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ON A TWO-DIMENSIONAL ELLIPTIC PROBLEM WITH
LARGE EXPONENT IN NONLINEARITY

XIAOFENG REN AND JUNCHENG WEI

Abstract. A semilinear elliptic equation on a bounded domain in R2 with

large exponent in the nonlinear term is studied in this paper. We investigate

positive solutions obtained by the variational method. It turns put that the con-

strained minimizing problem possesses nice asymptotic behavior as the nonlin-

ear exponent, serving as a parameter, gets large. We shall prove that cp , the

minimum of energy functional with the nonlinear exponent equal to p , is like

(&Ke)lf2p~^2 as p tends to infinity.

Using this result, we shall prove that the variational solutions remain bound-

ed uniformly in p . As p tends to infinity, the solutions develop one or two

peaks. Precisely the solutions approach zero except at one or two points where

they stay away from zero and bounded from above.

Then we consider the problem on a special class of domains. It turns out

that the solutions then develop only one peak. For these domains, the solutions

enlarged by a suitable quantity behave like a Green's function of -A. In this

case we shall also prove that the peaks must appear at a critical point of the

Robin function of the domain.

1. Introduction

Studies concerning asymptotic behavior of elliptic nonlinear partial differen-

tial equations have grown rapidly in recent years. Among many delicate results,

we would like to mention one obtained independently by Han [7] and Rey [12]

through different approaches. They considered the following semilinear elliptic

problem on a smooth bounded domain Q in R" with n > 3 :

ÍAu + up = 0   inilci?",        n>3,

\"lan = 0.

They showed that when p approaches (n + 2)/(n -2), the well-known crit-

ical exponent, the positive solutions obtained by the variational method will

blow up at some point xo which is a critical point of function R where

R{x) = g(x, x), and g(x, y) is the regular part of the Green's function of
-A.
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750 XIAOFENG REN AND JUNCHENG WEI

In this paper we consider the same equation on a smooth bounded domain

in R2

[Au + up = 0   in Q c R2,

This time because the exponent can be arbitrarily large for (1.2) to have a
positive variational solution, we impose the following questions.

Question 1. If we take p to be a parameter, do solutions obtained by variational

method, specified later, blow up when p approaches infinity?

Question 2. What do the normalized solutions, specified later, look like when

p approaches infinity?

It turns out that the answer to the first question surprisingly differs from the

one in higher dimensional case while the answer to the second question remains

similar to the one in higher dimensional case for some domains. To state our

results precisely we need a few words on the solutions to (1.2). Since a complete

classification of the solutions to (1.2) is still open, we shall focus on the solutions

to (1.2) obtained by the following variational method. These solutions exist for

any p provided Q is bounded and smooth enough.

Consider the constrained minimizing problem

(1.3) inf|||VM|2: ueWx'2(Çi),  \\u\\p+x = l\ c2

A standard variational argument shows that c2 can be achieved by a positive

function, say u'p, in the desired class. Then a positive scalar multiple of u'p ,

say Up , solves (1.2) and

Cp^WVUpW^/WUpWu+x.

From now on throughout the rest of this article we denote solutions obtained

in this way by up . Our first result is

Theorem 1.1. There exist Cx, C2, independent of p, such that 0 < Cx <

WupWl™ < C2 < 00 for p large enough.

Theorem 1.1 shows a substantial difference between (1.1) and (1.2). It also

shows that the peak set of up is nonempty. By a point P being in the peak set of

Up , we mean that up does not vanish in L°° norm in any small neighborhood

of P as p —> 00 . To state further results, we need some definitions.

Let

(1.4) Vp = Up    j upp.

For a sequence vPn of vp we define the blow-up set S of vPn to be the subset

of Q such that x e S if there exist a subsequence, still denoted by vPn, and a

sequence x„ in Q with

(1.5) vp„(xn) —> <x>   and   x„ —> x.
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ON A TWO-DIMENSIONAL ELLIPTIC PROBLEM 751

We shall use #S to denote the cardinality of S. It will be shown later that the

blow-up set S of vPn contains the peak set of uPn.

We say that a smooth bounded domain Q, has condition (T) if there exists

a point y in Q such that

(1) Q is star-shaped with respect to y , i.e., (x - y, n(x)) > 0 for all x e

dû,
(2)

Í ds

Jdsi{x-y,n(x))

where n(x) denotes the outer normal of dQ at x .

Theorem 1.2. For any smooth bounded domain Q and a sequence vPri of vp

with pn —> oo there exists a subsequence of vPn such that the blow-up set S of

that subsequence is contained in Í2 and has the property 1 < #S < 2 ; in other

words the subsequence must blow up and it blows up at most at two points in Q..

If Q meets condition (T), then the above subsequence must blow up at one

point in Q.

In the second case of the above theorem, we have a more delicate description;

especially we can locate the blow-up point, i.e., peak point.

Theorem 1.3. Let Q be a smooth bounded domain with condition (T). Then

for any sequence vPn of vp with pn —> co there exists a subsequence of vPa, still

denoted by vPn, such that

(1)

Jo. uPn      \Ja     /

in the sense of distribution where ô(xq) is the ô function at point xn and

{x0} = S.

(2) vPn -> G(x, x0) in Wx'tl(Q.) weakly for any 1 < q < 2 where G is the

Green's function of -A on Ú; furthermore for any compact subset K of

£2\{xn} we have vPn —> G(x, xn) in C2'a(K).

(3) Xn is a critical point of the Robin function R where R(x) = g(x, x) and

g(x,y) = G(x,y) + — log|x -y\
¿71

is the regular part of the Green's function G.

From the above results, we can see that when p gets large, the solutions

Up obtained by the variational method look more and more like a single or

double spike. This kind of asymptotic behavior also arises from other problems.
Here we only mention one result obtained by Ni and Takagi in the study of a

biological pattern formation problem. We refer to [9] for details and further
references.

Our paper is organized as follows. In §2, we prove a crucial estimate on cp

defined in (1.3). Then we prove Theorem 1.1 in §3, Theorem 1.2 in §4, and

Theorem 1.3 in §5. We also include some thoughts in the last section.
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752 XIAOFENG REN AND JUNCHENG WEI

2. Some estimates

Recall cp defined in (1.3). We state a lemma from our earlier work [11] with

a brief proof.

Lemma 2.1. For every t>2 there is D, such that \\u\\L, < Dttl/2\\Vu\\L2 for all

u e W0x,2(Çl) where Q is a bounded domain in R2; furthermore

lim D, = (Sne) -1/2

Proof. Let u e Wx'2(Çl). We know xs/T(s + 1) < ex for all x > 0, 5 > 0

where T is the T function. From a sharp form of the Trudinger's Inequality

(see [6, p. 160] and [8]), we have

/ exp  4n I
IVmIc-

dx < C|£2|

where C does not depend on anything and |Q| is the Lebesgue measure of Q.

Therefore

T(t/2b^)Iauidx=fWTT)L 4n{m
V-

iV'2
äfx(4^)-//2||V«|K

L2

í/x(47t)-'/2||Vm||'
L-

Hence

-/oexphyy
< C|Q|(4^)-'/2||VM||^2.

^W'í/xy/'<(rQ + l)y/íC1/'(4;r)-|/2|í2|1/'||VM||L2(n)

Notice that, according to Stirling's formula,

{2 + l
m t/2 f/2 l/t

tee"
1 \l/2

¿    '"2

where 0 < 6, < j¿ . Choosing D, to be

(r(//2+l))1/'C1//(47r)-1/2|Q|1/'r1/2

we get the desired result,   d

In [11] we have an estimate for a quantity similar to cp .  Here we need a

finer result.

Lemma 2.2.

lim -^ = (Sne)x'2.
p—>oc p~[/z

Proof. Without loss of generality, we assume 0 e £2. Let L > 0 be such that

BL c Q. where BL is the ball of radius L centered at origin. For 0 < I < L
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ON A TWO-DIMENSIONAL ELLIPTIC PROBLEM 753

consider Moser's function

m¡(x)

((log(L/l))x'2, 0<|x|</,

log(¿/l*l) /<M<r
[log(L/l)]x/2' 'S|x|<¿,

,0, |x|>L.

Then m¡ e W0[-z(Çi) and ||Vk||li = 1. Now

Ja
x)dx =

I     /      L^'2

v^ll0gT

p+i

+
1

logT
f2H v    /

f/2,

-1/2'

15,

p+1

/ (l0gM)       ^X
•//<|;t|<L V        1*1/

/,  =

h =

1
logT

2t7V   D/

1/2
/>+!

1
log

-1/2

7l/2,

P+i

J/<|x|<L  \ 1*1

P+l

^V * I

Choosing / = Le~(p+X^4 , we have

\\m,\\u^ > l\l(p+l) > [lßne]x/2(p + l)l'2(nL2)l^+l

Hence
Cp < [8ne]x'2(p + l)-xl2(nL2)-xKp+x\

Combining this with Lemma 2.1, we have

dx.

lim —
p—>oo p -1/2

(Sne) 1/2

By the construction in § 1 of our solutions up , we know

Cp = WVUpWli/WUpWlp+l

Because we also have an integral identity

/ |VMp|2 = I up+x
Ja Ja

which can be easily derived by multiplying (1.2) by up  and integrating the

equality, we have the following estimates.

Corollary 2.3.

as p —► oo .

is1Ja
Ine,       p I |Vwp|2 -> 87^,

Ja
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We now define an important quantity:

(2.1) L0=hñT^
p->oo e

where

(2.2) Vp=\ up.
Ja

We have the following estimate for Ln .

Lemma 2.4.  (1) For any smooth bounded domain Q of R2, Lo<Stc.

(2) For smooth bounded domain with condition (T), L0 < 8tz .

Proof. Part (1) follows immediately from Holder's Inequality and Corollary 2.3.

We observe

limp     up<limp[     up+1) \n\x'{p+x)
p^°°  Ja        p-^oc   \Ja       /

_      /C¡Tr¿>\pt(-P+l)

P-oo     \   p    J

To prove part (2) we first state the well-known Pohozaev Identity [10]. Let

u solve Am + f(x ,u) = 0 in Cle RN . Then we have

f \NF(x, u)
N -2
—-—uf(x ,u) + (x- y)Fx(x, u) dx

í      I", r-,    ̂ U        i JV"I=L[ix-y'Vu)o¿-{x-y>n)—

,     N-2   du
+(x-y, n)F(x, u) + —^~uif¿ ds

for all y e RN where

F(x, u) =      f(x, t)dt.
Jo

Apply it to

Au + up = 0   in Q,        u\qíi = 0.

Therefore assuming that y is the point in the definition of condition (T) (with-

out loss of generality we take y to be 0 in R2),

P+lJa        -2jJX>n)\dn(x))

where n(x) is the outer normal of dQ at point x . If we integrate the equation

directly, we also have

Ja Jaa dn
ds.
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Hence letting u = up , we have

!/2  /   , /*„   \2       \ '/2

<">    ¿«*(L&) (¿MS)*;

Therefore by condition (T)

(2.5) TfailoU-KÎf   ^_y/2(32Jre)»/V1
'-°°    <? \Jda(x,n)J

(2.6) < (2^)1/2(32Ke)1/2e-1 = 8tt.

This completes the proof of the lemma.   D

Remark 2.5. IfQ. is a ball, then Q satisfies condition (T) w/'í« Jdads/(x, n) =

27T. -So ifle c/ass o/ Q w/iA condition (T) ¿s «oí very ima//.

3. Proof of Theorem 1.1

Now we get down to the proof of Theorem 1.1.

A uniform lower bound actually exists for any positive solutions to (1.2).

Let X be the first eigenvalue of -A and tp be a corresponding positive eigen-

function. Then if u is any solution to (1.2) with the exponent equal to p, we

have

0 = / uAtp - tpAu = -X / utp + / uptp.
Ja Ja Ja

That is

(up - ku)<p = 0.L>a
Hence

INk~(0)>A,/<p-1)^i

as p —> oo which yields a lower bound for large p .

To get a uniform upper bound for up , we let

yp = max up(x),    sf = {x : yp/2 < up(x)},     Q, = {x : t < up(x)}.
xea

From Lemma 2.1 and Corollary 2.3

l/(2p)

u2ppj <C(2p)xl2\\Vup\\L2<M

where M is independent of p if p is large. Hence

(3.1) (^)"\sf\<^u2pP<M2p.

/   up = -      Aup=        \Vup\ds,
Ja,  '        Ja, Jda,

On the other hand
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d ,„ ,      [      ds

> = i an, \^up\

where the second identity is called coarea formula. We refer to [4] for more

information about this formula. Now by the Schwarz inequality and the isoperi-

metric inequality we have

-^-|ftt| / u?p(x)dx= i  tz^-t /  \vup\ds>\dat\2>4n\at\.
dt Jn, Jgcit |VMp| Jda¡

Define a function r(t) such that |Q,| = nr2(t) ; then

¿ini     ~     dr
TÍ2, = 2nr-¡-.
dt1    ' dt

Hence we have

dr  f    „     .  , , dr
-2nr~ [ up> 4n2r2,     -^ f up> 2nr,

dtJa,  p- dtJa,  p~

1     /" 1 1
< ——      up < —-— vp\Çl,\ = -rvp
S 2nrJn UpS 2nrïp]   tl     2Yp'dr     ¿.m jq:

Integrating the last inequality from 0 to r0 , we have

t(0) - t(r0) < \r2yp.

Choosing ro so that t(ro) — yp/2 we get

1   7   n
yP < ~r¿yp ;

(12) 1 1 1

yp<^ = ̂ yM = ̂ W\fp-

From (3.1) and (3.2)

y2pW\ < (2M)2p , yp < (l/2n)yp(2M/yp)2p

which in turn implies

yp+x < (2M)2p/2n.

We finally conclude yp < C2 for some C2 independent of large p .  D

We include a consequence of Theorem 1.1 here which will be used later.

Corollary 3.1. There exist positive Cx and C2 suchthat

p '

Proof The first inequality follows from Theorem 1.1 and the first limit of Corol-

lary 2.3 and the second inequality follows from the first limit of Corollary 2.3

through an interpolation.   □

P      Ja p

4. Proof of Theorem 1.2

We first state a boundary estimate lemma. The proof of the lemma is stan-

dard. One combines the moving plane method in [5] with a Kelvin transform.

We refer to [3] and [5] for details.
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Lemma 4.1. Let u be a solution of

Au + f(u) = 0    inQ.cR2,
u\aa = 0,        u > 0 in Q.

where Í2 is bounded, smooth and f is a smooth function. Then there exist a

neighborhood co of dû, and a constant C both depending on the geometry of

Q only such that ||m||l°°(co) < C||«||L,(i2).

Applying this lemma to vp = up/ Jn uf, we have the following uniform bound-

ary estimate. In particular, it implies that {vp} does not blow up on the bound-

ary of Q. ; hence {up} has no peak on the boundary for any peak point of {up}

must be a blow-up point of {vp} ; see Remark 4.7.

Lemma 4.2. There exist a constant C and a neighborhood to of dQ both de-

pending on the geometry of Q only such that vp < C in co.

Proof. Because ||At>p||£i = 1, combining the elliptic Lp estimate with the du-

ality argument (see [2] for details), we have that vp is bounded uniformly in

Wx'q(Q) for 1 < q < 2; hence vp is uniformly bounded in Lx . Then using

Lemma 4.1, we obtain the desired result.   D

We quote some interesting results from [1]. The first one is their Theorem 1,

while the second one is a combination of their Corollary 3 and Corollary 4.

Lemma 4.3. Let u be a solution of

-Au = f    inQ.,        u\dQ = 0

where Q is a smooth bounded domain in R2. We have for 0 < e < 4n

Lexp
a

(4n-e)\u(x)\
dx< — (diamfl)2.

\v

Lemma 4.4. Let u„ be a sequence of solutions of

Aun + VneUn = 0    inD.,        u„\dil = 0

such that \\Vn\\LQ < C for some 1 < q < oo and

4nLVn\eu"<eo<
a h

where q'  is the Holder conjugate of q for all n.   Then  {un}  is uniformly

bounded in L°°(Q).
Let un be a sequence of solutions to equations Au + Vneu = 0 in Q c R2 with

no boundary condition. Assume ||z^||¿i < C, H^Hl« < C for some 1 < q < oo

and JcilVnle"" < €o4n/q' where q' is the Holder conjugate of q for all n. Then

{m+} is uniformly bounded in Lf£c(Çl).

Now recall

Lo = lihT^
p->oo e

where vp = Jn up .
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We denote any sequence uPn of up by un and vPn of vp by vn. Because

un has the property

L
uPn
Un       = j

la in u"n

we can subtract a subsequence of u„, still denoted by un , such that there is

a positive bounded measure p in M (Í2), the set of all real bounded Borel

measures on Q, such that p(Q.) < 1 and

(4.1) fntp^      tpdp
Ja Ja

for all tp e Co(fi) where

vn = un/vn   and   fn = uPn~xvpnn.

For any ö > 0, we call xn is a ¿-regular point if there is a function tp in

Cn(£2), 0 < ç> < 1, with tp = 1 in a neighborhood of Xo such that

We define

(4.3) E(á) = {xo 6 Q : Xo is not a ¿-regular point}.

We shall frequently say 'regular', 'irregular', and ' X' not mentioning ô if no

confusion exists.

Lemma 4.5. Let S be the blow-up set defined in (1.5) of the subsequence v„.

Then S is nonempty and there is a small neighborhood œ of dQ. which depends

on the geometry of Q only such that S does not contain any point in œ.

Proof. The second assertion follows immediately from Lemma 4.2. For the first

one, observe

maxv„(x) >-»oo
vn

from Theorem 1.1, Corollary 3.1, and the definition of vn .   a

Our next lemma plays a central role in the proof of Theorem 1.2. It says that

smallness of p at a point Xo implies boundedness of vn near xn .

Lemma 4.6. If xq isa 6-regular point, then {vn} is bounded in L°°(Br0(xo))

for some Ro> 0.

Proof. Let Xo be a regular point. From the definition of regular points, there

exists Rx > 0 such that

f t 4n
/      f» < y-zx

JbRi (x0) L0 + d

Split v„ into two parts, v„ = vXn + v2n , where vXn is the solution of

(4.4) AvXn + fn=0   inBRx(xo),        vx„\dBR¡(Xo) = 0

and v2n solves

(4.5) Av2„ = 0   inBR¡(x0),        v2n\aBRAx0) = vn\dBRAx0y„H^u, ""-«n
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From the maximum principle, vx„ vin > 0. By the mean value theorem for

harmonic functions, we have

\\V2n\\L~(BR¡/2) < C\\v2n\\v{BR¡) < C\\Vn\\V{Çl) < C

where the last inequality follows as in the proof of Lemma 4.2. So we need only

to consider vXn . To estimate vXn we would like to apply Lemma 4.4.

Let t be such that t' = L0 + S/2 where /' is the Holder conjugate of t.
From

JBR/n<Lo + ô'

using Lemma 4.3, we have

(4.6) /        exp[(Lo + ô/2)\vXn(x)\]<C
JBR] (x0)

if we choose e in Lemma 4.3 small enough.

Now observe logx < x/e for x > 0. We have

„ i™   u"   ^ P"   u"   ^Lo + ô/3   Un       t'-ô/6u„      ,u„
Pn log   ,.    <-n— <-n— < —7-r1-< t —

vXlp"  ~   e  Ux/P»  - Vn yXlp"  -     vXlp"     Vn  ~     Vni/n i'n un wn " »

for n large enough because

lim VnIP" = 1
n—»oo

which follows from Corollary 3.1. Hence

fn < e''v",        (fnYe-""" < e{t'+')V2"+t'v'\

Therefore on BRxß(xo) since V2n is uniformly bounded, we have

(4.7) (fn)'e-nh" < Ce''Vl-

on BR¡/2(xo) ■ Combining (4.6) and (4.7), we get that f„e~Vi" is bounded in

L'(Br¡/2(Xq)) . Therefore applying Lemma 4.4 part 2 to vx„ on BR¡/2(xo), we

get uniform L°° bound for {vx„} ; hence uniform L°° bound for {vn} on

Br¡/4(Xo) ■     □

We finally get down to the goal of this section.

Proof of Theorem 1.2. We first claim S = 1(ô) for any ô > 0.

Clearly Sei. In fact, let x0 0 I ; then Xo is a regular point. Hence by

Lemma 4.6 {vn} is bounded in L°°(BR(xo)) for some R,i.e., xn £ S.

Conversely, suppose xn e X. Then we have for every R > 0, passing to a

subsequence of {vn} if necessary,

(4.8) hm \\vn\\Lo°{BR{XQ)) = oo.

Otherwise there would be soi

C independent of n . Then

Otherwise there would be some Rq > 0 such that ||v,,||z.oo(5r (Xo)) < C for some

/„ = V'"-Ivf¡r < (M/Pn)P"-XC»" -4 0
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uniformly as n —► oo on BR^Xo). Then

d-i  d    - 4n>Vn     1iiyn

JbRq(x0) JbRq(x0) L0 + ¿o

which implies that Xo is a regular point, i.e., Xo 0 X. Contradiction. Equation

(4.8) then implies by the definition (1.5) of S that xo e S. This completes the
proof of our claim.

Next we go back to measure p defined in (4.1). Clearly by (4.2)

Hence combining this with Lemma 4.5

1 < #S < (L0 + IS) I An.

Applying Lemma 2.4, we finally conclude that by choosing ô small 1 < #5 < 2

for arbitrary bounded smooth domains and #S = 1 for domains with condition

(T). D

Remark 4.7. The fact that the peak set of {un} is included in the blow-up set S

of {vn} follows easily from the fact that v„ —» 0 as n —> oo by Corollary 3.1.

5. Proof of Theorem 1.3

From Lemma 4.2 and Lemma 4.5, we have that

(5.1) Vn<C

on any compact K c £2\{x0} ■ Lemma 2.4 then implies fn —» 0 uniformly on

any compact K c £2\{xn} .
Take tp e Co(£î). We have for any e

[fntpdx-tp(x0)]dx < / f„\tp(x) - tp(xo)\dx
Ja Ja

< fn\<P(x)-<p(Xo)\dx+ fn\tp(x)-tp(Xo)\dx
Jbs(x0) Ja\Bs(x0)

<e/2 + e/2 = e

if we first choose S small enough and then choose n large enough. This proves

part (1). _

On any compact K c fi\{xo}, because v„ are bounded and fn^0 uni-

formly, we have by the elliptic regularity theory a subsequence of v„, still

denoted by vn that approaches a function, say G' in C2,a(AT), weakly in

Wx'q(Çl) and strongly in L'(Q) while the second and the third convergence

comes from the Wx '*(£!) boundedness of v„ for 1 < q < 2 [2] and the

compactness of the embedding Wx 'q(Q,) ■-> LX(Q).

Then for any tp e C0°°(Q)

- / G'Atpdx = - lim  / vnAtp = - lim  / Av„tp = lim  / f„tp — tp(xo)
Ja n^°°Ja "^oJn "^-^Jn

from part (1). Therefore G' = G( , x0). We proved part (2).
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To prove part (3) we assume, without loss of generality, xo = 0. We need

only to prove that 0 is a critical point of function R defined in Theorem 1.3.

By Pohozaev's Identity (2.3), we have for any u that solves (1.2)

p+

for all y e R2. Therefore

(5.2)
L Jaa

(x)
du(x)

dn(x)
ds = 0

where 0 in the equation is the zero vector in R2.

Now let u = v„  in (5.2) and pass the limit.   By the boundary regularity

proved in (5.1), we have

(5.3)
Jaaiaa \   dn(x)

Let us state a lemma. Part (3) of the theorem will follow immediately.

Lemma 5.1.

where R(x) = g(x, x) and

G(x, y) = g(x, y) - ^ log |x - y\.

Proof. Applying Pohozaev's Identity (2.3) to

G(x,0) = g(x,0)-—log\x\
¿71

on Cl\Br(0),  we get

/   [<*_,, vote, 0))^-<*-^ÄÄ
Jaa L on 2

-I
JdB,

(x-y,VG(x,0))dG{*;0) -(x-y,n)

ds

|Vt7(x,0)|2i

dn
ds

for all y e R2. Therefore

/Jaa

„„.     n.dG(x,0)     |VC7(x,0)|2
VG(x, 0)—^ —r^— -«(.

dn
ds

-I
JdB,

Notice on 9Í2

VG{x,0)^3Jm^3ln{x)

V0(,,0) = =^»W.

ds.
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We have

1/  n(x)(d-Ç£V)2ds=[
2 Jaa   { '\     dn     ) JdBr

where the right-hand side equals

VG(x,0)
ôC7(x,0)     |VC7(x,0)|:

dn
n(x) ds

RHS■/ KJdBr \

*,0)-¿log|^ In log|x|

/   [JdB, L

dn

^W(x,0)-¿log|x| ds

Vg
dg_

dn
Vg

1 <91og|x|

2n dn

11 dg
2^Vl0gWÍ + 4^Vl0gW

öjogjx]

On

n(x).
Vg\¿ + n(x) [Vg, — Vlog|x

2%

-L
dn

n(x)
V*| ^-Vlog|x|-^n(x)

271 dn

n(x)   1

^~47?

ds

|Vlog|x| ¿/s

= h-h- h-

As r-»0, /i and 72 both approach 0 while

/3->Vg(x,0)U=0 = ±VÄ(0).

This proves the lemma, hence in turn, Theorem 1.3.   D

Theorem 1.3 has an extension to the case where S contains two points. But
we suspect that the double-peak asymptotic behavior would not happen for

arbitrary smooth bounded domain. Examining the proof of Theorem 1.2, we

see that the only place where the estimate is rough is the place where we estimate

Ln . Actually it is the Lemma 2.4 that might need to be improved. So we would

like to propose the following.

Conjecture 5.2. For any smooth bounded domain in R2 any sequence uPn of the

solutions to (1.2) obtained by the variational method with nonlinear exponent

equal to p„, after passing to a subsequence, must develop a single peak when pn

approaches infinity.

One way to prove this conjecture is to prove

Conjecture 5.3. For any smooth bounded domain in R2 let L0 = limp^^pvp/e)

where vp = Jfl«J and up are solutions of (1.2) obtained by the variational

method. Then we have L0 <Sn.
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Note added in proof. The authors have recently confirmed Conjecture 5.2.

This result will appear in a forthcoming paper.
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