solutions of (1.1) possess single-peaks on the Neumann boundary of Ω. Let us first formulate a general result.

Theorem 7.1. Let (Γ_{1}, Ω) be a pair such that α_{0}, defined in (4.4), with respect to this pair is strictly less than 1, i.e. $\gamma_{0}<e / 2$. Then for every sequence $\left\{u_{p_{n}}\right\}$ of solutions on Ω with the Neumann boundary Γ_{1}, there is a subsequence, again denoted by $\left\{u_{p_{n}}\right\}$, such that the interior blow-up set S_{I} is empty and the Γ_{1}-boundary blow-up set S_{N} contains at most one point.

Proof. If we check the proof of lemma 6.1 carefully, we can see that we can use a refined inequality

$$
\frac{\log x}{x} \leq \frac{\log y}{y}
$$

if $x \leq y \leq e$ instead of (6.11). Notice that since we assume $\alpha_{0}<1$,

$$
\limsup _{n \rightarrow \infty} \frac{u_{n}}{v_{n}^{1 / p_{n}}} \leq \exp \frac{1+\alpha_{0}}{2}<e .
$$

Let

$$
L_{0}^{\prime}=\frac{\lim \sup _{n \rightarrow \infty}\left(1+\alpha_{0}\right) p \int_{\Omega} u_{p}^{p}}{2 \exp \left[\left(1+\alpha_{0}\right) / 2\right]} .
$$

We still have, as proposition 6.3, with the aid of corollary 3.5 ,

$$
\begin{equation*}
\sum_{x_{0} \in S_{I} \cup S_{N}} \alpha\left(x_{0}\right) \leq \frac{1}{2} L_{0}^{\prime}<2 \beta . \tag{7.1}
\end{equation*}
$$

If $S_{I} \neq \varnothing$, then, with the aid of proposition $2.2, \alpha\left(x_{0}\right)=2 \pi$ for some $x_{0} \in S_{I}$. If $\# S_{N} \geq 2$, then, with the aid of proposition 2.2 again, $\alpha\left(x_{1}\right)+\alpha\left(x_{2}\right) \geq 2 \beta$ for two different x_{1} and x_{2} in S_{N}. In any case, we reach a contradiction to (7.1).

Example 7.2. Let

$$
\Omega=\left\{x \in R^{2}: r<|x|<R\right\}, \quad \Gamma_{1}=\left\{x \in R^{2}:|x|=r\right\} \quad \text { and } \quad \Gamma_{0}=\left\{x \in R^{2}:|x|=R\right\} .
$$

In this case the constant α with respect to $\left(\Gamma_{1}, \Omega\right)$ is equal to π (see [4, example 3.3]) and the constant β is clearly π. Hence, $\gamma_{0}=1<e / 2$ and the condition of theorem 7.1 is satisfied. Indeed, since the two boundaries has no intersection, passing to a subsequence if necessary, $S_{N}=\left\{x_{0}\right\}$.

Example 7.3. Let $\Omega=\Sigma(\alpha, R), 0 \leq \alpha \leq \pi$, and Γ_{1} be the union of two sides of the sector.
In this case $\beta=\alpha$ (see [5]). hence, $\gamma_{0}=1 \leq e / 2$ and the condition of theorem 7.1 is again satisfied.

Acknowledgement-The authors would like to thank their thesis adviser, Professor Wei-Ming Ni, for bringing spike-like pattern formations to their attention.

REFERENCES

1. REN X. \& WEI J., On a two dimensional elliptic problem with large exponent in nonlinearity (preprint).
2. BREZIS H. \& MERLE F., Uniform estimate and blow-up behavior for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Communs partial diff. Eqns 16(8, 9), 1223-1253 (1991).
3. REN X. \& WEI J., Counting peaks of solutions to some quasilinear elliptic equations with large exponents (preprint).
4. PACELLA F. \& TRICARICO M., Symmetrization for a class of elliptic equations with mixed boundary conditions, Att. Sem. Mat. Fis. Univ. Modena XXXIV, 75-94 (1985-1986)
5. LIONS P. L., PACELLA F. \& TRICARICO M., Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. math. J. 37(2), 301-324 (1988).
6. ZIEMER W., Weakly Differentiable Functions. Springer, Berlin (1989).
7. FEDERER H., Geometric Measure Theory. Springer, Berlin (1969).
8. MOSER J., A sharp form of an inequality by Trudinger, Indiana Univ. math. J. 20(11), 1077-1092 (1971).
9. GIDAS B., NI W.-M. \& NIRENBERG L., Symmetry and related properties via the maximum principle, Communs math. Phys. 68(3), 209-243 (1979).
10. DEFIGUEIREDO D. G., LIONS P. L. \& NUSSBAUM R. D., A priori estimates and existence of positive solutions of semilinear elliptic equations, J. math. Pure Appl. 61, 41-63 (1982).
11. GILBARG D. \& TRUDINGER S. N., Elliptic Partial Differential Equations of Second Order, 2nd edition. Springer, Berlin (1983).

[^0]: ${ }^{\dagger}$ Current address: Department of Mathematics, Brigham Young University, Provo, UT 84602, U.S.A.
 ${ }^{\ddagger}$ Current address: SISSA, Via Beirut 2-4, 34013 Trieste, Italy.

