Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity Part I: $N=3$

Olivier Rey ${ }^{\text {a,* }}$ and Juncheng Wei ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ Centre de Mathématiques de l'Ecole Polytechnique, UMR 7640 du CNRS, 91128 Palaiseau Cedex, France
${ }^{\mathrm{b}}$ Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong

Received 3 June 2003; accepted 20 June 2003
Communicated by H. Brezis

Abstract

We consider the sub- or supercritical Neumann elliptic problem $-\Delta u+\mu u=u^{5+\varepsilon}, u>0$ in $\Omega ; \frac{\partial u}{\partial n}=0$ on $\partial \Omega, \Omega$ being a smooth bounded domain in $\mathbb{R}^{3}, \mu>0$ and $\varepsilon \neq 0$ a small number. H_{μ} denoting the regular part of the Green's function of the operator $-\Delta+\mu$ in Ω with Neumann boundary conditions, and $\varphi_{\mu}(x)=\mu^{\frac{1}{2}}+H_{\mu}(x, x)$, we show that a nontrivial relative homology between the level sets φ_{μ}^{c} and $\varphi_{\mu}^{b}, b<c<0$, induces the existence, for $\varepsilon>0$ small enough, of a solution to the problem, which blows up as ε goes to zero at a point $a \in \Omega$ such that $b \leqslant \varphi_{\mu}(a) \leqslant c$. The same result holds, for $\varepsilon<0$, assuming that $0<b<c$. It is shown that, $M_{\mu}=\sup _{x \in \Omega} \varphi_{\mu}(x)<0($ resp. $>0)$ for μ small (resp. large) enough, providing us with cases where the above assumptions are satisfied.

(C) 2003 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the nonlinear Neumann elliptic problem

$$
\left(\mathrm{P}_{q, \mu}\right) \begin{cases}-\Delta u+\mu u=u^{q} u>0 & \text { in } \Omega \\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

where $1<q<+\infty, \mu>0$ and Ω is a smooth and bounded domain in \mathbb{R}^{3}.

[^0]Equation $\left(\mathrm{P}_{q, \mu}\right)$ arises in many branches of the applied sciences. For example, it can be viewed as a steady-state equation for the shadow system of the GiererMeinhardt system in biological pattern formation [13,26] or of parabolic equations in chemotaxis, e.g. Keller-Segel model [24].

When q is subcritical, i.e. $q<5$, Lin, Ni and Takagi proved that the only solution, for small μ, is the constant one, whereas nonconstant solutions appear for large μ [24] which blow up, as μ goes to infinity, at one or several points. The least energy solution blows up at a boundary point which maximizes the mean curvature of the frontier [28,29]. Higher-energy solutions exist which blow up at one or several points, located on the boundary $[8,14,18,22,38]$, in the interior of the domain [5,7,11,12,16,21,37,40], or some of them on the boundary and others in the interior [17]. (A good review can be found in [26].) In the critical case, i.e. $q=5$, Zhu [41] proved that, for convex domains, the only solution is the constant one for small μ (see also [39]). For large μ, nonconstant solutions exist [1,33]. As in the subcritical case the least energy solution blows up, as μ goes to infinity, at a unique point which maximizes the mean curvature of the boundary [3,27]. Higher-energy solutions have also been exhibited, blowing up at one $[2,15,31,34]$ or several boundary points $[19,25,35,36]$. The question of interior blow-up is still open. However, in contrast with the subcritical situation, at least one blow-up point has to lie on the boundary [32]. Very few is known about the supercritical case, save the uniqueness of the radial solution on a ball for small μ [23].

Our aim, in this paper, is to study the problem for fixed μ, when the exponent q is close to the critical one, i.e. $q=5+\varepsilon$ and ε is a small nonzero number. Whereas the previous results, concerned with peaked solutions, always assume that μ goes to infinity, we are going to prove that a single peak solution may exist for finite μ, provided that q is close enough to the critical exponent. Such a solution blows up, as q goes to 5 , at one point which may be characterized.

In order to state a precise result, some notations have to be introduced. Let $G_{\mu}(x, y)$ denote the Green's function of the operator $-\Delta+\mu$ in Ω with Neumann boundary conditions. Namely, for any $y \in \Omega, x \mapsto G_{\mu}(x, y)$ is the unique solution of

$$
\begin{equation*}
-\Delta G_{\mu}+\mu G_{\mu}=4 \pi \delta_{y}, \quad x \in \Omega, \quad \frac{\partial G_{\mu}}{\partial n}=0, \quad x \in \partial \Omega \tag{1.1}
\end{equation*}
$$

G_{μ} writes as

$$
G_{\mu}(x, y)=\frac{e^{-\mu^{1 / 2}|x-y|}}{|x-y|}-H_{\mu}(x, y)
$$

where $H_{\mu}(x, y)$, regular part of the Green's function, satisfies

$$
\begin{equation*}
-\Delta H_{\mu}+\mu H_{\mu}=0, \quad x \in \Omega, \quad \frac{\partial H_{\mu}}{\partial n}=\frac{1}{\partial n}\left(\frac{e^{-\mu^{1 / 2}|x-y|}}{|x-y|}\right), \quad x \in \partial \Omega . \tag{1.2}
\end{equation*}
$$

We set

$$
\varphi_{\mu}(x)=\mu^{\frac{1}{2}}+H_{\mu}(x, x)
$$

It is to be noticed that

$$
\begin{equation*}
H_{\mu}(x, x) \rightarrow-\infty \quad \text { as } d(x, \partial \Omega) \rightarrow 0 \tag{1.3}
\end{equation*}
$$

implying that

$$
M_{\mu}=\sup _{x \in \Omega} \varphi_{\mu}(x)
$$

is achieved in Ω. (See (A.10) in Proposition 5.2 for the proof of (1.3).) Denoting

$$
f^{\alpha}=\{x \in \Omega, f(x) \leqslant \alpha\}
$$

the level sets of a function f defined in Ω, we have
Theorem 1.1. Assume that there exist b and $c, b<c<0$, such that c is not a critical value of φ_{μ} and the relative homology $H_{*}\left(\varphi_{\mu}^{c}, \varphi_{\mu}^{b}\right) \neq 0$. $\left(\mathrm{P}_{5+\varepsilon, \mu}\right)$ has a nontrivial solution, for $\varepsilon>0$ close enough to zero, which blows up as ε goes to zero at a point $a \in \Omega$, such that $b<\varphi_{\mu}(a)<c$.

The same result holds, for $\varepsilon<0$, assuming that $0<b<c$.
We notice that, $M_{\mu}<0$ (resp. >0) when μ is small (resp. large) enough (see (A.12) and (A.13) of Proposition 5.2). Consequently, we deduce from the previous result:

Theorem 1.2. There exist μ_{0} and $\mu_{1}, 0<\mu_{0} \leqslant \mu_{1}$, such that:
(1) If $0<\mu<\mu_{0},\left(\mathbf{P}_{5+\varepsilon, \mu}\right)$ has a nontrivial solution, for $\varepsilon>0$ close enough to zero, which blows up as ε goes to zero at a maximum point a of $H_{\mu}(a, a)$.
(2) If $\mu>\mu_{1},\left(\mathrm{P}_{5+\varepsilon, \mu}\right)$ has a nontrivial solution, for $\varepsilon<0$ close enough to zero, which blows up as ε goes to zero at a maximum point a of $H_{\mu}(a, a)$.

Remarks. (1) In the critical case, i.e. $\varepsilon=0$, further computations suggest that a nontrivial solution should exist for $\mu>\mu_{0}$ close enough to μ_{0}, such that $M_{\mu}>0$ and $M_{\mu_{0}}=0$. This solution would blow up, as previously, at a maximum point of $H_{\mu_{0}}(a, a)$ as μ goes to μ_{0}. (This contrasts to previous results for $\left(\mathrm{P}_{5,0}\right)$ on the nonexistence of solutions for μ small [39,41] and nonexistence of interior bubble solutions for μ large [10,31].)
(2) In a forthcoming paper, we shall treat the case $N \geqslant 4$, which appears to be qualitatively different.

The scheme of the proof is the following. In the next section, we define a twoparameter set of approximate solutions to the problem, and we look for a true solution in a neighborhood of this set. Considering in Section 3 the linearized problem at an approximate solution, and inverting it in suitable functional spaces, the problem reduces to a finite-dimensional one, which is solved in Section 4. Some useful facts and computations are collected in Appendix.

2. Approximate solutions and rescaling

For sake of simplicity, we consider in the following the supercritical case, i.e. we assume that $\varepsilon>0$. The subcritical case may be treated exactly in the same way.

For normalization reasons, we consider throughout the paper the equation

$$
\begin{equation*}
-\Delta u+\mu u=3 u^{5+\varepsilon}, \quad u>0 \tag{2.1}
\end{equation*}
$$

instead of the original one. The solutions are identical, up to the multiplicative constant $3^{-\frac{1}{4+\varepsilon}}$. We recall that, according to [6], the functions

$$
\begin{equation*}
U_{\lambda, a}(x)=\frac{\lambda^{\frac{1}{2}}}{\left(1+\lambda^{2}|x-a|^{2}\right)^{\frac{1}{2}}}, \quad \lambda>0, a \in \mathbb{R}^{3} \tag{2.2}
\end{equation*}
$$

are the only solutions to the problem

$$
-\Delta u=3 u^{5}, u>0 \quad \text { in } \mathbb{R}^{3}
$$

As $a \in \Omega$ and λ goes to infinity, these functions provide us with approximate solutions to the problem that we are interested in. However, in view of the additional linear term μu which occurs in $\left(\mathrm{P}_{5+\varepsilon, \mu}\right)$, the approximation needs to be improved. Actually, we define in Ω the following functions:

$$
\tilde{U}_{\lambda, a, \mu}(x)=U_{\lambda, a}(x)-\frac{1}{\lambda^{\frac{1}{2}}}\left(\frac{1-e^{-\mu^{\frac{1}{2}}|x-a|}}{|x-a|}+H_{\mu}(a, x)\right)
$$

which satisfy

$$
\begin{equation*}
-\Delta \tilde{U}_{\lambda, a, \mu}+\mu \tilde{U}_{\lambda, a, \mu}=3 U_{\lambda, a}^{5}+\mu\left(U_{\lambda, a}-\frac{1}{\lambda^{\frac{1}{2}}|x-a|}\right) . \tag{2.3}
\end{equation*}
$$

We are going to seek for solutions in a neighborhood of such functions, with the a priori assumption that a remains far from the boundary of the domain, that is there exists some number $\delta>0$ such that

$$
\begin{equation*}
d(a, \partial \Omega)>\delta \tag{2.4}
\end{equation*}
$$

Moreover, integral estimates (see Appendix) suggest to make the additional a priori assumption that λ behaves as $1 / \varepsilon$ as ε goes to zero. Namely, we set

$$
\begin{equation*}
\lambda=\frac{1}{\Lambda \varepsilon}, \quad \frac{1}{\delta^{\prime}}<\Lambda<\delta^{\prime} \tag{2.5}
\end{equation*}
$$

with δ^{\prime} some strictly positive number.

In fact, in order to avoid the singularity which appears in the right-hand side of (2.3), and to cancel the normal derivative on the boundary, we modify slightly the definition of $\tilde{U}_{\lambda, a, \mu}$, setting

$$
\begin{equation*}
V_{\Lambda, a, \mu, \varepsilon}(x)=\tilde{U}_{\frac{1}{\Lambda \varepsilon}, a, \mu}(x)-\frac{\mu}{2}(\Lambda \varepsilon)^{\frac{1}{2}}|x-a|\left(1-e^{-\frac{\varepsilon^{2}}{|x-a|^{2}}}\right)+\theta_{\Lambda, a, \mu, \varepsilon}(x) \tag{2.6}
\end{equation*}
$$

$\theta_{\Lambda, a, \mu, \varepsilon}=\theta$ being the unique solution to the problem

$$
\begin{cases}-\Delta \theta+\mu \theta=0 & \text { in } \Omega \\ \frac{\partial \theta}{\partial n}=\frac{\partial}{\partial n}\left(-U_{\frac{1}{\Lambda \varepsilon},}(x)+\frac{(\Lambda \varepsilon)^{\frac{1}{2}}}{|x-a|}+\frac{\mu}{2}(\Lambda \varepsilon)^{\frac{1}{2}}|x-a|\left(1-e^{-\frac{\varepsilon^{2}}{|x-a|^{2}}}\right)\right. & \text { on } \partial \Omega\end{cases}
$$

From the above assumption (2.4) we know that

$$
\begin{equation*}
H_{\mu}(a, x)=O(1), \quad \theta_{\lambda, a, \mu, \varepsilon}=O\left(\varepsilon^{\frac{5}{2}}\right) \tag{2.7}
\end{equation*}
$$

in $C^{2}(\Omega)$. We note that $V_{\Lambda, a, \mu, \varepsilon}=V$ satisfies

$$
\begin{cases}-\Delta V+\mu V=3 U_{\frac{1}{\Lambda \varepsilon}, a}^{5}+\mu\left(U_{\frac{1}{\Lambda \varepsilon}, a}-\frac{(\Lambda \varepsilon)^{\frac{1}{2}}}{|x-a|} e^{-\frac{\varepsilon^{2}}{|x-a|^{2}}}\right) & \tag{2.8}\\ -\frac{\mu \Lambda^{\frac{1}{2} \varepsilon^{\frac{5}{2}}}}{|x-a|^{3}}\left(1+\frac{2 \varepsilon^{2}}{|x-a|^{2}}\right) e^{-\frac{\varepsilon^{2}}{|x-a|^{2}}} \\ -\frac{\mu^{2} \varepsilon^{2}}{2}(\Lambda \varepsilon)^{\frac{1}{2}}|x-a|\left(1-e^{-\frac{\varepsilon^{2}}{|x-a|^{2}}}\right) & \text { in } \Omega \\ \frac{\partial V}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

The $V_{\Lambda, a, \mu, e}$'s are the suitable approximate solutions in the neighborhood of which we shall find a true solution to the problem. In order to make further computations easier, we proceed to a rescaling. We set

$$
\Omega_{\varepsilon}=\frac{\Omega}{\varepsilon}
$$

and we define in Ω_{ε} the functions

$$
\begin{equation*}
W_{\Lambda, \xi, \mu, \varepsilon}(x)=\varepsilon^{\frac{1}{2}} V_{\Lambda, a, \mu, \varepsilon}(\varepsilon x), \quad \xi=\frac{a}{\varepsilon} \tag{2.9}
\end{equation*}
$$

which write as

$$
\begin{align*}
W_{\Lambda, \xi, \mu, \varepsilon}(x)= & U_{\frac{1}{\Lambda}, \xi}(x)-\Lambda^{\frac{1}{2}}\left(\frac{1-e^{-\mu^{\frac{1}{\varepsilon}|x-\xi|}}}{|x-\xi|}+H_{\mu, \varepsilon}(\xi, x)\right) \\
& -\frac{\mu \varepsilon^{2}}{2} \Lambda^{\frac{1}{2}}|x-\xi|\left(1-e^{-\frac{1}{|x-\xi|^{2}}}\right)+\tilde{\theta}_{A, \xi, \mu, \varepsilon}(x) \tag{2.10}
\end{align*}
$$

where $H_{\mu, \varepsilon}$ denotes the regular part of the Green's function of the operator $-\Delta+\mu \varepsilon^{2}$ with Neumann boundary conditions in Ω_{ε}, and $\tilde{\theta}_{\Lambda, \xi, \mu, \varepsilon}(x)=\varepsilon^{\frac{1}{2}} \theta_{\Lambda, a, \mu, \varepsilon}(\varepsilon x)$. We notice that, taking account of (2.7)

$$
\begin{equation*}
H_{\mu, \varepsilon}(\xi, x)=O(\varepsilon), \quad \tilde{\theta}_{\Lambda, \xi, \mu, \varepsilon}(x)=O\left(\varepsilon^{3}\right) \tag{2.11}
\end{equation*}
$$

in $C^{2}\left(\Omega_{\varepsilon}\right)$. We notice also that assumption (2.4) is equivalent to

$$
\begin{equation*}
d\left(\xi, \partial \Omega_{\varepsilon}\right)>\frac{\delta}{\varepsilon} \tag{2.12}
\end{equation*}
$$

and that $W_{\Lambda, \xi, \mu, \varepsilon}=W$ satisfies the uniform estimate $\left|W_{\Lambda, \xi, \mu, \varepsilon}\right| \leqslant C U_{\frac{1}{\Lambda}, \xi}$ in Ω_{ε}. Moreover, we have

$$
\begin{cases}-\Delta W+\mu \varepsilon^{2} W=3 U_{\frac{1}{\Lambda}, \xi}^{5}+\mu \varepsilon^{2}\left(U_{\frac{1}{\Lambda}, a}-\frac{\Lambda^{\frac{1}{2}}}{|x-\xi|} e^{-\frac{1}{|x-\xi|^{2}}}\right) & \tag{2.13}\\ \quad-\frac{\mu \Lambda^{\frac{1}{2} \varepsilon^{2}}}{|x-\xi|^{3}}\left(1+\frac{2}{|x-\xi|^{2}}\right) e^{-\frac{1}{|x-\xi|^{2}}} \\ \quad-\frac{\mu^{2} \varepsilon^{4}}{2}(\Lambda \varepsilon)^{\frac{1}{2}}|x-\xi|\left(1-e^{-\frac{1}{|x-\xi|^{2}}}\right) & \text { in } \Omega_{\varepsilon} \\ \frac{\partial W}{\partial n}=0 & \text { on } \partial \Omega_{\varepsilon}\end{cases}
$$

Finding a solution to $\left(\mathrm{P}_{5+\varepsilon, \mu}\right)$ in a neighborhood of the functions $V_{\Lambda, a, \mu, \varepsilon}$ is equivalent, through the rescaling, to solving the problem

$$
\left(\mathrm{P}_{5+\varepsilon, \mu}^{\prime}\right) \begin{cases}-\Delta u+\mu \varepsilon^{2} u=3 u^{5+\varepsilon} u>0 & \text { in } \Omega_{\varepsilon} \tag{2.14}\\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega_{\varepsilon}\end{cases}
$$

in a neighborhood of the functions $W_{\Lambda, \xi, \mu, \varepsilon}$. For that purpose, we have to use some local inversion procedure. Namely, we are going to look for a solution to $\left(\mathrm{P}_{\varepsilon, \mu}^{\prime}\right)$ writing as

$$
w=W_{\Lambda, \xi, \mu, \varepsilon}+\omega
$$

with ω small and orthogonal at $W_{A, \xi, \mu, \varepsilon}$, in a suitable sense, to the manifold

$$
\begin{equation*}
M=\left\{W_{\Lambda, \xi, \mu, \varepsilon},(\Lambda, \xi) \text { satisfying }(2.5)(2.12)\right\} \tag{2.15}
\end{equation*}
$$

The general strategy consists in finding first, using an inversion procedure, a smooth map $(\Lambda, \xi) \mapsto \omega(\Lambda, \xi)$ such that $W_{\Lambda, \xi, \mu, \varepsilon}+\omega(\Lambda, \xi, \mu, \varepsilon)$ solves the problem in an orthogonal space to M. Then, we are left with a finite-dimensional problem, for which a solution may be found using the topological assumption of the theorem. In the subcritical or critical case, the first step may be performed in H^{1} (see e.g. [4,30,31]). However, this approach is not valid any more in the supercritical case, for H^{1} does not inject into L^{q} as $q>6$. Following [9], we use instead weighted Hölder spaces to reduce the problem to a finite-dimensional one.

3. The finite-dimensional reduction

3.1. Inversion of the linearized problem

We first consider the linearized problem at a function $W_{\Lambda, \xi, \mu, \varepsilon}$, and we invert it in an orthogonal space to M. From now on, we omit for sake of simplicity the indices in the writing of $W_{\Lambda, \xi, \mu, \varepsilon}$. Equipping $H^{1}\left(\Omega_{\varepsilon}\right)$ with the scalar product

$$
(u, v)_{\varepsilon}=\int_{\Omega_{\varepsilon}}\left(\nabla u \cdot \nabla v+\mu \varepsilon^{2} u v\right)
$$

orthogonality to the functions

$$
\begin{equation*}
Y_{0}=\frac{\partial W}{\partial \Lambda}, \quad Y_{i}=\frac{\partial W}{\partial \xi_{i}}, \quad 1 \leqslant i \leqslant 3 \tag{3.1}
\end{equation*}
$$

in that space is equivalent, setting

$$
\begin{equation*}
Z_{0}=-\Delta \frac{\partial W}{\partial \Lambda}+\mu \varepsilon^{2} \frac{\partial W}{\partial \Lambda}, \quad Z_{i}=-\Delta \frac{\partial W}{\partial \xi_{i}}+\mu \varepsilon^{2} \frac{\partial W}{\partial \xi_{i}}, \quad 1 \leqslant i \leqslant 3 \tag{3.2}
\end{equation*}
$$

to the orthogonality in $L^{2}\left(\Omega_{\varepsilon}\right)$, equipped with the usual scalar product $\langle\cdot, \cdot\rangle$, to the functions $Z_{i}, 0 \leqslant i \leqslant 3$. Then, we consider the following problem : $h \in L^{\infty}\left(\Omega_{\varepsilon}\right)$ being given, find a function ϕ which satisfies

$$
\begin{cases}-\Delta \phi+\mu \varepsilon^{2} \phi-3(5+\varepsilon) W_{+}^{4+\varepsilon} \phi=h+\sum_{i} c_{i} Z_{i} & \text { in } \Omega_{\varepsilon} \tag{3.3}\\ \frac{\partial \phi}{\partial n}=0 & \text { on } \partial \Omega_{\varepsilon} \\ \left\langle Z_{i}, \phi\right\rangle=0 & 0 \leqslant i \leqslant 3\end{cases}
$$

for some numbers c_{i}.
Existence and uniqueness of ϕ will follow from an inversion procedure in suitable functional spaces. Namely, for f a function in Ω_{ε}, we define the following
weighted L^{∞}-norms:

$$
\|f\|_{*}=\sup _{x \in \Omega_{\varepsilon}}\left|\left(1+|x-\xi|^{2}\right)^{\frac{1}{2}} f(x)\right|
$$

and

$$
\|f\|_{* *}=\sup _{x \in \Omega_{\varepsilon}}\left|\left(1+|x-\xi|^{2}\right)^{2} f(x)\right| .
$$

Writing U instead of $U_{\frac{1}{A}, \xi}$, the first norm is equivalent to $\left\|U^{-1} f\right\|_{\infty}$ and the second one to $\left\|U^{-4} f\right\|_{\infty}$, uniformly with respect to ξ and Λ.

We have the following result:
Proposition 3.1. There exists $\varepsilon_{0}>0$ and a constant $C>0$, independent of ε and ξ, Λ satisfying (2.12) (2.15), such that for all $0<\varepsilon<\varepsilon_{0}$ and all $h \in L^{\infty}\left(\Omega_{\varepsilon}\right)$, problem (3.5) has a unique solution $\phi \equiv L_{\varepsilon}(h)$. Besides,

$$
\begin{equation*}
\left\|L_{\varepsilon}(h)\right\|_{*} \leqslant C\|h\|_{* *}, \quad\left|c_{i}\right| \leqslant C\|h\|_{* *} . \tag{3.4}
\end{equation*}
$$

Moreover, the map $L_{\varepsilon}(h)$ is C^{2} with respect to Λ, ξ and the L_{*}^{∞}-norm, and

$$
\begin{equation*}
\left\|D_{(1, \xi)} L_{\varepsilon}(h)\right\|_{*} \leqslant C\|h\|_{* *}, \quad\left\|D_{(\Lambda, \xi)}^{2} L_{\varepsilon}(h)\right\|_{*} \leqslant C\|h\|_{* *} . \tag{3.5}
\end{equation*}
$$

Proof. The argument follows closely the ideas in [9]. We repeat it for convenience of the reader. The proof relies on the following result:

Lemma 3.1. Assume that ϕ_{ε} solves (3.3) for $h=h_{\varepsilon}$. If $\left\|h_{\varepsilon}\right\|_{* *}$ goes to zero as ε goes to zero, so does $\left\|\phi_{\varepsilon}\right\|_{*}$.

Proof. For $0<\rho<1$, we define

$$
\|f\|_{\rho}=\sup _{x \in \Omega_{\varepsilon}}\left|\left(1+|x-\xi|^{2}\right)^{\frac{1}{2}(1-\rho)} f(x)\right|
$$

and we first prove that $\left\|\phi_{\varepsilon}\right\|_{\rho}$ goes to zero. Arguing by contradiction, we may assume that $\left\|\phi_{\varepsilon}\right\|_{\rho}=1$. Multiplying the first equation in (3.3) by Y_{j} and integrating in Ω_{ε} we find

$$
\sum_{i} c_{i}\left\langle Z_{i}, Y_{j}\right\rangle=\left\langle-\Delta Y_{j}+\mu \varepsilon^{2} Y_{j}-3(5+\varepsilon) W_{+}^{4+\varepsilon} Y_{j}, \phi_{\varepsilon}\right\rangle-\left\langle h_{\varepsilon}, Y_{j}\right\rangle
$$

On one hand we check, in view of the definition of Z_{i}, Y_{j}

$$
\begin{equation*}
\left\langle Z_{0}, Y_{0}\right\rangle=\left\|Y_{0}\right\|_{\varepsilon}^{2}=\gamma_{0}+o(1), \quad\left\langle Z_{i}, Y_{i}\right\rangle=\left\|Y_{i}\right\|_{\varepsilon}^{2}=\gamma_{1}+o(1), \quad 1 \leqslant i \leqslant 3 \tag{3.6}
\end{equation*}
$$

where γ_{0}, γ_{1} are strictly positive constants, and

$$
\begin{equation*}
\left\langle Z_{i}, Y_{j}\right\rangle=o(1), \quad i \neq j \tag{3.7}
\end{equation*}
$$

On the other hand, in view of the definition of Y_{j} and W, straightforward computations yield

$$
\left\langle-\Delta Y_{j}+\mu \varepsilon^{2} Y_{j}-3(5+\varepsilon) W_{+}^{4+\varepsilon} Y_{j}, \phi_{\varepsilon}\right\rangle=o\left(\left\|\phi_{\varepsilon}\right\|_{\rho}\right)
$$

and

$$
\left\langle h_{\varepsilon}, Y_{j}\right\rangle=O\left(\left\|h_{\varepsilon}\right\|_{* *}\right) .
$$

Consequently, inverting the quasi-diagonal linear system solved by the c_{i} 's, we find

$$
\begin{equation*}
c_{i}=O\left(\left\|h_{\varepsilon}\right\|_{* *}\right)+o\left(\left\|\phi_{\varepsilon}\right\|_{\rho}\right) \tag{3.8}
\end{equation*}
$$

In particular, $c_{i}=o(1)$ as ε goes to zero. The first equation in (3.3) may be written as

$$
\begin{equation*}
\phi_{\varepsilon}(x)=3(5+\varepsilon) \int_{\Omega_{\varepsilon}} G_{\varepsilon}(x, y)\left(W_{+}^{4+\varepsilon} \phi_{\varepsilon}+h_{\varepsilon}+\sum_{i} c_{i} Z_{i}\right) d y \tag{3.9}
\end{equation*}
$$

for all $x \in \Omega_{\varepsilon}, G_{\varepsilon}$ denoting the Green's function of the operator $\left(-\Delta+\mu \varepsilon^{2}\right)$ in Ω_{ε} with Neumann boundary conditions.

We notice that by scaling and (A.11) of Proposition 5.2,

$$
\begin{equation*}
G_{\varepsilon}(x, y)=\varepsilon G_{\mu}\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}\right) \leqslant \frac{C}{|x-y|} \tag{3.10}
\end{equation*}
$$

and hence we obtain

$$
\begin{align*}
\left|\int_{\Omega_{\varepsilon}} G_{\varepsilon}(x, y) W_{+}^{4+\varepsilon} \phi_{\varepsilon} d y\right| & \leqslant C| | \phi_{\varepsilon} \|_{\rho} \int_{\Omega_{\varepsilon}} \frac{1}{|x-y|} \frac{1}{\left(1+|x-\xi|^{2}\right)^{\frac{1}{2}(3+\varepsilon+\rho)}} d y \\
& \leqslant C| | \phi_{\varepsilon} \|_{\rho}\left(1+|x-\xi|^{2}\right)^{-\frac{1}{2}} \\
\left|\int_{\Omega_{\varepsilon}} G_{\varepsilon}(x, y) h_{\varepsilon} d y\right| & \leqslant\left. C| | h_{\varepsilon}\right|_{* *} \int_{\Omega_{\varepsilon}} \frac{1}{|x-y|} \frac{1}{\left(1+|x-\xi|^{2}\right)^{2}} d y \\
& \leqslant C| | h_{\varepsilon} \|_{* *}\left(1+|x-\xi|^{2}\right)^{-\frac{1}{2}} \\
\left|\int_{\Omega_{\varepsilon}} G_{\varepsilon}(x, y) Z_{i} d y\right| & \leqslant C \int_{\Omega_{\varepsilon}} \frac{1}{|x-y|} \frac{1}{\left(1+|x-\xi|^{2}\right)^{\frac{5}{2}}} d y \\
& \leqslant C\left(1+|x-\xi|^{2}\right)^{-\frac{1}{2}} \tag{3.11}
\end{align*}
$$

from which we deduce

$$
\left(1+|x-\xi|^{2}\right)^{\frac{1}{2}(1-\rho)}\left|\phi_{\varepsilon}(x)\right| \leqslant C\left(1+|x-\xi|^{2}\right)^{-\frac{\rho}{2}}
$$

$\left\|\phi_{\varepsilon}\right\|_{\rho}=1$ implies the existence of $R>0, \gamma>0$ independent of ε such that $\left\|\phi_{\varepsilon}\right\|_{L^{\infty}\left(B_{R}(\xi)\right)}>\gamma$. Then, elliptic theory shows that along some subsequence, $\tilde{\phi}_{\varepsilon}(x)=$ $\phi_{\varepsilon}(x-\xi)$ converges uniformly in any compact subset of \mathbb{R}^{3} to a nontrivial solution of

$$
-\Delta \tilde{\phi}=15 U_{\tilde{\Lambda}, 0}^{4} \tilde{\phi}
$$

for some $\tilde{\Lambda}>0$. Moreover, $|\tilde{\phi}(x)| \leqslant C /|x|$. As a consequence, $\tilde{\phi}$ writes as

$$
\tilde{\phi}=\alpha_{0} \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial \tilde{\Lambda}}+\sum_{i=1}^{3} \alpha_{i} \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial a_{i}}
$$

(see e.g. [30]). On the other hand, equalities $\left\langle Z_{i}, \phi_{\varepsilon}\right\rangle=0$ provide us with the equalities

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}-\Delta \frac{\partial U_{\tilde{\tilde{n}}, 0}}{\partial \tilde{\Lambda}} \tilde{\phi} & =\int_{\mathbb{R}^{3}} U_{\tilde{\Lambda}, 0}^{4} \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial \tilde{\Lambda}} \tilde{\phi}=0, \\
\int_{\mathbb{R}^{3}}-\Delta \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial a_{i}} \tilde{\phi} & =\int_{\mathbb{R}^{3}} U_{\tilde{\Lambda}, 0}^{4} \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial a_{i}} \tilde{\phi}=0, \quad 1 \leqslant i \leqslant 3 .
\end{aligned}
$$

As we have also

$$
\int_{\mathbb{R}^{3}}\left|\nabla \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial \tilde{\Lambda}}\right|^{2}=\gamma_{0}>0, \quad \int_{\mathbb{R}^{3}}\left|\nabla \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial a_{i}}\right|^{2}=\gamma_{1}>0, \quad 1 \leqslant i \leqslant 3
$$

and

$$
\int_{\mathbb{R}^{3}} \nabla \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial \tilde{\Lambda}} \cdot \nabla \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial a_{i}}=\int_{\mathbb{R}^{3}} \nabla \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial a_{j}} \cdot \nabla \frac{\partial U_{\tilde{\Lambda}, 0}}{\partial a_{i}}=0, \quad i \neq j
$$

the α_{j} 's solve a homogeneous quasi-diagonal linear system, yielding $\alpha_{j}=0,0 \leqslant \alpha_{j} \leqslant 3$, and $\tilde{\phi}=0$, hence a contradiction. This proves that $\left\|\phi_{\varepsilon}\right\|_{\rho}=o(1)$ as ε goes to zero. Furthermore, (3.9), (3.11) and (3.8) show that

$$
\left\|\phi_{\varepsilon}\right\|_{*} \leqslant C\left(\left\|h_{\varepsilon}\right\|_{* *}+\left\|\phi_{\varepsilon}\right\|_{\rho}\right)
$$

whence also $\left\|\phi_{\varepsilon}\right\|_{*}=o(1)$ as ε goes to zero.

Proof of Proposition 3.1 (Conclusion). We set

$$
H=\left\{\phi \in H^{1}\left(\Omega_{\varepsilon}\right),\left\langle Z_{i}, \phi\right\rangle=0,0 \leqslant i \leqslant 3\right\}
$$

equipped with the scalar product $(\cdot, \cdot)_{\varepsilon}$. Problem (3.3) is equivalent to finding $\phi \in H$ such that

$$
(\phi, \theta)_{\varepsilon}=\left\langle 3(5+\varepsilon) W_{+}^{4+\varepsilon} \phi+h, \theta\right\rangle \quad \forall \theta \in H
$$

that is

$$
\begin{equation*}
\phi=T_{\varepsilon}(\phi)+\tilde{h} \tag{3.12}
\end{equation*}
$$

\tilde{h} depending linearly on h, and T_{ε} being a compact operator in H. Fredholm's alternative ensures the existence of a unique solution, provided that the kernel of $I d-T_{\varepsilon}$ is reduced to 0 . We notice that $\phi_{\varepsilon} \in \operatorname{Ker}\left(\operatorname{Id}-T_{\varepsilon}\right)$ solves (3.3) with $h=0$. Thus, we deduce from Lemma 3.1 that $\left\|\phi_{\varepsilon}\right\|_{*}=o(1)$ as ε goes to zero. As $\operatorname{Ker}(I d-$ $\left.T_{\varepsilon}\right)$ is a vector space, $\operatorname{Ker}\left(\operatorname{Id}-T_{\varepsilon}\right)=\{0\}$. Inequalities (3.4) follow from Lemma 3.1 and (3.8). This completes the proof of the first part of Proposition 3.1.

The smoothness of L_{ε} with respect to Λ and ξ is a consequence of the smoothness of T_{ε} and \tilde{h}, which occur in the implicit definition (3.12) of $\phi \equiv L_{\varepsilon}(h)$, with respect to these variables. Inequalities (3.5) are obtained differentiating (3.3), writing the derivatives of ϕ with respect Λ and ξ as a linear combination of the $Z_{i}{ }^{\prime}$ and an orthogonal part, and estimating each term using the first part of the propositionsee $[9,20]$ for detailed computations.

3.2. The reduction

In view of (2.13), a first correction between the approximate solution W and a true solution to $\left(\mathrm{P}_{\varepsilon, \mu}^{\prime}\right)$ writes as

$$
\begin{equation*}
\psi^{\varepsilon}=L_{\varepsilon}\left(R^{\varepsilon}\right) \tag{3.13}
\end{equation*}
$$

with

$$
\begin{align*}
R^{\varepsilon}= & 3 W_{+}^{5+\varepsilon}-\left(-\Delta W+\mu \varepsilon^{2} W\right) \\
= & 3 W_{+}^{5+\varepsilon}-3 U_{\frac{1}{\Lambda}, \xi}^{5}-\mu \varepsilon^{2}\left(U_{\frac{1}{\Lambda}, a}-\frac{\Lambda^{\frac{1}{2}}}{|x-\xi|} e^{-\frac{1}{|x-\xi|^{2}}}\right)+\frac{\mu \Lambda^{\frac{1}{2} \varepsilon^{2}}}{|x-\xi|^{3}}\left(1+\frac{1}{|x-\xi|^{2}}\right) e^{-\frac{1}{|x-\xi|^{2}}} \\
& +\frac{\mu^{2} \varepsilon^{4}}{2}(\Lambda \varepsilon)^{\frac{1}{2}}|x-\xi|\left(1-e^{-\frac{1}{|x-\xi|^{2}}}\right) \tag{3.14}
\end{align*}
$$

We have:

Lemma 3.2. There exists C, independent of ξ, Λ satisfying (2.12) (2.5), such that

$$
\left\|R^{\varepsilon}\right\|_{* *} \leqslant C \varepsilon, \quad\left\|D_{(\Lambda, \xi)} R^{\varepsilon}\right\|_{* *} \leqslant C \varepsilon, \quad\left\|D_{(\Lambda, \xi)}^{2} R^{\varepsilon}\right\|_{* *} \leqslant C \varepsilon
$$

Proof. According to (2.10), $W=U+O(\varepsilon)$ uniformly in Ω_{ε}. Consequently, noticing that $U \geqslant C \varepsilon$ in Ω_{ε}, C independent of ε

$$
U^{5}-W_{+}^{5+\varepsilon}=O\left(\varepsilon U^{5}|\ln U|+\varepsilon U^{4}\right)
$$

uniformly in Ω_{ε}, whence

$$
\left\|U^{5}-W_{+}^{5+\varepsilon}\right\|_{* *} \leqslant C\left\|U^{-4}\left(U^{5}-W_{+}^{5+\varepsilon}\right)\right\|_{\infty}=O(\varepsilon)
$$

On the other hand

$$
\begin{aligned}
& \left(1+|x-\xi|^{2}\right)^{2}\left[\mu \varepsilon^{2}\left(U_{\frac{1}{\Lambda}, a}-\frac{\Lambda^{\frac{1}{2}}}{|x-\xi|^{-}} e^{-\frac{1}{|x-\xi|^{2}}}\right)-\frac{\mu \Lambda^{\frac{1}{2}} \varepsilon^{2}}{|x-\xi|^{3}}\left(1+\frac{1}{|x-\xi|^{2}}\right) e^{-\frac{1}{|x-\xi|^{2}}}\right. \\
& \left.\quad-\frac{\mu^{2} \varepsilon^{4}}{2}(\Lambda \varepsilon)^{\frac{1}{2}}|x-\xi|\left(1-e^{-\frac{1}{|x-\xi|^{2}}}\right)\right]=O(\varepsilon)
\end{aligned}
$$

uniformly for $x \in \Omega_{\varepsilon}$, since

$$
U_{\frac{1}{\Lambda}, a}-\frac{\Lambda^{\frac{1}{2}}}{|x-\xi|} e^{-\frac{1}{|x-\xi|^{2}}}=O\left(|x-\xi|^{-3}\right)
$$

as $|x-\xi|$ goes to infinity, and $|x-\xi|=O(1 / \varepsilon)$ in Ω_{ε}. The first estimate of the lemma follows. The others are obtained in the same way, differentiating (3.14) and estimating each term as previously.

Lemma 3.2 and Proposition 3.1 yield:
Lemma 3.3. There exists C, independent of ξ, Λ satisfying (2.12) (2.5), such that

$$
\left\|\psi^{\varepsilon}\right\|_{*} \leqslant C \varepsilon, \quad\left\|D_{\left(\Lambda, \xi^{\xi}\right)} \psi^{\varepsilon}\right\|_{*} \leqslant C \varepsilon, \quad\left\|D_{(\Lambda, \xi)}^{2} \psi^{\varepsilon}\right\|_{*} \leqslant C \varepsilon
$$

We consider now the following nonlinear problem: finding ϕ such that, for some numbers c_{i}

$$
\begin{cases}-\Delta(W+\psi+\phi)+\mu \varepsilon^{2}(W+\psi+\phi) & \tag{3.15}\\ \quad-3(W+\psi+\phi)_{+}^{5+\varepsilon}=\sum_{i} c_{i} Z_{i} & \text { in } \Omega_{\varepsilon} \\ \frac{\partial \phi}{\partial n}=0 & \text { on } \partial \Omega_{\varepsilon} \\ \left\langle Z_{i}, \phi\right\rangle=0 & 0 \leqslant i \leqslant 3\end{cases}
$$

Setting

$$
\begin{equation*}
N_{\varepsilon}(\eta)=(W+\eta)_{+}^{5+\varepsilon}-W_{+}^{5+\varepsilon}-(5+\varepsilon) W_{+}^{4+\varepsilon} \eta \tag{3.16}
\end{equation*}
$$

the first equation in (3.15) writes as

$$
\begin{equation*}
-\Delta \phi+\mu \varepsilon^{2} \phi-3(5+\varepsilon) W_{+}^{4+\varepsilon} \phi=3 N_{\varepsilon}(\psi+\phi)+\sum_{i} c_{i} Z_{i} \tag{3.17}
\end{equation*}
$$

for some numbers c_{i}. Assuming that $\|\eta\|_{*}$ is bounded, say $\|\eta\|_{*} \leqslant M$ for some constant M, we have

$$
\left\|N_{\varepsilon}(\eta)\right\|_{* *} \leqslant C\|\eta\|_{*}^{2}
$$

whence, assuming that $\|\phi\|_{*} \leqslant 1$ and using Lemma 3.3

$$
\begin{equation*}
\left\|N_{\varepsilon}(\psi+\phi)\right\|_{* *} \leqslant C\left(\|\phi\|_{*}^{2}+\varepsilon^{2}\right) \tag{3.18}
\end{equation*}
$$

We state the following result:
Proposition 3.2. There exists C, independent of ε and ξ, Λ satisfying (2.12) (2.5), such that for small \& problem (3.15) has a unique solution $\phi=\phi(\Lambda, \xi, \mu, \varepsilon)$ with

$$
\begin{equation*}
\|\phi\|_{*} \leqslant C \varepsilon^{2} \tag{3.19}
\end{equation*}
$$

Moreover, $(\Lambda, \xi) \mapsto \phi(\Lambda, \xi, \mu, \varepsilon)$ is C^{2} with respect to the L_{*}^{∞}-norm, and

$$
\begin{equation*}
\left\|D_{(\Lambda, \xi)} \phi\right\|_{*} \leqslant C \varepsilon^{2}, \quad\left\|D_{(\Lambda, \xi)}^{2} \phi\right\|_{*} \leqslant C \varepsilon^{2} \tag{3.20}
\end{equation*}
$$

Proof. Following [9], we consider the map A_{ε} from $\mathscr{F}=\left\{\phi \in H^{1} \cap L^{\infty}\left(\Omega_{\varepsilon}\right)\right.$: $\left.\|\phi\|_{*} \leqslant \varepsilon\right\}$ to $H^{1} \cap L^{\infty}\left(\Omega_{\varepsilon}\right)$ defined as

$$
A_{\varepsilon}(\phi)=L_{\varepsilon}\left(3 N_{\varepsilon}(\phi+\psi)\right)
$$

and we remark that finding a solution ϕ to problem (3.15) is equivalent to finding a fixed point of A_{ε}. One the one hand we have, for $\phi \in \mathscr{F}$

$$
\left\|A_{\varepsilon}(\phi)\right\|_{*} \leqslant\left\|L_{\varepsilon}\left(3 N_{\varepsilon}(\phi+\psi)\right) C\right\|_{*} \leqslant\left\|N_{\varepsilon}(\phi+\psi)\right\|_{* *} \leqslant C \varepsilon^{2} \leqslant \varepsilon
$$

for ε small enough, implying that A_{ε} sends \mathscr{F} into itself. On the other hand A_{ε} is a contraction. Indeed, for ϕ_{1} and ϕ_{2} in \mathscr{F}, we write

$$
\begin{aligned}
\left\|A_{\varepsilon}\left(\phi_{1}\right)-A_{\varepsilon}\left(\phi_{2}\right)\right\|_{*} & \leqslant\left\|N_{\varepsilon}\left(\psi+\phi_{1}\right)-N_{\varepsilon}\left(\psi+\phi_{2}\right)\right\|_{* *} \\
& \leqslant\left\|U^{-4}\left(N_{\varepsilon}\left(\psi+\phi_{1}\right)-N_{\varepsilon}\left(\psi+\phi_{2}\right)\right)\right\|_{\infty}
\end{aligned}
$$

In view of (3.16) we have

$$
\begin{equation*}
\left.\partial_{\eta} N_{\varepsilon}(\eta)=(5+\varepsilon)\left((W+\eta)_{+}^{4+\varepsilon}-W_{+}^{4+\varepsilon}\right)\right) \tag{3.21}
\end{equation*}
$$

whence

$$
\left|N_{\varepsilon}\left(\psi+\phi_{1}\right)-N_{\varepsilon}\left(\psi+\phi_{2}\right)\right| \leqslant C U^{3}\left|\psi+t \phi_{1}+(1-t) \phi_{2}\right|\left|\phi_{1}-\phi_{2}\right|
$$

for some $t \in(0,1)$. Then

$$
\begin{aligned}
\left\|U^{-4}\left(N_{\varepsilon}\left(\psi+\phi_{1}\right)-N_{\varepsilon}\left(\psi+\phi_{2}\right)\right)\right\|_{\infty} & \leqslant C\left\|U^{-1}\left(\psi+t \phi_{1}+(1-t) \phi_{2}\right)\left(\phi_{1}-\phi_{2}\right)\right\|_{\infty} \\
& \leqslant C\left(\|\psi\|_{*}+\left\|\phi_{1}\right\|_{*}+\left\|\phi_{2}\right\|_{*}\right)\left\|\phi_{1}-\phi_{2}\right\|_{*} \\
& \leqslant \varepsilon\left\|\phi_{1}-\phi_{2}\right\|_{*} .
\end{aligned}
$$

This implies that A_{ε} has a unique fixed point in \mathscr{F}, that is problem (3.15) has a unique solution ϕ such that $\|\phi\|_{*} \leqslant \varepsilon$. Furthermore, the definition of ϕ as a fixed point of A_{ε} yields

$$
\|\phi\|_{*}=\left\|L_{\varepsilon}\left(3 N_{\varepsilon}(\phi+\psi)\right)\right\|_{*} \leqslant C\left\|N_{\varepsilon}(\phi+\psi)\right\|_{* *} \leqslant C \varepsilon^{2}
$$

using (3.18), whence (3.19).
In order to prove that $(\Lambda, \xi) \mapsto \phi(\Lambda, \xi)$ is C^{2}, we remark that setting for $\eta \in \mathscr{F}$

$$
B(\Lambda, \xi, \eta) \equiv \eta-L_{\varepsilon}\left(3 N_{\varepsilon}(\eta+\psi)\right)
$$

ϕ is defined as

$$
\begin{equation*}
B(\Lambda, \xi, \phi)=0 \tag{3.22}
\end{equation*}
$$

We have

$$
\partial_{\eta} B(\Lambda, \xi, \eta)[\theta]=\theta-3 L_{\varepsilon}\left(\theta\left(\partial_{\eta} N_{\varepsilon}\right)(\eta+\psi)\right)
$$

and, using (3.21)

$$
\begin{aligned}
\left\|L_{\varepsilon}\left(\theta\left(\partial_{\eta} N_{\varepsilon}\right)(\eta+\psi)\right)\right\|_{*} & \leqslant C\left\|\theta\left(\partial_{\eta} N_{\varepsilon}\right)(\eta+\psi)\right\|_{* *} \\
& \leqslant C\left\|U^{-3}\left(\partial_{\eta} N_{\varepsilon}\right)(\eta+\psi)\right\|_{\infty}\|\theta\|_{*} \\
& \leqslant C\|\eta+\psi\|_{*}\|\theta\|_{*} \\
& \leqslant C \varepsilon\|\theta\|_{*} .
\end{aligned}
$$

Consequently, $\partial_{\eta} B(\Lambda, \xi, \phi)$ is invertible in L_{*}^{∞} with uniformly bounded inverse. Then, the fact that $(\Lambda, \xi) \mapsto \phi(\Lambda, \xi)$ is C^{2} follows from the fact that $(\Lambda, \xi, \eta) \mapsto L_{\varepsilon}\left(N_{\varepsilon}(\eta+\psi)\right)$ is C^{2} and the implicit functions theorem.

Finally, let us show how estimates (3.20) may be obtained. Derivating (3.22) with respect to Λ, we have

$$
\partial_{\Lambda} \phi=3\left(\partial_{\eta} B(\Lambda, \xi, \phi)\right)^{-1}\left(\left(\partial_{\Lambda} L_{\varepsilon}\right)\left(N_{\varepsilon}(\phi+\psi)\right)+L_{\varepsilon}\left(\left(\partial_{\Lambda} N_{\varepsilon}\right)(\phi+\psi)\right)+L_{\varepsilon}\left(\left(\partial_{\eta} N_{\varepsilon}\right)(\phi+\psi) \partial_{\Lambda} \psi\right)\right)
$$

whence, according to Proposition 3.1

$$
\left\|\partial_{\Lambda} \phi\right\|_{*} \leqslant C\left(\left\|N_{\varepsilon}(\phi+\psi)\right\|_{* *}+\left\|\left(\partial_{\Lambda} N_{\varepsilon}\right)(\phi+\psi)\right\|_{* *}+\left\|\left(\partial_{\eta} N_{\varepsilon}\right)(\phi+\psi) \partial_{\Lambda} \psi\right\|_{* *}\right)
$$

From (3.18) and (3.19) we know that

$$
\left\|N_{\varepsilon}(\phi+\psi)\right\|_{* *} \leqslant C \varepsilon^{2}
$$

Concerning the next term, we notice that according to definition (3.16) of N_{ε}

$$
\begin{aligned}
\left|\left(\partial_{\Lambda} N_{\varepsilon}\right)(\phi+\psi)\right| & =(5+\varepsilon)\left|(W+\phi+\psi)_{+}^{4+\varepsilon}-W_{+}^{4+\varepsilon}-(4+\varepsilon) W_{+}^{3+\varepsilon}(\phi+\psi) \| \partial_{\Lambda} W\right| \\
& \leqslant C U^{5}\|\phi+\psi\|_{*}^{2} \\
& \leqslant C U^{5} \varepsilon^{2}
\end{aligned}
$$

using again (3.18) and (3.19), whence

$$
\left\|\left(\partial_{\Lambda} N_{\varepsilon}\right)(\phi+\psi)\right\|_{* *} \leqslant C \varepsilon^{2}
$$

Lastly, from (3.21) we deduce

$$
\left|\left(\partial_{\eta} N_{\varepsilon}\right)(\phi+\psi) \partial_{\Lambda} \psi\right| \leqslant U^{5}\|\phi+\psi\|_{*}\left\|\partial_{\Lambda} \psi\right\|_{*}
$$

yielding

$$
\left\|\left(\partial_{\eta} N_{\varepsilon}\right)(\phi+\psi) \partial_{\Lambda} \psi\right\|_{* *} \leqslant C \varepsilon^{2}
$$

Finally we obtain

$$
\left\|\partial_{\Lambda} \phi\right\|_{*} \leqslant C \varepsilon^{2}
$$

The other first and second derivatives of ϕ with respect to Λ and ξ may be estimated in the same way (see [20] for detailed computations concerning the second derivatives). This concludes the proof of Proposition 3.2.

3.3. Coming back to the original problem

We introduce the following functional defined in $H^{1}(\Omega) \cap L^{6+\varepsilon}(\Omega)$:

$$
\begin{equation*}
J_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+\mu u^{2}\right)-\frac{3}{6+\varepsilon} \int_{\Omega} u_{+}^{6+\varepsilon} \tag{3.23}
\end{equation*}
$$

whose nontrivial critical points are solutions to $\left(\mathrm{P}_{5+\varepsilon, \mu}\right)$ (up to the multiplicative constant $3^{\frac{1}{4+\varepsilon}}$. We consider also the rescaled functions defined in Ω

$$
\begin{equation*}
\hat{W}(\Lambda, a)(x)=\varepsilon^{-\zeta} W_{\Lambda, \xi}\left(\varepsilon^{-1} x\right)=\varepsilon^{\frac{1}{2}-\zeta} V_{\Lambda, a}(x) \tag{3.24}
\end{equation*}
$$

with

$$
\zeta=\frac{1}{2+\frac{1}{2} \varepsilon}, \quad a=\varepsilon \xi
$$

We define also

$$
\begin{equation*}
\hat{\psi}(\Lambda, a)(x)=\varepsilon^{-\zeta} \psi(\Lambda, \xi)\left(\varepsilon^{-1} x\right), \quad \hat{\phi}(\Lambda, a)(x)=\varepsilon^{-\zeta} \phi(\Lambda, \xi)\left(\varepsilon^{-1} x\right) \tag{3.25}
\end{equation*}
$$

and we set

$$
\begin{equation*}
I_{\varepsilon}(\Lambda, a) \equiv J_{\varepsilon}((\hat{W}+\hat{\psi}+\hat{\phi})(\Lambda, a)) \tag{3.26}
\end{equation*}
$$

We have:
Proposition 3.3. The function $u=3^{\frac{1}{4+\varepsilon}}(\hat{W}+\hat{\psi}+\hat{\phi})$ is a solution to problem $\left(\mathrm{P}_{5+\varepsilon, \mu}\right)$ if and only if (Λ, a) is a critical point of I_{ε}.

Proof. For v in $H^{1}\left(\Omega_{\varepsilon}\right) \cap L^{6+\varepsilon}\left(\Omega_{\varepsilon}\right)$, we set

$$
\begin{equation*}
K_{\varepsilon}(v)=\frac{1}{2} \int_{\Omega_{\varepsilon}}\left(|\nabla v|^{2}+\mu \varepsilon^{2} v^{2}\right)-\frac{3}{6+\varepsilon} \int_{\Omega_{\varepsilon}} v_{+}^{6+\varepsilon} \tag{3.27}
\end{equation*}
$$

whose nontrivial critical points are solutions to $\left(\mathrm{P}_{5+\varepsilon, \mu}^{\prime}\right)$. According to the definition I_{ε} we have

$$
\begin{equation*}
I_{\varepsilon}(\Lambda, a)=\varepsilon^{1-2 \zeta} K_{\varepsilon}((W+\psi+\phi)(\Lambda, \xi)) \tag{3.28}
\end{equation*}
$$

We notice that $u=3^{\frac{1}{4+\varepsilon}}(\hat{U}+\hat{\psi}+\hat{\phi})$ being a solution to $\left(\mathrm{P}_{5+\varepsilon, \mu}\right)$ is equivalent to $W+\psi+\phi$ being a solution to $\left(\mathrm{P}_{5+\varepsilon, \mu}^{\prime}\right)$, that is a critical point of K_{ε}. It is also equivalent to the cancellation of the c_{i} 's in (3.15) or, in view of (3.6) (3.7)

$$
\begin{equation*}
K_{\varepsilon}^{\prime}(W+\psi+\phi)\left[Y_{i}\right]=0, \quad 0 \leqslant i \leqslant 3 . \tag{3.29}
\end{equation*}
$$

On the other hand, we deduce from (3.28) that $I_{\varepsilon}^{\prime}(\Lambda, a)=0$ is equivalent to the cancellation of $K_{\varepsilon}^{\prime}(W+\psi+\phi)$ applied to the derivatives of $W+\psi+\phi$ with respect to Λ and ξ. According to definition (3.1) of the Y_{i} 's, Lemma 3.3 and Proposition 3.2 we have

$$
\frac{\partial(W+\psi+\phi)}{\partial \Lambda}=Y_{0}+y_{0}, \quad \frac{\partial(W+\psi+\phi)}{\partial \xi_{j}}=Y_{j}+y_{j}, \quad 1 \leqslant j \leqslant 3
$$

with $\left\|y_{i}\right\|_{L_{*}^{\infty}}=o(1), 0 \leqslant i \leqslant 3$. Writing

$$
y_{i}=y_{i}^{\prime}+\sum_{j=0}^{3} a_{i j} Y_{j}, \quad\left\langle y_{i}^{\prime}, Z_{j}\right\rangle=\left(y_{i}^{\prime}, Y_{j}\right)_{\varepsilon}=0, \quad 0 \leqslant i, j \leqslant 3
$$

and

$$
K_{\varepsilon}^{\prime}(W+\psi+\phi)\left[Y_{i}\right]=\alpha_{i}
$$

it turns out that $I_{\varepsilon}^{\prime}(\Lambda, a)=0$ is equivalent, since $K_{\varepsilon}^{\prime}(W+\psi+p)[\theta]=0$ for $\left\langle\theta, Z_{j}\right\rangle=$ $\left(\theta, Y_{j}\right)_{\varepsilon}=0,0 \leqslant j \leqslant 3$, to

$$
\left(I d+\left[a_{i j}\right]\right)\left[\alpha_{i}\right]=0 .
$$

As $a_{i j}=O\left(\left\|y_{i}\right\|_{*}\right)=o(1)$, we see that $I_{\varepsilon}^{\prime}(\Lambda, a)=0$ means exactly that (3.29) is satisfied.

4. Proof of Theorem 1.1

In view of Proposition 3.3 we have, for proving the theorem, to find critical points of I_{ε}. We establish first a C^{2}-expansion of I_{ε}.

4.1. Expansion of I_{ε}

Proposition 4.1. There exist A, B, C, strictly positive constants such that

$$
I_{\varepsilon}(\Lambda, a)=A+\frac{A}{4} \varepsilon \ln (\varepsilon \Lambda)+\frac{1}{2}\left(C+\frac{A}{6}\right) \varepsilon+\frac{3 B \Lambda}{2}\left(\mu^{1 / 2}+H_{\mu}(a, a)\right) \varepsilon+\varepsilon \sigma_{\varepsilon}(\Lambda, a)
$$

with $\sigma_{\varepsilon}, D_{(\Lambda, a)} \sigma_{\varepsilon}$ and $D_{(\Lambda, a)}^{2} \sigma_{\varepsilon}$ going to zero as ε goes to zero, uniformly with respect to a, Λ satisfying (2.4) and (2.5).

Proof. In view of definition (3.26) of I_{ε}, we first estimate $J_{\varepsilon}(\hat{W})$. We have

$$
\begin{aligned}
\varepsilon^{2 \zeta-1} J_{\varepsilon}(\hat{W}) & =\varepsilon^{2 \zeta-1} J_{\varepsilon}\left(\varepsilon^{\frac{1}{2}-\zeta} V\right) \\
& =J_{\varepsilon}(V)+3 \frac{1-\varepsilon^{\frac{\varepsilon}{2}}}{6+\varepsilon} \int_{\Omega} V_{+}^{6+\varepsilon} \\
& =J_{\varepsilon}(V)+\frac{1}{2}\left(-\frac{\varepsilon}{2} \ln \varepsilon+o(\varepsilon)\right) \int_{\Omega} V_{+}^{6+\varepsilon}
\end{aligned}
$$

from which we deduce, using the integral estimates (A.8), (A.9) and Proposition 5.1 in Appendix, that

$$
\begin{equation*}
J_{\varepsilon}(\hat{W})=A+\frac{A}{4} \varepsilon \ln (\varepsilon \Lambda)+\frac{1}{2}\left(C+\frac{A}{6}\right) \varepsilon+\frac{3 B \Lambda}{2}\left(\mu^{1 / 2}+H_{\mu}(a, a)\right) \varepsilon+o(\varepsilon) \tag{4.1}
\end{equation*}
$$

Then, we prove that

$$
\begin{equation*}
I_{\varepsilon}(\Lambda, a)-J_{\varepsilon}(\hat{W}+\hat{\psi})=o(\varepsilon) \tag{4.2}
\end{equation*}
$$

Indeed, from a Taylor expansion and the fact that $J_{\varepsilon}^{\prime}(\hat{W}+\hat{\psi}+\hat{\phi})[\phi]=0$, we have

$$
\begin{aligned}
& I(\Lambda, a)-J_{\varepsilon}(\hat{W}+\hat{\psi}) \\
& \quad=J_{\varepsilon}(\hat{W}+\hat{\psi}+\hat{\phi})-J_{\varepsilon}(\hat{W}+\hat{\psi}) \\
& \quad=\int_{0}^{1} J_{\varepsilon}^{\prime \prime}(\hat{W}+\hat{\psi}+t \hat{\phi})[\hat{\phi}, \hat{\phi}] t d t \\
& \quad=\varepsilon^{1-2 \zeta} \int_{0}^{1} K_{\varepsilon}^{\prime \prime}(W+\psi+\phi)[\phi, \phi] t d t \\
& \quad=\varepsilon^{1-2 \zeta} \int_{0}^{1}\left(\int_{\Omega_{\varepsilon}}\left(|\phi|^{2}+\mu \varepsilon^{2} \phi^{2}-3(5+\varepsilon)(W+\psi+\phi)_{+}^{4+\varepsilon} \phi^{2}\right)\right) t d t \\
& \quad=\varepsilon^{1-2 \zeta} \int_{0}^{1}\left(\int_{\Omega_{\varepsilon}}\left(N_{\varepsilon}(\phi+\psi) \phi+3(5+\varepsilon)\left[W_{+}^{4+\varepsilon}-(W+\psi+t \phi)_{+}^{4+\varepsilon}\right] \phi^{2}\right)\right) t d t .
\end{aligned}
$$

The desired result follows from (3.18), Lemma 3.3 and (3.19). Similar computations show that estimate (4.2) is also valid for the first and second derivatives of $I_{\varepsilon}(\Lambda, a)-$ $J_{\varepsilon}(\hat{W}+\hat{\psi})$ with respect to Λ and a. Then, the proposition will follow from an estimate of $J_{\varepsilon}(\hat{W}+\hat{\psi})-J_{\varepsilon}(\hat{W})$. We have

$$
\begin{aligned}
J_{\varepsilon}(\hat{W}+\hat{\psi})-J_{\varepsilon}(\hat{W}) & =\varepsilon^{1-2 \zeta}\left(K_{\varepsilon}(W+\psi)-K_{\varepsilon}(W)\right) \\
& =\varepsilon^{1-2 \zeta}\left(K_{\varepsilon}^{\prime}(W)[\psi]+\int_{0}^{1}(1-t) K_{\varepsilon}^{\prime \prime}(W+t \psi)[\psi, \psi]\right)
\end{aligned}
$$

By definition of ψ and R^{ε}

$$
K_{\varepsilon}^{\prime}(W)[\psi]=-\int_{\Omega_{\varepsilon}} R^{\varepsilon} \psi
$$

and we have

$$
K_{\varepsilon}^{\prime \prime}(W+t \psi)[\psi, \psi]=\int_{\Omega_{\varepsilon}}\left(|\nabla \psi|^{2}+\mu \varepsilon^{2} \psi^{2}\right)-3(5+\varepsilon) \int_{\Omega_{\varepsilon}}(W+t \psi)_{+}^{4+\varepsilon} \psi^{2}
$$

Then, integration by parts and $\psi=L_{\varepsilon}\left(R^{\varepsilon}\right)$ yield

$$
K_{\varepsilon}^{\prime \prime}(W+t \psi)[\psi, \psi]=\int_{\Omega_{\varepsilon}} R^{\varepsilon} \psi-3(5+\varepsilon) \int_{\Omega_{\varepsilon}}\left((W+t \psi)_{+}^{4+\varepsilon}-W_{+}^{4+\varepsilon}\right) \psi^{2}
$$

Consequently

$$
\begin{aligned}
& J_{\varepsilon}(\hat{W}+\hat{\psi})-J_{\varepsilon}(\hat{W}) \\
& \quad=\varepsilon^{1-2 \zeta}\left(-\frac{1}{2} \int_{\Omega_{\varepsilon}} R^{\varepsilon} \psi-3(5+\varepsilon) \int_{0}^{1}(1-t)\left(\int_{\Omega_{\varepsilon}}\left[(W+t \psi)_{+}^{4+\varepsilon}-W_{+}^{4+\varepsilon}\right] \psi^{2}\right) d t\right)
\end{aligned}
$$

and Lemmas 3.2 and 3.3 yield

$$
J_{\varepsilon}(\hat{W}+\hat{\psi})-J_{\varepsilon}(\hat{W})=o(\varepsilon)
$$

The same estimate holds for the first and second derivatives with respect to Λ and a, obtained similarly with more delicate computations-see Proposition 3.4 in [20]. This concludes the proof of Proposition 4.1.

4.2. Proof of Theorem 1.1 (Conclusion)

According to the statement of Theorem 1.1, we assume the existence of b and c, $b<c<0$, such that c is not a critical value of $\varphi_{\mu}(x)=\mu^{\frac{1}{2}}+H_{\mu}(x, x)$ and the relative homology $H_{*}\left(\varphi_{\mu}^{c}, \varphi_{\mu}^{b}\right) \neq 0$. In view of Proposition 3.3, we have to prove the existence of a critical point of $I_{\varepsilon}(\Lambda, a)$. According to Proposition 4.1, we have

$$
\frac{\partial I_{\varepsilon}}{\partial \Lambda}(\Lambda, a)=\frac{A \varepsilon}{4 \Lambda}+\frac{3 B}{2} \varphi_{\mu}(a) \varepsilon+o(\varepsilon)
$$

and

$$
\frac{\partial^{2} I_{\varepsilon}}{\partial \Lambda^{2}}(\Lambda, a)=-\frac{A \varepsilon}{4 \Lambda^{2}}+o(\varepsilon)
$$

uniformly with respect to a and Λ satisfying (2.4) (2.5). For $\delta>0, \eta>0$, we define

$$
\Omega_{\delta, \gamma}=\left\{a \in \Omega \text { s.t. } d(a, \partial \Omega)>\delta, \varphi_{\mu}(a)<-\gamma\right\} .
$$

The implicit functions theorem provides us, for ε small enough, with a C^{1}-map $a \in \Omega_{\delta, \gamma} \mapsto \Lambda(a)$ such that

$$
\frac{\partial I_{\varepsilon}}{\partial \Lambda}(\Lambda(a), a)=0, \quad \Lambda(a)=-\frac{A}{6 B}\left(\varphi_{\mu}(a)\right)^{-1}+o(1) .
$$

Then, finding a critical point of $(\Lambda, a) \mapsto I_{\varepsilon}(\Lambda, a)$ reduces to finding a critical point of $a \mapsto \tilde{I}_{\varepsilon}(a)$, with

$$
\tilde{I}_{\varepsilon}(a)=I_{\varepsilon}(\Lambda(a), a) .
$$

We deduce from Proposition 4.1 the C^{1}-expansion

$$
\tilde{I}_{\varepsilon}(a)=A+\frac{A}{4} \varepsilon \ln \varepsilon+\frac{1}{2}\left(C-\frac{A}{3}+\frac{A}{2} \ln \frac{A}{6 B}\right) \varepsilon-\frac{A}{4} \varepsilon \ln \left|\varphi_{\mu}(a)\right|+o(\varepsilon) .
$$

Therefore, up to an additive and to a multiplicative constant, we have to look for critical points in $\Omega_{\delta, \gamma}$ of

$$
\begin{equation*}
\mathscr{I}_{\varepsilon}(a)=-\ln \left|\varphi_{\mu}(a)\right|+\tau_{\varepsilon}(a) \tag{4.3}
\end{equation*}
$$

with $\tau_{\varepsilon}(a)=o(1), \nabla \tau_{\varepsilon}(a)=o(1)$ as ε goes to zero, uniformly with respect to $a \in \Omega_{\delta, \gamma}$.

Arguing by contradiction, we assume
(H) $\mathscr{I}_{\varepsilon}$ has no critical point $a \in \Omega_{\delta, \gamma}$ such that $b<\varphi_{\mu}(a)<c$.

We are going to use the gradient of $\mathscr{I}_{\varepsilon}$ to build a continuous deformation of φ_{μ}^{c} onto φ_{μ}^{b}, a contradiction with the assumption $H_{*}\left(\varphi_{\mu}^{c}, \varphi_{\mu}^{b}\right) \neq 0$.

We first remark that φ_{μ} has isolated critical values, since φ_{μ} is analytic in Ω and $\varphi_{\mu}=-\infty$ on the boundary of Ω. Therefore, the assumption that c is not a critical value of φ_{μ} implies the existence of $\eta>0$ such that φ_{μ} has no critical value in $(b, b+\eta] \cup(c-\eta, c]$. Moreover, φ_{μ}^{c} retracts by deformation onto $\varphi_{\mu}^{c-\eta}, \varphi_{\mu}^{b+\eta}$ retracts by deformation onto φ_{μ}^{b}, and $H_{*}\left(\varphi_{\mu}^{c-\eta}, \varphi_{\mu}^{b+\eta}\right) \neq 0$.

Secondly, we choose $\delta>0$ such that $\varphi_{\mu}(x)<b$ for $d(x, \partial \Omega) \leqslant \delta$. We choose also $\gamma>0$ such that $-\gamma>c$. Then, a point x in the complementary of $\Omega_{\delta, \gamma}$ in Ω is either in φ_{μ}^{b}, or not in φ_{μ}^{c}. Consequently, deforming $\varphi_{\mu}^{c-\eta}$ onto $\varphi_{\mu}^{b+\eta}$ is equivalent to deforming $\varphi_{\mu}^{c-\eta} \cap \Omega_{\delta, \gamma}$ onto $\varphi_{\mu}^{b+\eta}$. To this end we set, for $a_{0} \in\left(\varphi_{\mu}^{c-\eta} \cap \Omega_{\delta, \gamma}\right)$

$$
\frac{d}{d t} a(t)=-\nabla \mathscr{I}_{\varepsilon}(a(t)), \quad a(0)=a_{0}
$$

$a(t)$ is defined as long as the boundary of $\Omega_{\delta, \gamma}$ is not achieved. $\mathscr{I}_{\varepsilon}(a(t))$ being decreasing, (4.3) shows that for ε small enough, $a(t)$ remains in φ_{μ}^{c}. Then, the boundary of $\Omega_{\delta, \gamma}$ may only be achieved by $a(t)$ in φ_{μ}^{b}. This means that $a(t)$ is well defined as long as $b<\varphi_{\mu}(a(t))<c$, and according to assumption $(\mathrm{H}), \mathscr{I}_{\varepsilon}(a(t))$ is strictly decreasing in that region. Therefore (4.3) proves, for ε small enough, the existence of $t>0$ such that $\varphi_{\mu}(a(t))=b+\eta$. Composing the flow with a retraction of φ_{μ}^{c} onto $\varphi_{\mu}^{c-\eta}$, we obtain a continuous deformation of $\varphi_{\mu}^{c-\eta}$ onto $\varphi_{\mu}^{b+\eta}$, a contradiction with $H_{*}\left(\varphi_{\mu}^{c-\eta}, \varphi_{\mu}^{b+\eta}\right) \neq 0$.

The previous arguments prove the existence, for ε small enough, of a nontrivial solution u_{ε} to the problem

$$
-\Delta u+\mu u=u_{+}^{5+\varepsilon} \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega .
$$

Then, the strong maximum principle shows that $u_{\varepsilon}>0$ in Ω. The fact that u_{ε} blows up, as ε goes to zero, at a point a such that $b<\varphi_{\mu}(a)<c, \nabla \varphi_{\mu}(a)=0$, follows from the construction of u_{ε}. In particular, $\nabla \varphi_{\mu}(a)=0$ is a straightforward consequence of (4.3) as ε goes to zero. This concludes the proof of the theorem.

Appendix A

A.1. Integral estimates

In this subsection, we collect the integral estimates which are needed in the previous section. We recall that according to the definitions of Section 2,
we have

$$
\begin{equation*}
V_{\Lambda, a, \mu, \varepsilon}(x)=U_{\frac{1}{\Lambda \varepsilon}, a}(x)-(\Lambda \varepsilon)^{\frac{1}{2}}\left(\frac{1-e^{-\mu^{\frac{1}{2}|x-a|}}}{|x-a|}+H_{\mu}(a, x)\right)+\rho_{\Lambda, a, \mu, \varepsilon}(x) \tag{A.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\rho_{\Lambda, a, \mu, \varepsilon}=O\left(|\varepsilon|^{\frac{3}{2}}\right) \tag{A.2}
\end{equation*}
$$

uniformly in Ω and with respect to a and Λ satisfying (2.4) (2.5), and the same estimate holds for the derivatives of $\rho_{\Lambda, a, \mu, \varepsilon}$ with respect to a and Λ. We recall also that $V_{\Lambda, a, \mu, \varepsilon}$ satisfies

$$
\begin{cases}-\Delta V_{\Lambda, a, \mu, \varepsilon}+\mu V_{\Lambda, a, \mu, \varepsilon}=3 U_{\frac{1}{\Lambda \varepsilon}, a}^{5}+\mu\left(U_{\frac{1}{\Lambda \varepsilon}, a}-\frac{(\Lambda \varepsilon)^{\frac{1}{2}}}{|x-a|}\right)+\rho_{\Lambda, a, \mu, \varepsilon}^{\prime} & \text { in } \Omega \tag{A.3}\\ \frac{\partial V_{\Lambda, a, \mu, \varepsilon}}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

with

$$
\begin{equation*}
\rho_{\Lambda, a, \mu, \varepsilon}^{\prime}=\mu \frac{(\Lambda \varepsilon)^{\frac{1}{2}}}{|x-a|}\left(1-e^{-\frac{\varepsilon^{2}}{|x-a|^{2}}}\right)-\mu(\Lambda \varepsilon)^{\frac{1}{2}}\left(\frac{\varepsilon^{2}}{|x-a|^{3}}+\frac{2 \varepsilon^{4}}{|x-a|^{5}}\right) e^{-\frac{\varepsilon^{2}}{|x-a|^{2}}}+O\left(|\varepsilon|^{\frac{7}{2}}\right) \tag{A.4}
\end{equation*}
$$

and such an expansion holds for the derivatives of $\rho_{\Lambda, a, \mu, \varepsilon}^{\prime}$ with respect to a and Λ.
Omitting, for sake of simplicity, the indices $\Lambda, a, \mu, \varepsilon$, we state:
Proposition 5.1. Assuming that a and Λ satisfy (2.4) (2.5), we have the uniform expansions as ε goes to zero

$$
\begin{aligned}
& J_{\varepsilon}(V)=A+\frac{A}{4} \varepsilon \ln (|\varepsilon| \Lambda)+\frac{1}{2}\left(C+\frac{A}{6}\right) \varepsilon+\frac{3 B \Lambda}{2}\left(\mu^{1 / 2}+H_{\mu}(a, a)\right)|\varepsilon|+O\left(\varepsilon^{2}(\ln |\varepsilon|)^{2}\right) \\
& \frac{\partial J_{\varepsilon}}{\partial \Lambda}=\frac{A \varepsilon}{4 \Lambda}+\frac{3 B}{2}\left(\mu^{1 / 2}+H_{\mu}(a, a)\right)|\varepsilon|+O\left(\varepsilon^{2}(\ln |\varepsilon|)^{2}\right) \\
& \frac{\partial J_{\varepsilon}}{\partial a}=\frac{3 B \Lambda}{2} \frac{\partial}{\partial a}\left(H_{\mu}(a, a)\right)|\varepsilon|+O\left(\varepsilon^{2}(\ln |\varepsilon|)^{2}\right) \\
& \frac{\partial^{2} J_{\varepsilon}}{\partial \Lambda^{2}}=-\frac{A \varepsilon}{4 \Lambda^{2}}+O\left(\varepsilon^{2}(\ln |\varepsilon|)^{2}\right) \\
& \frac{\partial^{2} J_{\varepsilon}}{\partial \Lambda \partial a}=\frac{3 B}{2} \frac{\partial}{\partial a}\left(H_{\mu}(a, a)\right)|\varepsilon|+O\left(\varepsilon^{2}(\ln |\varepsilon|)^{2}\right)
\end{aligned}
$$

with

$$
A=\int_{\mathbb{R}^{3}} U_{1,0}^{6}=\frac{\pi^{2}}{4}, \quad B=\int_{\mathbb{R}^{3}} U_{1,0}^{5}=\frac{4 \pi}{3}, \quad C=-\frac{1}{2} \int_{\mathbb{R}^{3}} U_{1,0}^{6} \ln U_{1,0}>0 .
$$

Proof. For sake of simplicity, we assume that $\varepsilon>0$ (the computations are equivalent as $\varepsilon<0$), and we set $r=|x-a|$. In view of (A.3), we write

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla V|^{2}+\mu V^{2}\right)=\int_{\Omega}(-\Delta V+\mu V) V=\int_{\Omega}\left(3 U^{5}+\mu\left(U-\frac{(\Lambda \varepsilon)^{\frac{1}{2}}}{r}\right)+\rho^{\prime}\right) V \tag{A.5}
\end{equation*}
$$

From (A.1), (A.2) we deduce

$$
\int_{\Omega} U^{5} V=\int_{\Omega} U^{6}-(\Lambda \varepsilon)^{\frac{1}{2}} \int_{\Omega} U^{5}\left(\frac{1-e^{-\mu^{\frac{1}{2} r}}}{r}+H_{\mu}(a, x)\right)+O\left(\varepsilon^{2}\right)
$$

noticing that

$$
\begin{equation*}
\int_{\Omega} U^{5}=O\left(\varepsilon^{\frac{1}{2}}\right) \tag{A.6}
\end{equation*}
$$

One one hand

$$
\int_{\Omega} U^{6}=A+O\left(\varepsilon^{3}\right) \quad \text { with } A=\int_{\mathbb{R}^{3}} U^{6}=4 \pi \int_{0}^{\infty} \frac{r^{2} d r}{\left(1+r^{2}\right)^{3}}=\frac{\pi^{2}}{4}
$$

On the other hand, since $d(a, \partial \Omega) \geqslant \delta>0$

$$
\begin{aligned}
& \int_{\Omega} U^{5}\left(\frac{1-e^{-\mu^{\frac{1}{2}} r}}{r}+H_{\mu}(a, x)\right) \\
& \quad=\frac{1}{(\Lambda \varepsilon)^{\frac{1}{2}}} \int_{(\Omega-a) /(\Lambda \varepsilon)} U^{5} \frac{1-e^{-\mu^{\frac{1}{2}} \Lambda \varepsilon r}}{r} d x+\int_{B(a, R)} U^{5} H_{\mu}(a, x)+O\left(\varepsilon^{\frac{5}{2}}\right) \\
& \quad=\frac{4 \pi}{(\Lambda \varepsilon)^{\frac{1}{2}}} \int_{0}^{R /(\Lambda \varepsilon)} \frac{1-e^{-\mu^{\frac{1}{2}} A \varepsilon r}}{\left(1+r^{2}\right)^{\frac{5}{2}}} r d r+H_{\mu}(a, a) \int_{B(a, R)} U^{5}+O\left(\int_{B(a, R)} U^{5} r^{2}+\varepsilon^{\frac{5}{2}}\right) \\
& \quad=4 \pi B(\Lambda \varepsilon)^{\frac{1}{2}}\left(\mu^{\frac{1}{2}}+H_{\mu}(a, a)\right)+O\left(\varepsilon^{\frac{3}{2}}\right)
\end{aligned}
$$

with

$$
B=\int_{\mathbb{R}^{3}} U_{1,0}^{5}=4 \pi \int_{0}^{\infty} \frac{r^{2} d r}{\left(1+r^{2}\right)^{\frac{5}{2}}}=\frac{4 \pi}{3}
$$

Concerning the second term in the right-hand side of (A.5), denoting by R^{\prime} the diameter of Ω and using (2.6), we have

$$
\begin{aligned}
\int_{\Omega} \mu\left(U-\frac{(\Lambda \varepsilon)^{\frac{1}{2}}}{r}\right) V & =O\left(\int_{\Omega}\left|U-\frac{(\lambda \varepsilon)^{\frac{1}{2}}}{r}\right|\right) U \\
& =O\left(\varepsilon^{2} \int_{0}^{R^{\prime} /(\Lambda \varepsilon)}\left(\frac{1}{r}-\frac{1}{\left(1+r^{2}\right)^{\frac{1}{2}}}\right) \frac{r^{2} d r}{\left(1+r^{2}\right)^{\frac{1}{2}}}\right) \\
& =O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Lastly, noticing that $V=O(U)$ uniformly in Ω and with respect to the parameters a, Λ satisfying (2.4) and (2.5), we have, using (A.4)

$$
\begin{aligned}
\int_{\Omega} \rho^{\prime} V & =O\left(\int_{\Omega}\left(\frac{\varepsilon^{\frac{1}{2}}}{r}\left(1-e^{-\frac{\varepsilon^{2}}{r^{2}}}\right)+\varepsilon^{\frac{1}{2}}\left(\frac{\varepsilon^{2}}{r^{3}}+\frac{\varepsilon^{4}}{r^{5}}\right) e^{-\frac{\varepsilon^{2}}{r^{2}}}\right) U+\varepsilon^{4}\right) \\
& =O\left(\varepsilon^{2} \int_{0}^{\frac{R^{\prime}}{\varepsilon}}\left(r\left(1-e^{-\frac{1}{r^{2}}}\right)+\left(\frac{1}{r}+\frac{1}{r^{2}}\right)\right) \frac{d r}{\left(1+r^{2}\right)^{\frac{1}{2}}}+\varepsilon^{4}\right) \\
& =O\left(\varepsilon^{2}\right)
\end{aligned}
$$

whence finally

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla V|^{2}+\mu V^{2}\right)=3 A-3 B \Lambda\left(\mu^{1 / 2}+H_{\mu}(a, a)\right) \varepsilon+O\left(\varepsilon^{2}\right) . \tag{A.7}
\end{equation*}
$$

In the same way we have

$$
\begin{equation*}
\int_{\Omega} V_{+}^{6}=A-6 B \Lambda\left(\mu^{1 / 2}+H_{\mu}(a, a)\right) \varepsilon+O\left(\varepsilon^{2}\right) \tag{A.8}
\end{equation*}
$$

Namely, from (A.1) (A.2) and $V=O(U)$ we derive

$$
\int_{\Omega} V_{+}^{6}=\int_{\Omega} U^{6}-6(\Lambda \varepsilon)^{\frac{1}{2}} \int_{\Omega} U^{5}\left(\frac{1-e^{-\mu^{\frac{1}{2} r}}}{r}+H_{\mu}(a, x)\right)+O\left(\varepsilon^{\frac{3}{2}} \int_{\Omega} U^{5}+\varepsilon \int_{\Omega} U^{4}\right)
$$

and the conclusion follows from the previous computations, noticing that

$$
\int_{\Omega} U^{4}=O(\varepsilon)
$$

Then, we write

$$
\int_{\Omega} V_{+}^{6+\varepsilon}=\int_{\Omega} V_{+}^{6}+\int_{\Omega} V_{+}^{6}\left(V_{+}^{\varepsilon}-1\right) .
$$

Noticing that $0 \leqslant V_{+} \leqslant 2 \varepsilon^{-\frac{1}{2}}$

$$
V_{+}^{\varepsilon}-1=\varepsilon \ln V_{+}+O\left(\varepsilon^{2}(\ln \varepsilon)^{2}\right)
$$

and using the fact that $V_{+}=U+O\left(\varepsilon^{\frac{1}{2}}\right)$ we have

$$
V_{+}^{6}=U^{6}+O\left(\varepsilon^{\frac{1}{2}} U^{5}\right), \quad \ln V_{+}=\ln U+O\left(\frac{\varepsilon^{\frac{1}{2}}}{U}\right)
$$

(note that $U \geqslant \frac{\frac{1}{\varepsilon^{2}}}{R^{\prime}}$ in Ω) whence

$$
V_{+}^{6} \ln V_{+}=U^{6} \ln U+O\left(\varepsilon^{\frac{1}{2}} U^{5}+\varepsilon^{\frac{1}{2}} U^{5}|\ln U|\right)
$$

We find easily

$$
\int_{\Omega} U^{6} \ln U=-\frac{A}{2} \ln (\Lambda \varepsilon)-C+O\left(\varepsilon^{3}|\ln \varepsilon|\right)
$$

and noticing that $\int_{\Omega} U^{5}|\ln U|=O\left(\varepsilon^{\frac{1}{2}}|\ln \varepsilon|\right)$, we obtain

$$
\begin{equation*}
\int_{\Omega} V_{+}^{6+\varepsilon}=\int_{\Omega} V_{+}^{6}-\frac{A}{2} \varepsilon \ln (|\varepsilon| \Lambda)-C \varepsilon+O\left(\varepsilon^{2}(\ln |\varepsilon|)^{2}\right) \tag{A.9}
\end{equation*}
$$

The first expansion of Proposition 5.1 follows from (A.7)-(A.9) and definition (3.23) of J_{ε}.

The expansions for the derivatives of J_{ε} are obtained exactly in the same way.

A.2. Green's function

We study the properties of Green's function $G_{\mu}(x, y)$ and its regular part $H_{\mu}(x, y)$. We summarize their properties in the following proposition.

Proposition 5.2. Let $G_{\mu}(x, y)$ and $H_{\mu}(x, y)$ be defined in (1.1) and (1.2), respectively. Then we have

$$
\begin{gather*}
H_{\mu}(x, x) \rightarrow-\infty \quad \text { as } d(x, \partial \Omega) \rightarrow 0 \tag{A.10}\\
\left|G_{\mu}(x, y)\right| \leqslant \frac{C}{|x-y|}, \tag{A.11}\\
\mu^{\frac{1}{2}}+\max _{x \in \Omega} H_{\mu}(x, x) \rightarrow-\infty, \quad \text { as } \mu \rightarrow 0 \tag{A.12}
\end{gather*}
$$

$$
\begin{equation*}
\mu^{\frac{1}{2}}+\max _{x \in \Omega} H_{\mu}(x, x) \rightarrow+\infty, \quad \text { as } \mu \rightarrow+\infty \tag{A.13}
\end{equation*}
$$

Proof. Eq. (A.10) follows from standard argument. Let $x \in \Omega$ be such that $d=$ $d(x, \partial \Omega)$ is small. So there exists a unique point $\bar{x} \in \partial \Omega$ such that $d=|x-\bar{x}|$. Without loss of generality, we may assume $\bar{x}=0$ and the outer normal at \bar{x} is pointing toward x_{N}-direction. Let x^{*} be the reflection point $x^{*}=(0, \ldots, 0,-d)$ and consider the following auxiliary function:

$$
H^{*}(y, x)=\frac{e^{-\mu^{\frac{1}{2}}\left|y-x^{*}\right|}}{\left|y-x^{*}\right|} .
$$

Then H^{*} satisfies $\Delta_{y} H^{*}-\mu H^{*}=0$ in Ω and on $\partial \Omega$

$$
\frac{\partial}{\partial n}\left(H^{*}(y, x)\right)=-\frac{\partial}{\partial n}\left(\frac{e^{-\mu^{\frac{1}{2}|y-x|}}}{|y-x|}\right)+O(1) .
$$

Hence we derive that

$$
\begin{equation*}
H(y, x)=-H^{*}(y, x)+O(1) \tag{A.14}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
H(x, x)=-\frac{1}{d(x, \partial \Omega)}+O(1) \tag{A.15}
\end{equation*}
$$

hence (A.10).
From (A.14), we see that as $d(x, \partial \Omega) \rightarrow 0$, we have

$$
\begin{equation*}
G_{\mu}(y, x)=\frac{e^{-\mu^{\frac{1}{2}}|y-x|}}{|y-x|}+H^{*}(y, x)+O(1) \leqslant \frac{C}{|x-y|} \tag{A.16}
\end{equation*}
$$

On the other hand, if $d(x, \partial \Omega)>d_{0}>0$, then $\left|H_{\mu}(y, x)\right| \leqslant C$ and (A.11) also holds.
We now prove (A.12). For μ small, we can decompose H_{μ} as follows:

$$
\begin{equation*}
H_{\mu}(x, y)=c+H_{0}(x, y)+\hat{H}(x, y) \tag{A.17}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\frac{1}{|\Omega|} \int_{\Omega} H_{\mu}(x, y)=\frac{1}{\mu|\Omega|} \int_{\partial \Omega} \frac{\partial}{\partial n}\left(\frac{e^{-\mu^{\frac{1}{2}|y-x|}}}{|y-x|}\right)=-\frac{4 \pi}{\mu|\Omega|}+O(1) \tag{A.18}
\end{equation*}
$$

and H_{0} satisfies

$$
-\Delta H_{0}=\frac{4 \pi}{|\Omega|}, \int_{\Omega} H_{0}=0, \quad \frac{\partial}{\partial n} H_{0}=\frac{\partial}{\partial n}\left(\frac{1}{|y-x|}\right) \quad \text { on } \partial \Omega
$$

and \hat{H} is the remainder term. By simple computations, \hat{H} satisfies

$$
\Delta \hat{H}-\mu \hat{H}+O\left(\mu H_{0}(x, y)\right)+O(1)=0 \quad \text { in } \Omega, \quad \int_{\Omega} \hat{H}=0, \quad \frac{\partial}{\partial n} \hat{H}=O(1) \text { on } \partial \Omega
$$

which shows that $\hat{H}=O(1)$. Thus

$$
\mu^{\frac{1}{2}}+\max _{x \in \Omega} H_{\mu}(x, x) \leqslant-\frac{4 \pi}{\mu|\Omega|}+O(1) \rightarrow-\infty
$$

as $\mu \rightarrow 0$. (A.12) is thus proved.
To prove (A.13), we choose a point $x_{0} \in \Omega$ such that $d\left(x_{0}, \partial \Omega\right)=\max _{x \in \Omega} d(x, \partial \Omega)$.
Then, since $\frac{\partial}{\partial n}\left(\frac{e^{-\mu}{ }^{\frac{1}{2}\left|x_{0}-x\right|}}{\left|x_{0}-x\right|}\right)=O\left(e^{-\frac{\mu^{\frac{1}{2}}}{2} d\left(x_{0}, \partial \Omega\right)}\right)$ on $\partial \Omega$, for μ large enough we see that

$$
\mu^{\frac{1}{2}}+\max _{x \in \Omega} H_{\mu}(x, x) \geqslant \mu^{\frac{1}{2}}+H\left(x_{0}, x_{0}\right) \geqslant \mu^{\frac{1}{2}}+O\left(e^{-\frac{\mu^{\frac{1}{2}}}{2} d\left(x_{0}, \partial \Omega\right)}\right) \rightarrow+\infty
$$

as $\mu \rightarrow+\infty$, which proves (A.13).

References

[1] Adimurthi, G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Nonlinear Anal., 9-25, Scuola Norm. Sup. Pisa (1991).
[2] Adimurthi, G. Mancini, Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math. 456 (1994) 1-18.
[3] Adimurthi, F. Pacella, S.L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993) 318-350.
[4] A. Bahri, Critical Points at Infinity in Some Variational Problems, in: Pitman Research Notes in Mathematical Series, Vol. 182, Longman, New York, 1989.
[5] P. Bates, G. Fusco, Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations 160 (2000) 283-356.
[6] L. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semi-linear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271-297.
[7] G. Cerami, J. Wei, Multiplicity of multiple interior peaks solutions for some singularly perturbed Neumann problems, Internat. Math. Res. Notes 12 (1998) 601-626.
[8] E.N. Dancer, S. Yan, The Neumann problem for elliptic equations with critical non-linearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa (1991) 9-25.
[9] M. Del Pino, P. Felmer, M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. Partial Differential Equations 16 (2003) 113-145.
[10] N. Ghoussoub, C. Gui, M. Zhu, On a singularly perturbed Neumann problem with the critical exponent, Comm. Partial Differential Equations 26 (2001) 1929-1946.
[11] M. Grossi, A. Pistoia, On the effect of critical points of distance function in superlinear elliptic problems, Adv. Differential Equations 5 (2000) 1397-1420.
[12] M. Grossi, A. Pistoia, J. Wei, Existence of multipeak solutions for a semilinear elliptic problem via nonsmooth critical point theory, Calculus of Variations and Partial Differential Equations 11 (2000) 143-175.
[13] A. Gierer, H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin) 12 (1972) 30-39.
[14] C. Gui, Multi-peak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996) 739-769.
[15] C. Gui, C.S. Lin, Estimates for boundary-bubbling solutions to an elliptic Neumann problem, J. Reine Angew. Math. 546 (2002) 201-235.
[16] C. Gui, J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27.
[17] C. Gui, J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (2000) 522-538.
[18] C. Gui, J. Wei, M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincare, Anal. Non-lineaire 17 (2000) 47-82.
[19] C. Gui, J. Wei, On the existence of arbitrary number of bubbles for some semilinear elliptic equations with critical Sobolev exponent, to appear.
[20] S. Khenissy, O. Rey, A criterion for existence of solutions to the supercritical Bahri-Coron's problem, Houston J. Math., to appear.
[21] M. Kowalczyk, Multiple spike layers in the shadow Gierer-Meinhardt system: existence of equilibria and quasi-invariant manifold, Duke Math. J. 98 (1999) 59-111.
[22] Y.Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998) 487-545.
[23] C.S. Lin, W.M. Ni, On the Diffusion Coefficient of a Semilinear Neumann Problem, in: Springer Lecture Notes, Vol. 1340, Springer, New York, Berlin, 1986.
[24] C.S. Lin, W.N. Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988) 1-27.
[25] S. Maier-Paape, K. Schmitt, Z.Q. Wang, On Neumann problems for semilinear elliptic equations with critical nonlinearity: existence and symmetry of multi-peaked solutions, Comm. Partial Differential Equations 22 (1997) 1493-1527.
[26] W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18.
[27] W.N. Ni, X.B. Pan, I. Takagi, Singular behavior of least-energy solutions of a semi-linear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992) 1-20.
[28] W.N. Ni, I. Takagi, On the shape of least-energy solutions to a semi-linear problem Neumann problem, Comm. Pure Appl. Math. 44 (1991) 819-851.
[29] W.M. Ni, I. Takagi, Locating the peaks of least-energy solutions to a semi-linear Neumann problem, Duke Math. J. 70 (1993) 247-281.
[30] O. Rey, The role of the Green's function in a nonlinear elliptic problem involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52.
[31] O. Rey, An elliptic Neumann problem with critical nonlinearity in three dimensional domains, Comm. Contemp. Math. 1 (1999) 405-449.
[32] O. Rey, The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl. 81 (2002) 655-696.
[33] X.J. Wang, Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991) 283-310.
[34] Z.Q. Wang, The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations 8 (1995) 1533-1554.
[35] Z.Q. Wang, High energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponent, Proc. Roy. Soc. Edinburgh 125 A (1995) 1003-1029.
[36] Z.Q. Wang, Construction of multi-peaked solution for a nonlinear Neumann problem with critical exponent, J. Nonlinear Anal. TMA 27 (1996) 1281-1306.
[37] J. Wei, On the interior spike layer solutions of singularly perturbed semilinear Neumann problems, Tohoku Math. J. 50 (1998) 159-178.
[38] J. Wei, M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré, Anal. Non Lineaire 15 (1998) 459-482.
[39] J. Wei, X. Xu, Uniqueness and a priori estimates for some nonlinear elliptic Neumann equations in \mathbb{R}^{3}, Pacific J. Math., to appear.
[40] S. Yan, On the number of interior multipeak solutions for singularly perturbed Neumann problems, Top. Meth. Nonlinear Anal. 12 (1998) 61-78.
[41] M. Zhu, Uniqueness results through a priori estimates, I. A three dimensional Neumann problem, J. Differential Equations 154 (1999) 284-317.

[^0]: *Corresponding author.
 E-mail addresses: rey@math.polytechnique.fr (O. Rey),wei@math.cuhk.edu.hk (J. Wei).
 ${ }^{1}$ Research supported in part by an Earmarked Grant from RGC of HK.

